© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - DC PANDEY ENGLISH

THERMOMETRY,THERMAL EXPANSION

\& KINETIC THEORY OF GASES

Example

1. Express a temperature of $60^{\circ} \mathrm{F}$ in degrees

Celsius and in kelvin.
2. The temperature of an iron piece is heated from $30^{\circ} \mathrm{Cto} 90^{\circ} \mathrm{C}$. What is the change in its temperature on the fahrenheit scale and on the kelvin scale?

D Watch Video Solution

3. A steel ruler exactly 20 cm long is graduated to give correct measurements at $20^{\circ} \mathrm{C}$.
(a) Will it give readings that are too long or too short at lower temperatures?
(b) What will be that actual length of the ruler when it is used in the desert at a temperature of $40^{\circ} C ? \alpha_{\text {steel }=1.2 \times 10^{-5}\left(.{ }^{\circ} C\right)^{-1} .}$

D Watch Video Solution

4. The scale on a steel meter stick is calibrated
at $15^{\circ} \mathrm{C}$. What is the error in the reading of 60 cm at $27^{\circ} C ? \alpha_{\text {steel }}=1.2 \times 10^{-5}\left(.^{\circ} C\right)^{-1}$.
5. A second's pendulum clock has a steel wire.

The clock is calibrated at $20^{\circ} \mathrm{C}$. How much time does the clock lose or gain in one week when the temperature is increased to $30^{\circ} C$? $\alpha_{\text {steel }=1.2 \times 10^{-5}(\wedge \circ C)^{-1} .}$

D Watch Video Solution

6. A sphete of deamrter 7.0 cm and mass 266.5
g float in a bath of liquid. As the temperature
is raised, the sphere begins to sink at a
temperature of $35^{\circ} \mathrm{C}$. If the density of liqued is $1.527 \mathrm{gcm}^{-3}$ at $0^{\circ} C$, find the coeffiecient of cubical expamsion of the liquid. Neglect the expansion of the sphere.

D Watch Video Solution

7. A glass beaker holds exactly $1 L a t 0^{\circ} C$
(a) What is its volume at $50^{\circ} \mathrm{C}$?
(b) If the beaker is filled with mercury at $0^{\circ} C$,
what volume of mercury overflows ehen the temperature is
$50^{\circ} C$
$\alpha_{g}=8.3 \times 10^{-6}$ per $^{\circ} C$
$\gamma_{H} g=1.82 \times 10^{-4}$ per $^{\circ} C$.

D Watch Video Solution

8. $p-V$ diagram of same mass of a gas are drawn at two different temperatures $\left(T_{1}\right)$ and
$\left(T_{2}\right)$. Explain whether $T_{1}>T_{2}$ or $T_{2}>T_{1}$.

9. The $p-V$ diagram of two different masses
m_{1} and m_{2} are drawn (as shown) at constant temperature (T). State whether

$m_{1}>m_{2}$ or $m_{2}>m_{2}$.

D Watch Video Solution

10. The $p-T$ graph for the given mass of an ideal gas is shown in figure. What inference can be drawn regarding the change in volume
(whether it is constant, increasing or decreasing) ?

How to proceed Definitely, it is not constant.

Because when volume of the gas is constant
$p-T$ graph is a straight line passing through
origin. The given line does not pass through origin, hence volume is not constant.

$V=(n R)\left(\frac{T}{P}\right)$
Now, to see volume of the gas we will have to see whether $\frac{T}{P}$ is increasing or decreasing.

- Watch Video Solution

11. A gas at $27^{\circ} C$ in a cylinder has a volume of

4 litre and pressure $100 \mathrm{Nm}^{-2}$.
(i) Gas is first compressed at constant temperature so that the pressure is $150 \mathrm{Nm}^{-2}$
. Calaulate the change in volume.
(ii) It is then heated at constant volume so that temperature becomes $127^{\circ} \mathrm{C}$. Calculate the new pressure.
12. A balloon partially filled with helium has a volume of $30 \mathrm{~m}^{3}$, at the earth's surface, where pressure is 76 cm of (Hg) and temperature is
$27^{\circ} \mathrm{C}$ What will be the increase in volume of gas if balloon rises to a height, where pressure is 7.6 cm of Hg and temperature is $-54^{\circ} \mathrm{C}$?

Watch Video Solution

13. Find total internal energy of 3 moles of hydrogen gas at temperature T.
14. Ten moles of $\left(O_{2}\right)$ gas are kept at temperature T. At some higher temperature $2 T$, fourty percent of molecular oxygen breaks into atomic oxygen. Find change in internal energy of the gas.

D Watch Video Solution

15. At a given temperature internal energy of a monoatomic, diatomic and non - linear gas is
$\left(U_{0}\right.$ each. Find their translational and rotiational kinetic energies separately.

D Watch Video Solution

16. Two moles of helium (He) are mixed with
four moles of hydrogen $\left(\mathrm{H}_{2}\right)$. Find
(a) $\left(C_{V}\right.$ of the mixture
(b) $\left(C_{P}\right.$ of the mixture and
(c) (γ) of the mixture.

D Watch Video Solution
17. Temperature of two moles of a monoatomic gas is increased by $300 K$ in the process $p \propto V$
. Find
(a) molar heat capacity of the gas in the given
process
(b) heat required in the given process.

D Watch Video Solution

18. Find the rms speed of hydrogen molecules at room temperature $(=300 K)$.
19. A tank used for filling helium balloons has a volume of $0.3 \mathrm{~m}^{3}$ and contains (2.0) mol of helium gas at $20.0^{\circ} C$. Assuming that the helium behaves like an ideal gas.
(a) What is the total translational kinetic energy of the molecules of the gas?
(b) What is the average kinetic energy per molecule?
20. Consider an 1100 particels gas system with
speeds distribution as follows:

1000 particles each with speed $100 \mathrm{~m} / \mathrm{s}$
2000 particles each wityh speed $200 \mathrm{~m} / \mathrm{s}$
4000 particles each with speed $300 \mathrm{~m} / \mathrm{s}$

3000 particles each with speed $400 \mathrm{~m} / \mathrm{s}$ and 1000 particles each with speed $500 \mathrm{~m} / \mathrm{s}$

Find the average speed, and rms speed.

- Watch Video Solution

21. Calculate the change in internal energy of
3.0 mol of helium gas when its temperature is increased by 2.0 K .

- Watch Video Solution

22. In a crude model of a rotating diatomic molecule of chlorine $\left(C l_{2}\right)$, the two ($C l$) atoms are $2.0 \times 10^{-10} \mathrm{~m}$ apart and rotate about their centre of mass withb angular speed $\omega=2.0 \times 10^{12} \mathrm{rad} / \mathrm{s}$. What is the rotational kinetic energy of one molecule of
$C l_{2}$, Which has a molar mass of $70.0 \mathrm{~g} / \mathrm{mol} ?$

D Watch Video Solution

23. Prove that the pressure of an ideal gas is numerically equal to two third of the mean translational kinetic energy per unit volume of the gas.

Example Type 1

Corresponding to ($\mathrm{p}-\mathrm{T}$) graph as shown in
figure, draw
(a) P - V graph
(b) V-T graph
(c) ρ-T graph and
(d) U-T graph.

- Watch Video Solution

Example Type 2

1. An insulated box containing a monoatomic gas of molar mass (M) moving with a speed v_{0}
is suddenly stopped. Find the increment is gas temperature as a result of stopping the box.
2. A cubical box of side $1 m$ contains helium gas
(atomic weight 4) at a pressure of $100 \mathrm{~N} / \mathrm{m}^{2}$.
During an observation time of $1 \mathrm{sec} o n d$, an
atom travelling with the root - mean-square
speed parallel to one of the edges of the cube,
was found to make 500 hits with a particular
wall, without any collision with other atoms .

Take
$R=\frac{25}{3} j / \mathrm{mol}-K$ and $k=1.38 \times 10^{-23} J / K$
(a) Evalite the temperature of the gas.
(b) Evaluate the average kinetic energy per atom.
(c) Evaluate the total mass of helium gas in the box.

- Watch Video Solution

2. $1 g$ mole of oxygen at $27^{\circ} C$ and
atmosphere pressure is enclosed in a vessel.
(a) Assuming the molecules to be moving with
($v_{r m s}$, find the number of collisions per second which the molecules make with one square
metre area of the vessel wall.
(b) The vessel is next thermally insulated and moves with a constant speed (v_{0}. It is then suddenly stoppes. The process results in a rise of temperature of the temperature of the gas
by
$1^{\circ} C$.
Calculate
the speed
$v_{0} \cdot\left[k=1.38 \times 10^{-23} J / K\right.$
and
$\left.N_{A}=6.02 \times 10^{23} / \mathrm{mol}\right]$.

- Watch Video Solution

Miscellaneous Example

1. An ideal diatomic gas with $C_{V}=\frac{5 R}{2}$ occupies a volume (V_{i} at a pressure $\left(P_{i}\right.$. The gas undergoes a process in which the pressure is proportional to the volume. At the end of the process, it is found that the rms speed of the gas molecules has doubles from its initial
value. Determine the amount of energy transferred to the gas by heat.

- Watch Video Solution

2. Given, Avogadro's number $N=6.02 \times 10^{23}$
and Boltzmann's constant
$k=1.38 \times 10^{-23} J / K$.
(a) Calculate the average kinetic energy of translation of the molecules of an ideal gas at $0^{\circ} C$ and $a t 100^{\circ} C$.
(b) Also calculate the corresponding energies per mole of the gas.
3. An air bubble starts rising from the bottom of a lake. Its diameter is 3.6 mm at the bottom
and $4 m m$ at the surface. The depth of the lake is 250 cm and the temperature at the surface is
$40^{\circ} \mathrm{C}$. What is the temperature at the bottom of the lake? Given atmospheric pressure $=$ 76 cmofHg and $g=980 \mathrm{~cm} / \mathrm{s}^{2}$.

- Watch Video Solution

4. $(p-V)$ diagram of (n) moles of an ideal gas is
as shown in figure. Find the maximum
temperature between (A) and (B).

How to proceed For given number of moles of a gas,
$T \propto p V(p V=n R T)$
Although
$(p V)_{A}=(p V)_{B}=2 p_{0} V_{0}$ or $T_{A}=T_{B}$, yet it
is not an isothermal process. Because in
isothermal process ($p-\mathrm{V}$) graph is a rectangular hyperbola while it is a straight line. So, to see the behaviour of temperature,

First we will find either $(T-V)$ equation or (T _
p) equation and from that equation we can
judge how the temperature baries. From the graph, first we will write $) \mathrm{p} V$) equation, then we will convert it either in ($\mathrm{T}-\mathrm{V}$) equation or in
($\mathrm{T}-\mathrm{p}$) quation with the help of equation, $(\mathrm{pV}=$ nRT).

- Watch Video Solution

5. Plot ($\mathrm{p}-\mathrm{V}$),(V-T) and ($\rho-\mathrm{T}$) graph corresponding to the $(\mathrm{p}-\mathrm{T})$ graph for an ideal

- Watch Video Solution

Exercise 201

1. What is the value of.
(a) $0^{\circ} F$ in Celsius scale?
(b) $0 K$ on Fahrenheit scale ?

D Watch Video Solution
2. At what temperature is the Fahrenheit scale reading equal to
(a) twice (b) half of Celsius ?

- Watch Video Solution

3. A faulty thermometer reads $5^{\circ} \mathrm{C}$ melting ice and $99^{\circ} \mathrm{C}$ in steam. Find the correct temperature in ^ $\circ C$ when this faulty
thermometer reads $52^{\circ} \mathrm{C}$.
4. At what temperature the Fahrenheit and kelvin scales of temperature give the same reading ?

- Watch Video Solution

5. At what temperature the Fahrenheit and

Celsius scales of temperature give the same reading ?

1. Take the values of (prop) from table 20.2.

A pendulum clock of time period $2 s$ gives the correct time at $30^{\circ} \mathrm{C}$. The pendulum is made of iron. How many seconds will it lose or gain per day when the temperature falls tp $0^{\circ} C$? $\alpha_{F e}=1.2 \times 10^{-5}\left(.^{\circ} C\right)^{-1}$.

D Watch Video Solution

2. A block of wood is floating in water at $0^{\circ} C$.

The temperature of water is slowly raised from
$0^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$. How will the precentage of volume of block above water level change with rise in temperature?

- Watch Video Solution

3. A piece of metal floats on mercury. The coefficient of volume expansion of metal and mercury are γ_{1} and γ_{2}, respectively. if the temperature of both mercury and metal are
increased by an amount ΔT, by what factor does the frection of the volume of the metal submerged in mercury changes ?

D Watch Video Solution

4. A brass disc fits snugly in a hole in a steel
plate. Should you heat or cool the system to
loosen the disc from the hole ? given that $\alpha_{b}>\alpha_{F} e$.

D Watch Video Solution

5. An iron ball has a diameter of 6 cm and is
0.010 mm too large to pass through a hole in
a brass plate when the ball and plate are at a temperature of $30^{\circ} \mathrm{C}$. At what temperature, the same for ball and plate, will the ball just pass through the hole?

Take the values of (prop) from Table 20.2.

- Watch Video Solution

6. (a) An alumunium measuring rod which is correct at $5^{\circ} \mathrm{C}$, measures a certain distance as
$88.42 \mathrm{cmat} 35^{\circ} \mathrm{C}$. determine the error in measuring hr distance due to the expansion of the rod. (b) If this aluminium rod measures a length of steel as $88.42 \mathrm{cmat} 35^{\circ} \mathrm{C}$, what is the correct length of the steel at $35^{\circ} \mathrm{C}$?

D Watch Video Solution

7. A steel tape is callibrated at $20^{\circ} \mathrm{C}$. On a cold day when the temperature is $-15^{\circ} \mathrm{C}$, what will be the percentage error in the tape?

Exercise 203

1. From the graph for an ideal gas, state whether m_{1} or m_{2} is greater.
(Watch Video Solution
2. A vessel is filled with an ideal gas at a pressure of 20 atm and is a temperature of $27^{\circ} \mathrm{C}$ One - half of the mass is removed from
the vessel and the temperature of the remaining gas is increased to $87^{\circ} \mathrm{C}$. At this temperature, Find the pressure of the gas.

D Watch Video Solution

3. A vessel contains a mixture of $7 g$ of nitrogen
and $11 g$ carbon dioxide at temperature
$T=290 K$. If pressure of the mixure is
$\operatorname{1atm}\left(=1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right), \quad$ calculate its
dencity $(R=8.31 J / m o l-K)$.
4. An electric bulb of volume 250 cc was sealed during manufacturing at a pressure of $10^{-3} \mathrm{~mm}$ of mercury at $27^{\circ} \mathrm{C}$. Compute the number of air molecules contained in the bulb.

Avogadro constant $=6 \times 10^{23} \mathrm{~mol}^{-1}$, density of mercury $=13600 \mathrm{kgm}^{-3}$ and

$$
g=10 m s^{-2}
$$

D Watch Video Solution

5. State whether $\left(p_{1}>p_{2}\right.$ or $\left.p_{2}>p_{1}\right)$ for given mass of a gas ?

- Watch Video Solution

6. For a given mass of a gas what is the shape of (p) versus $\left(\frac{1}{V}\right)$ graph at constant temperature ?
7. For a given mass of a gas, what is the shape of (pV) versus (T) graph on isothermal process
?

D Watch Video Solution

Exercise 204

1. A gas mixture coinsists of (2) moles of oxygen and (4) moles of argon at temperature
(T). Neglecting all vibrational modes, the total internal energy of the system is (jee 1999) (a) 4 RT (b) 15 RT (c) 9 RT (d) 11 RT .

- Watch Video Solution

2. The average translational kinetic energy of
O_{2} (molar mass 32) molecules at a particular temperature is 0.048 eV . The translational kinetic energy of N_{2} (molar mass 28) molecules in (eV) at the same temperature is
(JEE 1997)
(a) 0.0015 (b) 0.003 (c) 0.048 (d) 0.768

D Watch Video Solution
3. At a given temperature, rotational kinetic energy of diatomic gas is K_{0}. Find its translational and total kinetic energy.

D Watch Video Solution

1. Calculate the root mean square speed of hydrogen molecules at $373.15 K$.

D Watch Video Solution

2. Five gas molecules chosen at random are found to have speed of
$500,600,700,800$ and $900 \mathrm{~m} / \mathrm{s}$. Find the rms speed. Is it the same as the average speed?
3. The average speed of all the molecules in a gas at a given instant is not zero, whereas the average velocity of all the molecules is xero.

Explain why?

D Watch Video Solution

4. A sample of helium gas is at a temperature of 300 K and a pressure of 0.5 atm . What is the average kinetic energy of a molecule of a gas ?
5. A sample of helium and neon gases has a temperature of 300 K and pressure of 1.0 atm .

The molar mass of helium is $4.0 \mathrm{~g} / \mathrm{mol}$ and that of neon is $20.2 \mathrm{~g} / \mathrm{mol}$.
(a) Find the rms speed of the helium atoms and of the neon atoms.
(b) What is the average kinetic energy per atom of each gas ?
6. At what temperature will the particles in a sample of helium gas have an rms speed of $1.0 \mathrm{~km} / \mathrm{s}$?

- Watch Video Solution

7. For any distribution of speeds $v_{r m s} \geq v_{a v}$ Is this statement true or false ?

D Watch Video Solution

1. Assertion: Straight line on ($\mathrm{p}-\mathrm{T}$) graph for an ideal gas represents isochoric process.

Reason: If $p \propto T, V=c o n s \tan t$.
A. If both Assertion and Reason are true
and the reason is correct explanation of
the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. If Assertion is true, but the Reason is
false.
D. If Assertion is false but the Reason is
true.

Answer: D

D Watch Video Solution

2. Vibrational kinetic energy is insignificant at
low temperatures.

Interatomic forces are responsible for vibrational kinetic energy.
A. If both Assertion and Reason are true
and the reason is correct explanation of
the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. If Assertion is true, but the Reason is false.

D. If Assertion is false but the Reason is

 true.
Answer: B

D Watch Video Solution

3. In the formula $p=\frac{2}{3} E$, the term
represents translational kinetic energy per unit volume of gas.

In case of monoatomic gas, translational
kinetic energy and total kinetic energy are equal.
A. If both Assertion and Reason are true
and the reason is correct explanation of
the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. If Assertion is true, but the Reason is false.

D. If Assertion is false but the Reason is

 true.
Answer: B

D Watch Video Solution

4. If a gas container is placed in a moving train, the temperature of gas will increase.

Kinetic energy of gas molecules will increase.
A. If both Assertion and Reason are true
and the reason is correct explanation of
the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. If Assertion is true, but the Reason is
false.
D. If Assertion is false but the Reason is
true.

Answer: D

D Watch Video Solution

5. According to the law of equipartition of energy, internal energy of an ideal gas at a given temperature, is equally distributed in translational and rotational kinetic energies.

Rotational kinetic energy of a monoatomic gas
is zero.
A. If both Assertion and Reason are true
and the reason is correct explanation of
the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. If Assertion is true, but the Reason is
false.
D. If Assertion is false but the Reason is
true.

Answer: D

- Watch Video Solution

6. Assertion: Real gases behave as ideal gases
most closely at low pressure and high
temperature.

Reason: Intermolecular force between ideal
gas molecules is assumed to be zero. Choose
the appropriate option:
a) If both Assertion and Reason are true and the reason is correct explanation of the

Assertion.
b) If both Assertion and Reason are true but

Reason is not the correct explanation of

Assertion.
c) If Assertion is true, but the Reason is false.
d) If Assertion is false but the Reason is true.
A. If both Assertion and Reason are true
and the reason is correct explanation of
the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. If Assertion is true, but the Reason is
false.
D. If Assertion is false but the Reason is
true.

Answer: B

- Watch Video Solution

7. Assertion: A glass of water is filled at $4^{\circ} C$.

Water will overflow, if temperature is increased
or decreased. (Ignore expansion of glass).
Reason: Density of water is minimum at $4^{\circ} \mathrm{C}$.
A. If both Assertion and Reason are true and the reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct explanation of Assertion.

C. If Assertion is true, but the Reason is

 false.D. If Assertion is false but the Reason is true.

Answer: C

D Watch Video Solution

8. If pressure of an ideal gas is doubled and
volume is halved, then its internal energy will
remain unchanged.

Internal energy of an ideal gas is a function of only temperature.
A. If both Assertion and Reason are true
and the reason is correct explanation of
the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. If Assertion is true, but the Reason is false.

D. If Assertion is false but the Reason is

 true.
Answer: B

D Watch Video Solution

9. In equation $p=\frac{1}{3} \alpha v_{r m s}^{2}$, the term (prop) represents dencity of gas.
$v_{r m s}=\frac{\sqrt{3 R T}}{M}$.
A. If both Assertion and Reason are true
and the reason is correct explanation of
the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. If Assertion is true, but the Reason is
false.
D. If Assertion is false but the Reason is
true.

Answer: B

D Watch Video Solution

10. Assertion: In isobaric process, (V-T) graph
is a straight line passing through origin. Slope
of this line is directly proportional to mass of
the gas. (V) is taken on (y - axis).
Reason: $V=\left(\frac{n R}{p}\right) T$
\therefore Slope $\propto n$
or slope $\propto m$.
A. If both Assertion and Reason are true
and the reason is correct explanation of
the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. If Assertion is true, but the Reason is
false.
D. If Assertion is false but the Reason is
true.

Answer: A

- Watch Video Solution

Level 1 Objective

1. The average velocity of molecules of a gas of
molecular weight (M) at temperature (T) is
A. $\frac{\sqrt{3 R T}}{M}$.
B. $\frac{\sqrt{8 R T}}{\pi M}$.
C. $\frac{\sqrt{2 R T}}{M}$.

Answer: B

D Watch Video Solution

2. Four particles have velocities
$1,0,2$, and $3 \mathrm{~m} / \mathrm{s}$. The root mean square velocity of the particles (definition wise) is.
A. $3.5 m / s$.
B. $\sqrt{3.5 m / s}$.
C. $1.5 \mathrm{~m} / \mathrm{s}$
D. $\sqrt{\frac{14}{3}} \mathrm{~m} / \mathrm{s}$.

Answer: B

- Watch Video Solution

3. The temperature of an ideal gas is increased
from $27^{\circ} \mathrm{C}$ to $927^{\circ} \mathrm{C}$. The rms speed of its
molecules becomes.
A. twice
B. half

C. four times

D. one - fourth

Answer: A

D Watch Video Solution

4. In case of hydrogen and oxygen at (NTP), which of the following is the same for both ?
A. Average linear momentum per molecule.
B. Average (KE) per molecule.
C. (KE) per unit volume
D. (KE) per unit mass

Answer: B

D Watch Video Solution

5. The average kinetic energy of the molecules
of an ideal gas at $10^{\circ} C$ has the value (E). The temperature at which the kinetic energy of the same gas becomes (2E) is.
A. $5^{\circ} C$
B. $10^{\circ} \mathrm{C}$
C. $40^{\circ} \mathrm{C}$
D. None of these

Answer: D

D Watch Video Solution

6. A polyatomic gas with (n) degress of freedom has a mean energy per molecule given by.

> A. $\frac{n}{2} R T$
> B. $\frac{1}{2} R T$
> C. $\frac{n}{2} k T$
> D. $\frac{1}{2} k T$

Answer: C

D Watch Video Solution

7. In a process, the pressure of a gas remains constant. If the temperature is doubles, then
the change in the volume will be.
A. 100%
B. 200%
C. 50%
D. 25%

Answer: A

D Watch Video Solution

8. A steel rod of length $1 m$ is heated from 25° to $75^{\circ} \mathrm{C}$ keeping its length constant. The longitudinal strain developed in the rod is (

Given, coefficient of linear expansion of steel $=$ $\left.12 \times 10^{-6} /{ }^{\circ} C\right)$.
A. 6×10^{-4}
B. -6×10^{-5}
C. -6×10^{-4}
D. zero

Answer: C

D Watch Video Solution
9. The coefficient of linear expansion of steel
and brass are $11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and
$19 \times 10^{-6} /{ }^{\circ} C$, respectively. If their difference
in lengths at all temperature has to kept constant at 30 cm , their lengths at $0^{\circ} C$ should be
A. 71.25 cm and 41.25 cm
B. 82 cm and 52 cm
C. 92 cm and 62 cm
D. 62.25 cm and 32.25 cm

Answer: A

D Watch Video Solution

10. The expansion of an ideal gas of mass (m)
at a constant pressure (p) is given by the
straight line (B) Then, the expansion of the same ideal gas of mass $2 m$ at a pressure $2 p$ is given by the straight line.

A. (C)
B. (A)
C. (B)
D. data insufficient

Answer: C

D Watch Video Solution

Level 1 Subjective

1. Change each of the given temperature to
the Celsius and Kelvin scales $68^{\circ} F, 5^{\circ} \mathrm{F}$ and $176^{\circ} \mathrm{F}$.

- Watch Video Solution

2. Change each of the given temperature to the Fahrenheit and Reaumur scale : $30^{\circ} C, 5^{\circ} C$ and $-20^{\circ} C$.
3. At what temperature do the Celsius and

Fahrenheit readings have the same numerical value?

- Watch Video Solution

4. You work in a materials testing lab and your boss tells you to increase the temperature of a sample by $40.0^{\circ} \mathrm{C}$. The only thermometer you can find at your workbench reads in ${ }^{\wedge} \circ C$. If
the initial temperature of the sample is $68.2^{\circ} \mathrm{C}$. What is its temperature in ${ }^{\wedge} \circ C$
when the desired temperature increase has been achieved?

D Watch Video Solution

5. The steam point and the ice point of a

Mercury thermometer are marked as
80° and 20°. What will be the temperature in centigrade mercury scale when this
thermometer reads 32^{0} ?

D Watch Video Solution

6. A platinum resistance thermometer reads $0^{\circ} \mathrm{C}$ when its resistance is 80Ω and $100^{\circ} \mathrm{C}$ when its resistance is 90Ω. Find the temperature at which the resistance is 86Ω.

- Watch Video Solution

7. The steam point and the ice point of a mercury thermometer are marked as
80° and 10°. At what temperature on centigrade scale the reading of this thermometer will be 59° ?
8. Find the temperature at which oxygen molecules would have the same rms speed as of hydrogen molecules at 300 K .

- Watch Video Solution

9. Find the mass (in kilogram) of an ammonia molecule NH_{3}.
10. Three moles of an ideal gas having
$\gamma=1.67$ are mixed with 2 moles of another ideal gas having $\gamma=1.4$. Find the equivalent value of γ for the mixture.

- Watch Video Solution

11. How many degress of freedom have the gas molecules, if under standard conditions the gas density is $\rho=1.3 \mathrm{~kg} / \mathrm{m}^{3}$ and velocity of sound propagation o it is $v=330 \mathrm{~m} / \mathrm{s}$?
12. $4 g$ hydrogen is mixed with 11.2 litre of He at
(STP) in a container of volume 20 litre. If the final temperature is $300 K$, find the pressure.

- Watch Video Solution

13. One mole of an ideal monoatomic gas is taken at a temperature of 300 K . Its volume is
doubled keeping its pressure constant. Find the change in internal energy.

D Watch Video Solution

14. Two perfect monoatomic gases at absolute temperature T_{1} and T_{2} are mixed. There is no
loss of energy. Find the temperature of the mixture if the number of moles in the gases are n_{1} and n_{2}.

D Watch Video Solution

15. If the water molecules in $1.0 g$ of water were distributed uniformly over the surface of earth, how many such molecules would there be in $1.0 \mathrm{~cm}^{2}$ of earth's surface ?

- Watch Video Solution

16. If the kinetic energy of the molecules in 5
litre of helium at 2 atm is (E). What is the kinetic energy of molecules in 15 litre of oxygen at 3 atm in terms of (E) ?
17. At what temperature is the "effective" speed of gaseous hydrogen molecules (molecular weight $=2$) equal to that of oxygen molecules (molecular weight $=32$) at $47^{\circ} C$?

D Watch Video Solution

18. At what temperature is $v_{r m s}$ of H_{2} molecules equal to the escape speed from earth's surface. What is the corresponding
temperature for escape of hydrogen from
moon's
surface
?
Given
$g_{m}=1.6 \mathrm{~m} / \mathrm{s}^{2}, R_{e}=6367 \mathrm{~km} \operatorname{and} R_{m}=1750 \mathrm{~km}$

- Watch Video Solution

19. The pressure of the gas in a constant volume gas thermometer is 80 cm of mercury in melting ice at 1 atm . When the bulb is placed in a liquid, the pressure becomes

160 cm of mercury. Find the temperature of the liquid.

- Watch Video Solution

20. The resistances of a platinum resistance
thermometer at the ice point, the steam point and the boiling point of sulphur are
$2.50,3.50$ and $6.50(\Omega)$ respectively. Find the boiling point of sulphur on the platinum scale.

The ice point and the steam point measure
0° and 100°, respectively.
21. In a constant volume gas thermometer, the pressure of the working gas is measured by the differenced in the levels of mercury in the two arms of a U-tube connected to the gas at one end. When the bulb is placed at the room temperature $27.0^{\circ} \mathrm{C}$, the mercury column in the arm open to atmosphere stands 5.00 cm above the level of mercury in the other arm.

When the bulb is placed in a hot liquid, the difference of mercury levels becomes
45. . 0 Cm . Calculate the temperature of the
liquid. (Atmospheric pressure $=75.0 \mathrm{~cm}$ of mercury).

D Watch Video Solution

22. A steel wire of $2.0 \mathrm{~mm}^{2}$ cross- section is
held straight(but under no tension) by attaching it firmly to two points a distance 1.50 m apart at $30^{\circ} \mathrm{C}$. If the temperature now decreases to $-10^{\circ} C$ and if the two points
remain fixed, what will be the tension in the wire ? For steel, $Y=20.0000 M P a$.

D Watch Video Solution

23. A metallic bob weights $50 g$ in air. If it is
immersed in a liquid at a temperature of $25^{\circ} \mathrm{C}$
, it weights 45 g . When the temperature of the
liquid is raised to $100^{\circ} \mathrm{C}$, it weights 45.1 g .

Calculate the coefficient of cubical expansion of the liquid. Given that coefficient of cubical expansion of the metal is $12 \times 10^{-6} .{ }^{\circ} C^{-1}$.
24. An ideal gas exerts a pressure of 1.52 MPa when its temperature is $298.15 K$ and its volume is $10^{-2} m^{3}$. (a) How many moles of gas are there ? (b) What is the mass density if the gas is molecular hydrogen ? (c) What is the mass density if the gas is oxygen ?
25. A compressor pumps $70 L$ of air into a $6 L$ tank with the tempertaure remaining unchanged. If all the air is originally at 1 atm .

What is the fianl absolute pressure of the air in the tank?

- Watch Video Solution

26. A partially inflated balloon contains $500 \mathrm{~m}^{3}$ of helium at $27^{\circ} \mathrm{C}$ and 1 atm pressure. What is the volume of the helium at an altitude of

18000 ft , where the pressure is 0.5 atm and the temperature is $-3^{\circ} C$?

D Watch Video Solution

27. A cylinder whose inside diameter is 4.00 cm
contains air compressed by a piston of mass
$m=13.0 \mathrm{~kg}$ which can slide freely in the
cylinder. The entire arrangement is immersed
in a water bath temperature can be controlled.

The system is initially in equilibrium at temperature $t_{i}=20^{\circ} \mathrm{C}$. The initial height of
the piston above the bottom of the cylinder is
$h_{i}=4.00 \mathrm{~cm}$. The temperature of the water
bath is gradually increased to afinal
temperature $t_{f}=100^{\circ} C$. Calculate the final height h_{f} of the piston.

D Watch Video Solution

28. The closed cylinder shown in figure has a freely moving piston separating chambers 1
and 2. Chamber 1 contains $25 m g$ of N_{2} and chamber 2 contains 40 mg of helium gas. When equilibrium is established what will be the ratio L_{1} / L_{2} ? What is the ratio of the number of moles of N_{2} to the number of moles of He ?
(Molecular weights of N_{2} and He are 28 and 4.

- Watch Video Solution

29. Two gases occupy two containers (A) and
(B). The gas in (A) of volume $0.11 m^{3}$ experts a
pressure of $1.38 M p a$. The gas in (B) of volume $0.16 m^{3}$ experts a pressure of ${ }^{`} 0.69 \mathrm{Mpa}$. Two containers are united by a tube of negligible volume and the gases are allowed to intermingle. What is the final pressure in the container if the temperature remains constant ?

- Watch Video Solution

30. A glass bulb of volume $400 \mathrm{~cm}^{3}$ is connected to another bulb of volume $200 \mathrm{~cm}^{3}$
by means of a tube of negligible volume. The bulbs contain dry air and are both at a common temperature and pressure of $20^{\circ} \mathrm{C}$ and 1.000 atm, respectively. The larger bulb is immersed in steam at $100^{\circ} \mathrm{C}$ and the smaller in melting ice at 0°. Find the final common pressure.

D Watch Video Solution

31. The condition called standard temperature and pressure (STP) for a gas is defined as
temperature of $0^{\circ} C=273.15 K$ and a pressure of $1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}$. If you want to keep a mole of an ideal gas in your room at (STP), how big a container do you need?

D Watch Video Solution

32. A large cylindrical tank contains $0.750 \mathrm{~m}^{3}$ of nitrogen gas at $276 \circ C$ and $1.50 \times 10^{5} \mathrm{~Pa}$
(absolute pressure). The tank has a tightfitting piston that allows the volume to be changed.

What will be the pressure if the volume is decreased to $0.480 \mathrm{~m}^{3}$ and the temperature is increased to $157^{\circ} \mathrm{C}$.

D Watch Video Solution

33. A vessel of volume 5 litres contains $1.4 g$ of
N_{2} and $0.4 g$ of He at $1500 K$. If 30% of the nitrogen molecules are dissociated into atoms
then find the gas pressure.

D Watch Video Solution

34. Temperature of diatomic gas is 300 K . If moment of intertia of its molecules is $8.28 \times 10^{-38} \mathrm{~g}-\mathrm{cm}^{2}$. Calculate their root mean square angular velocity.

- Watch Video Solution

35. Find the number of degrees of freedom of molecules in a gas. Whose molar heat capacity
(a) at constant pressure $C_{p}=29 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
(b) $C=29 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ in the process (pT) $=$ constant.

- Watch Video Solution

36. In a certain $\left(\frac{2}{5}\right)$ th of the energy of molecules is associated with the ratation of molecules and the rest of it is associated with the motion of the centre of mass.
(a) What is the average translational energy of one such molecule when the temperature id $27^{\circ} C$?
(b) How much energy must be supplied to one mole of thsi gas constant volume to raise the temperature by $1^{\circ} C$?

- Watch Video Solution

37. A mixture contains 1 mole of helium
($C_{p}=2.5 R, C_{v}=1.5 R$.) and 1 mole of hydrogen $\quad\left(C_{p}=3.5 R, C_{v}=2.5 R,\right)$

Calculate the values of C_{p}, C_{v} and γ for the mixture.

- Watch Video Solution

38. An ideal gas $\left(\frac{C_{p}}{C_{v}}=\gamma\right)$ is taken through a process in which the pressure and volume vary as $\left(p=a V^{b}\right)$. Find the value of b for which the specific heat capacity in the process is zero.

D Watch Video Solution

39. An ideal gas is taken through a process in which the pressure and the volume are changed according to the equation $p=k v$.

Show that the molar heat capacity of the gas
for the process is given by $\left(C=C_{v}+\frac{R}{2}\right)$.

D Watch Video Solution

40. The pressure of a gas in a $100 m L$ container is $200 k P a$ and the. Average translational kinetic energy of each gas particle is $6 \times 10^{-21} \mathrm{~J}$. Find the number of gas particles in the container. How many moles are there in the container ?
41. One gram mole $N O_{2}$ at $47^{\circ} \mathrm{C}$ and 2 atm pressure in kept in a vessel. Assuming the molecules to be moving with (rms) velocity.

Find the number of collisions per which the molecules make with one square metre area of the vessel wall.

D Watch Video Solution

42. A 2.00 mL volume container contains 50 mg
of gas at a pressure of $100 k P a$. The mass of
each gas particle is $8.0 \times 10^{-26} \mathrm{~kg}$. Find the average translational kinetic energy of each particle

- Watch Video Solution

43. Call the (rms) speed of the molecules in an ideal gas V_{0} at temperature T_{0} and pressure p_{0}. Find the speed if (a) the temperature id raised from $T_{0}=293 K$ to $573 K$ (b) the pressure is doubled and $T=T_{0}(\mathrm{c})$ the
molecular weight of each of the gas molecules
is tripled.

D Watch Video Solution

44. (a) What is the average translational kinetic energy of a molecule of an ideal gas at temperature of $276 \circ C$?
(a) What is the total random translational kinetic energy of the molecules in one mole of this gas?
(c) What is the rms speed of oxygen molecules at this temperature?

- Watch Video Solution

45.

$0^{\circ} \mathrm{C}$ and 1.0atm $\left(=1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)$
pressure the densities of air, oxygen and nitrogen are
$1.284 \mathrm{~kg} / \mathrm{m}^{3}, 1.429 \mathrm{~kg} / \mathrm{m}^{3}$ and $1.251 \mathrm{~kg} / \mathrm{m}^{3}$
respectively. Calculate the percentage of
nitrogen in the air from these data, assuming only these two gases to be present.

D Watch Video Solution

46. An air bubble of $20 \mathrm{~cm}^{3}$ volume is at the bottom of a lake 40 m deep where the temperature is $4^{\circ} C$. The bubble rises to the surface which is at a temperature of $20^{\circ} \mathrm{C}$.

Take the temperature to be the same as that of the surrounding water and find its volume just before it reaches the surface.
47. For a certain gas the heat capcity at constant pressure is greater than that at constant volume by $29.1 \mathrm{~J} / \mathrm{K}$.
(a) How many moles of the gas are there?
(b) if the gas is monatomic, what are heat capacities at constant volume and pressure ?
(c) If the gas molecules are diatomic which rotate but do nit vibrate, what are heat capacities at constant volume and at constant pressure.

- Watch Video Solution

48. The heat capacity at constant volume of a monoatomic gas is $35 j / K$. Find
(a) the number of moles
(b) the internal energy at $0^{\circ} \mathrm{C}$.
(c) the molar heat capacity at constant pressure.
49. Two thermally insulated vessel 1 and 2 are
filled with air at temperature
$\left(T_{1} T_{2}\right)$, volume $\left(V_{1} V_{2}\right)$ and pressure $\left(P_{1} P_{2}\right)$
respectively. If the valve joining the two vessels
is opened, the temperature inside the vessel at equilibrium will be
A. $T_{1}+T_{2}$
B. $\left(T_{1}+T_{2}\right) / 2$
C. $\frac{T_{1} T_{2}\left(V_{1}+V_{2}\right)}{p_{1} V_{1} T_{2}+p_{2} V_{2} T_{1}}$.
D. $\frac{T_{1} T_{2}\left(p_{1} V_{1}+p_{2} V_{2}\right)}{p_{1} V_{1} T_{2}+p_{2} V_{2} T_{1}}$.

Answer: C

D Watch Video Solution

2. Two marks on a glass rod 10 cm apart are
found to increase their distance by 0.08 mm
when the rod is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. A
flask made of the same glass as that of rod measures a volume of $100 \mathrm{at} 0^{\circ} \mathrm{C}$. The volume it measures at $100^{\circ} C$ in (cc) is.
A. 100.24
B. 100.12
C. 100.36
D. 100.48

Answer: A
(D) Watch Video Solution
3. The given curve represents the variation of temperatue as a function of volume for one mole of an ideal gas. Which of the following curves best represents the variation of
pressure as a function of volume?

A.

B. (a)

4. A gas is found to be obeyed the law $p^{2} V=c o n s \tan t$. The initial temperature and volume are T_{0} and V_{0}. If the gas expands to a volume $3 V_{0}$, then the final temperature becomes.
A. $\sqrt{3} T_{0}$
B. $\sqrt{2} T_{0}$.
C. $\frac{T_{0}}{\sqrt{3}}$.
D. $\frac{T_{0}}{\sqrt{2}}$.

Answer: A

D Watch Video Solution

5. Air fills a rooms in winter at $7^{\circ} C$ and in summer st $37^{\circ} C$. If the pressure is the same in
winter and summer, the ratio of the weight of
the air filled in winter and that in summer is.
A. 2.2
B. 1.75
C. 1.1
D. 3.3

Answer: C

D Watch Video Solution

6. Three closed vessels A, B and C are at the same temperature T and contain gasses which obey the Maxwellian distribution of velocities.

Vessel A contain only O_{2} and N_{2}. If the
average speed of the O_{2} molecules in vessel A
is v_{1} that of the N_{2} molecules in vessel B us
v_{2}, the average speed of the O_{2} molecules in
vessel C is
A. $\frac{\left(v_{1}+v_{2}\right)}{2}$
B. V_{1}
C. $\sqrt{v_{1} v_{2}}$
D. None of these

Answer: B

7. In a very good vacuum system in the laboratory, the vacuum attained was $10^{-13} \mathrm{~atm}$. If the temperature of the system was $300 K$, the number of molecules present in a volume of $1 \mathrm{~cm}^{3}$ is.
A. 2.4×10^{6}
B. 24
C. 2.4×10^{9}
D. zero
8. If nitrogen gas molecule goes straight up with its rms speed at $0^{\circ} C$ from the surface of the earth and there are no collisions with other molecules, then it will rise to an approximate height of.
A. 8 km
B. 12 km
C. $12 m$
D. $8 m$

Answer: B

- Watch Video Solution

9. The given ($p-U$) graph shows the variation of internal energy of an ideal gas with increase in pressure. Which of the following pressure volume graph is equivalent to this graph ?
A. (a)
(\#\#DCP_V03_C20_E01_106_Q01\#\#).
B. (b)
(\#\#DCP_V03_C20_E01_106_Q01\#\#).
C. (c)
(\#\#DCP_V03_C20_E01_106_Q01\#\#).
D. (d)
(\#\#DCP_V03_C20_E01_106_Q01\#\#).

Answer: B
10. $28 g$ of N_{2} gas is contained in a flask at a pressure of 10 atm and at a temperature of $57^{\circ} \mathrm{C}$. It is found that due to leakage in the flask, the pressure is reduced to half and the temperature to $27^{\circ} \mathrm{C}$. The quantity of N_{2} gas that leaked out is.
A. $11 / 20 g$
B. $20 / 11 g$
C. $5 / 63 g$

D. $63 / 5 g$

Answer: D

D Watch Video Solution

11. A mixture of $4 g$ of hydrogen and $8 g$ of helium at (NTP) has a dencity about.
A. $0.22 \mathrm{~kg} / \mathrm{m}^{3}$
B. $0.62 \mathrm{~kg} / \mathrm{m}^{3}$
C. $1.12 \mathrm{~kg} / \mathrm{m}^{3}$

D. $0.13 \mathrm{~kg} / \mathrm{m}^{3}$

Answer: D

D Watch Video Solution

12. The pressure (p) and the dencity ρ of given mass of a gas expressed by Boyle's law, $p=K \rho$ holds true.
A. for any gas under any condition
B. for same gas under any condition
C. Only if the tamperature is kept constant.
D. None of these

Answer: C

D Watch Video Solution

Level 2 More Than One Correct

1. During an experiment, an ideal gas is found
to obey a condition $\frac{p^{2}}{\rho}=$ constant. ($\rho=$ density of the gas). The gas is initially at
temperature (T), pressure (p) and density ρ.

The gas expands such that density changes to
$\rho / 2$.
A. The pressure of the gas changes to $\sqrt{2} p$.
B. The temperature of the gas changes to
$\sqrt{2} T$
C. The graph of the above process on ($p-T$)
diagram is parabola.
D. The graph of the above process on ($p-T$)
diagram is hyperbola.

Answer: B::D

D Watch Video Solution

2. During an experiment, an ideal gas is found to obey a condition $V p^{2}=$ constant. The gas
is initially at a temperature (T), pressure (p)
and volume (V). The gas expands to volume
(4V).
A. The pressure of gas changes to $\frac{p}{2}$
B. The temperature of the gas changes to
$4 T$
C. The graph of the above process on ($p-T$)
diagram is parabola.
D. The graph of the above process on ($p-T$)
diagram is hyperbola.

Answer: A::D

D Watch Video Solution
3. find the correct options.
A. Ice point in Fahrenheit scale is $32^{\circ} F$
B. Ice point in Fahrenheit scale is $98.8^{\circ} \mathrm{F}$
C. Steam point in Fahrenheit scale is
$212^{\circ} F$
D. Steam point in Fahrenheit scale is
$252^{\circ} F$

Answer: A::C
4. In the ($\mathrm{p}-\mathrm{V}$) diagram shown in figure, choose the correct options for the the process (a-b):

A. debsity of gas reduced to half
B. temperature of gas has increased to two
times.

C. internal energy of gas has increased to

four times

D. (T - V)graph is a parabola passing
thriugh origin

Answer: A::C::D
(D) Watch Video Solution
5. Choose the wrong options
A. Translational kinetic energy of all ideal
gases at same temperature is same.
B. In one degree of freedom all ideal gases
has interal energy $=\frac{1}{2} R T$
C. Translational degree of freedom of all
ideal gases is three
D. Translational kinetic energy of one mole
of all ideal gases is $\frac{3}{2} R T$

Answer: A::B
6. Along the line -1 , mass of gas m_{1} and pressure is p_{1}. Along the line -2 mass of same gas is m_{2} and pressure is p_{2}. Choose the correct options.

A. m_{1} may be less than m_{2}
B. m_{2} maybe \leq ssthanm_(1)
C. p_{1} may be less than p_{2}

D. p_{2} may be less than p_{1}

Answer: A::B::C::D

D Watch Video Solution

7. Choose the correct options.

A. In $p=\frac{m}{M} R T$, (m) is mass of gas per
unit volume.
B. In $p V=\frac{m}{M} R T,(m)$ is mass of one
molecule of gas.
C. $\ln p=\frac{1}{3} \frac{m N}{V} v_{r m s}^{2},(\mathrm{~m})$ is total mass of
gas.
D. In $v_{r m s}=\frac{\sqrt{3 k T}}{m},(\mathrm{~m})$ is mass of one molecule of gas.

Answer: A:D

- Watch Video Solution

Level 2 Subjective

1. Show that the volume thermal expansion coefficient for an ideal gas at constant pressure is $\frac{1}{T}$.

D Watch Video Solution

2. The volume of a diatomic gas $(\gamma=7 / 5)$ is increased two times in a polytropic process with molar heat capacity $C=R$. How many
times will the rate of collision of molecules
against the wall of the vessel be reduced as a result of this process?
3. A perfectly conducting vessel of volume $V=0.4 m^{3}$ contains an ideal gas at constant temperature $T=273 K$. A portion of the gas is let out and the pressure of the falls by
$\Delta p=0.24 a t m$. (Density of the gas at (STP) is $\left.\rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}\right)$. Find the mass of the gas which escapes from the vessel.
4. A thin - walled cylinder of mass (m), height
(h) and cross- sectional area (A) is filled with a gas and floats on the surface of water. As a result of leakage from the lower part of the cylinder, the depth of its submergence has increased by Δh. Find the initial pressure p_{1} of the gas in the cylinder if the atmospheric pressure is p_{0} and the temperature remains constant.

- Watch Video Solution

5. find the minimum attainable pressure of an ideal $g s$ in the process $T=t_{0}+\propto V^{2}$, where $T_{0} n$ and α are positive constants and (V) is the volume of one mole of gas.

(D) Watch Video Solution

6. A solid body floats in a liquid at a temperature $t=50^{\circ} \mathrm{C}$ being completely submerged in it. What percentage of the volume of the body is submerged in the liquid after it is cooled to $t_{0}=0^{\circ} C$, if the coefficient
of cubic expansion for the solid is
$\gamma_{s}=0.3 \times 10^{-5} .^{\circ} C^{-1}$ and of the liquid
$\gamma_{l}=8 \times 10^{-5} \cdot{ }^{\circ} C^{-1}$.

D Watch Video Solution

7. Two vessel connected by a pipe with a sliding plug contain mercury. In one vessel, the height of murcury column is 39.2 cm and its temperature is $0^{\circ} C$, while in the other, the height of mercury column is 40 cm and its temperature is $100^{\circ} \mathrm{C}$. Find the coefficient if
cubical expansion for mercury. The volume of the connecting pipe should be neglected.

D Watch Video Solution

8. Two steel rods and an aluminium rod of equal length l_{0} and equal cross- section are joined rigidly at their ends as shown in the figure below. All the rods are in a state of zero tension at $0^{\circ} C$. Find the length of the system when the temperature is raised to θ.

Coefficient of linear expansion of aluminium
and steel are α_{a} and α_{s} respectively. Young's modulus of aluminium is Y_{a} and of steel is Y_{s}.

D Watch Video Solution

9. A metal $\operatorname{rod}(A)$ of 25 cm length expands by
0.050 cm when its temperature is raised from
$0^{\circ} C$ to $100^{\circ} C$. Another rod (B) of a different metal of length 40 cm expamds by 0.040 cm for
the same rise in temperature. A third rod (C) of 50 cm length is made up of pieces of rods
(A) and (B) placed end to end expands by
0.03 cm on heating from $0^{\circ} \mathrm{C}$. Find the lengths of each portion of the composite rod.

- Watch Video Solution

