©゙doubtnut

India's Number 1 Education App

CHEMISTRY

NCERT - FULL MARKS CHEMISTRY(TAMIL)

CHEMICAL CALCULATION

Solved Problem

1. Calculate the formula weight of compounds NaOH

Watch Video Solution
2. What is the mass in grams of a chlorine atom, Cl ?
3. What is the mass in grams of a hydrogen chloride, HCl ?

- Watch Video Solution

4. $Z n I_{2}$, can be prepared by the direct combination of elements. A chemist determines from the amounts of elements that 0.0654 mol $Z n I_{2}$ can be formed.

D Watch Video Solution

5. How many molecules are there in a 3.46 g sample of hydrogen chloride, HCl ?

Note: The number of molecules in a sample is related to moles of compound ($1 \mathrm{~mol} \mathrm{HCl}=6.023 \times 10^{23} \mathrm{HCl}$ molecules). Therefore if you first convert grams HCl to moles, then you can convert moles to number of molecules).
6. A compound has the following composition $\mathrm{Mg}=9.76 \%, \mathrm{~S}=13.01 \%$, $0=26.01, \mathrm{H}_{2} \mathrm{O}=51.22$, what is its empirical formula?
$[\mathrm{Mg}=24, \mathrm{~S}=32, \mathrm{O}=16, \mathrm{H}=1]$

- Watch Video Solution

7. A compound on analysis gave the following percentage composition $\mathrm{C}=54.54 \%, \mathrm{H}, 9.09 \% \mathrm{O}=36.36$. The vapour density of the compound was found to be 44 . Find out the molecular formula of the compound.

- Watch Video Solution

8. A compound on analysis gave the following percentage composition: $\mathrm{Na}=14.31 \% \mathrm{~S}=9.97 \%, \mathrm{H}=6.22 \%, \mathrm{O}=69.5 \%$, calcualte the
molecular formula of the compound on the assumption that all the hydrogen in the compound is present in combination with oxygen as water of crystallisation. Molecular mass of the compound is 322
$[\mathrm{Na}=23, \mathrm{~S}=32, \mathrm{H}=1, \mathrm{O}=16]$.

D Watch Video Solution

9. Identify the oxidising agent, reducing agent, substance oxidised and substance reduced in the following reactions.

$$
\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

D Watch Video Solution

10. 4.5 g of urea (molar mass $=60 \mathrm{~g} \mathrm{~mol}^{-1}$) are dissolved in water and solution is made to 100 ml in a volumetric flask. Calculate the molarity of solution.
11. Calculate the normality of solution containing 3.15 g of hydrated oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ in 250 ml of solution (Mol. Mass $=126$).

D Watch Video Solution

12. Calculate the molality of an aqueous solution containing 3.0 g of urea (mol.mass=60) in 250 g of water.

- Watch Video Solution

13. What volume of 6 M HCl and 2 M HCl should be mixed to get one litre of 3 M HCl ?
14. How much volume of 10 M HCl should be diluted with water to prepare 2.00 L of 5 M HCl .

D Watch Video Solution

Problem

1. Calculate the oxidation number of underlined elements in the following species.
$\underline{\mathrm{C}} \mathrm{O}_{2}, \underline{\mathrm{Cr}_{2}} \mathrm{O}_{7}^{2-}, \underline{\mathrm{Pb}_{3}} \mathrm{O}_{4}, \underline{\mathrm{P}} \mathrm{O}_{4}^{3-}$

(D) Watch Video Solution

2. 0.548 g of the metal reacts with dilute acid and liberates 0.0198 g of hydrogen at S.T.P. Calculate the equivalent mass of the metal.
3. 0.635 g of a metal gives on oxidation 0.795 g g of its oxide. Calculate the equivalent mass of the metal.

- Watch Video Solution

4. In the determination of molecular mass by Victor - Meyer's Method 0.790 g of a volatile liquid displaced $1.696 \times 10^{-4} \mathrm{~m}^{3}$ of moist air at 303 K and at $1 \times 10^{5} \mathrm{Nm}^{-2}$ pressure. Aqueous tension at 303 K is $4.242 \times 10^{3} \mathrm{Nm}^{-2}$. Calculate the molecular mass and vapour density of the compound.

D Watch Video Solution

Example

1. Calculate the mass of CO_{2} that would be obtained by completely dissolving 10 kg of pure CaCO_{3} in HCl .
$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

D Watch Video Solution

2. Calculate the mass of oxygen obtained by complete decomposition of 10 kg of pure potassium chlorate (Atomic mass $\mathrm{K}=39, \mathrm{O}=16$ and $\mathrm{Cl}=35.5$)
$2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

D Watch Video Solution

3. Calculate the mass of lime that can be prepared by heating 200 kg of limestone that is 90% pure CaCO_{3}
$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
$100 \mathrm{~kg} \times 10^{-3} \quad 56 \mathrm{~kg} \times 10^{-3}$

Watch Video Solution

Problems Of Practice

1. Calculate the formula weight of compounds NO_{2}

D Watch Video Solution

2. Calculate the formula weight of compounds glucose ($\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$)

- Watch Video Solution

3. Calculate the formula weight of compounds NaOH
4. Calculate the formula weight of compounds $\mathrm{Mg}(\mathrm{OH})_{2}$

-
 Watch Video Solution

5. Calculate the formula weight of compounds methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$

- Watch Video Solution

6. Calculate the formula weight of compounds PCl_{3}

- Watch Video Solution

7. Calculate the formula weight of compounds $\mathrm{K}_{2} \mathrm{CO}_{3}$
8. What is the mass in grams of a calcium atom, Ca ?

- Watch Video Solution

9. What is mass number of an atom?

D Watch Video Solution

10. Calcualte the mass (in grams) of each of the following species.
a. Na atom b. S atom c. $\mathrm{CH}_{3} \mathrm{Cl}$ molecule d. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ formula unit

- Watch Video Solution

11. $\mathrm{H}_{2} \mathrm{O}_{2}$ is a colourless liquid. A concentrated solution of it is used as a source of oxygen for Rocket propellant fuels. Dilute aqueous solutions are used as a bleach. Analysis of a solution shows that it
contains $0.909 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}$ in 1.00 L of solution. What is the mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ in this volume of solution?.

D Watch Video Solution

12. Boric acid, $\mathrm{H}_{3} \mathrm{BO}_{3}$ is a mild antiseptic and is often used as an eye wash. A sample contains $0.543 \mathrm{~mol} \mathrm{H}_{3} \mathrm{BO}_{3}$. What is the mass of boric acid in the sample.

- Watch Video Solution

13. $C S_{2}$ is a colourless, highly inflammable liquid used in the manufacture of rayon and cellophane. A sample contains 0.0205 mol $C S_{2}$. Calculate the mass of $C S_{2}$ in the sample.
14. Nitric acid, HNO_{3} is a colourless, corrosive liquid used in the manufacture of Nitrogen fertilizers and explosives. In an experiment to develop new explosives for mining operations, a 28.5 g sample of HNO_{3} was poured into a beaker. How many moles of HNO_{3} are there in this sample of HNO_{3} ?

D Watch Video Solution

15. Obtain the moles of substances in the following.
a. 3.43 g of C b. $7.05 \mathrm{~g} B r_{2}$
c. $76 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10}$ d. $35.4 \mathrm{~g} \mathrm{Li}_{2} \mathrm{CO}_{3}$
e. 2.57 g As f. 7.83 g P_{4}
$41.4 g N_{2} H_{4}$ h. 153 g $A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$

- Watch Video Solution

16. How many molecules are there in 56 mg HCN ?

D Watch Video Solution

17. Calculate the following

Number of molecules in 43 g NH 3

D Watch Video Solution

18. Calculate the following

Number of atoms in 7.46 g Li

D Watch Video Solution
19. Calculate the following

Number of atoms in 7.46 g Li
20. A substance on analysis, gave the following percentage composition, $\mathrm{Na}=43.4 \%, \mathrm{C}=11.3 \%, \mathrm{O}=43.3 \%$ calculate its empirical formula $[\mathrm{Na}=23, \mathrm{C}=12, \mathrm{O}=16]$.

(D) Watch Video Solution

21. What is the simplest formula of the compound which has the following percentage composition: Carbon 80\%, hydrogen 20\%.

(D) Watch Video Solution

22. A compound on analysis gave the following percentage composition $\mathrm{C}=54.54 \%, \mathrm{H}, 9.09 \% \mathrm{O}=36.36$. The vapour density of
the compound was found to be 44 . Find out the molecular formula of the compound.

D Watch Video Solution

23. An organic compound was found to have contained carbon = 40.65%, hydrogen $=8.55 \%$ and Nitrogen $=23.7 \%$. Its vapour - density was found to be 29.5. What is the molecular formula of the compound?

- Watch Video Solution

24. A compound contains 32% carbon, 4% hydrogen and rest oxygen.

Its vapour density is 75 . Calculate the empirical and molecular formula.
25. An acid of molecular mass 104 contains 34.6% carbon, 3.85% hydrogen and the rest is oxygen. Calcualte the molecualr formula of the acid.

D Watch Video Solution

26. What is the simplest formula of the compound which has the following percentage composition: carbon 80%, Hydrogen 20%, If the molecular mass is 30 , calcualte its molecular formula.

- Watch Video Solution

27. Calculate the oxidation number of underlined elements in the following species.
$\underline{M n S O} 4$
28. Calculate the oxidation number of underlined elements in the following species.
$\underline{S_{2}} O_{3}$

- Watch Video Solution

29. Calculate the oxidation number of underlined elements in the following species.
$\underline{S_{2}} O_{3}$

- Watch Video Solution

30. Calculate the oxidation number of underlined elements in the following species.
$\mathrm{K}_{2} \underline{\mathrm{Mn}} \mathrm{O}_{4}$
31. Calculate the oxidation number of underlined elements in the following species.
NH_{4}^{+}

D Watch Video Solution
32. Balance the equations $\mathrm{Cr}^{3+}+\mathrm{Na}_{2} \mathrm{O}_{2} \rightarrow \mathrm{CrO}_{4}^{-}+\mathrm{Na}^{+}$

- Watch Video Solution

33. Balance the equations $\mathrm{S}^{2-}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}+\mathrm{S}$
34. Balance the equations $\mathrm{FeS}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}$ (molecular form)

D Watch Video Solution

35. Calculate the volume of 14.3 m NH 3 , solution needed to prepare 1L of 0.1M solution.

D Watch Video Solution

36. How would you make up 425 mL of $0.150 \mathrm{M} \mathrm{HNO}_{3}$ from 68.0% HNO_{3} ? The density of $68.0 \% \mathrm{HNO}_{3}$ is $1.41 \mathrm{~g} / \mathrm{mL}$.
37. Calculate the molarity of a solution obtained by mixing 100 mL of $0.3 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 200 mL of $1.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

D Watch Video Solution

38. Calculate the molality of a solution by dissolving 0.850 g of ammonia $\left(\mathrm{NH}_{3}\right)$ in 100 g of water.

D Watch Video Solution

39. NiSO_{4} reacts with $\mathrm{Na}_{3} \mathrm{PO}_{4}$ to give a yellow green precipitate of
$N i_{3}\left(\mathrm{PO}_{4}\right)_{2}$ and a solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
$3 \mathrm{NiSO}_{4}(a q)+2 \mathrm{Na}_{3} \mathrm{PO}_{4}(a q) \rightarrow \mathrm{Ni}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+3 \mathrm{Na}_{2} \mathrm{SO}_{4}(a q)$
How many mL of 0.375 M NiSO 4 will react with 45.7 mL of 0.265 M
$\mathrm{Na}_{3} \mathrm{PO}_{4}$?
40. What volume of 0.250 M HNO 3 reacts with 42.4 mL of 0.150 M $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the following reaction ?
$2 \mathrm{HNO}_{3(a q)}+\mathrm{Na}_{2} \mathrm{CO}_{3(a q)} \mathrm{ro}^{2 \mathrm{NaNO}_{3(a q)}}+\mathrm{H}_{2} \mathrm{O}_{(a q)}+\mathrm{CO}_{2(a q)}$

- Watch Video Solution

41. A flask contains 53.1 mL of $0.0150 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ solution. How many mL of $0.350 \mathrm{M} \mathrm{Na} a_{2} \mathrm{CO}_{3}$ are required to react completely with $\mathrm{Ca}(\mathrm{OH})_{2}$ in the following reaction.
$\mathrm{Na}_{2} \mathrm{CO}_{3(a q)}+\mathrm{Ca}(\mathrm{OH})_{2(a q)} \rightarrow \mathrm{CaCO}_{3(a q)}+2 \mathrm{NaOH}_{(a q)}$

D Watch Video Solution

Question Choose The Best Answer

1. The volume occupied by 16 g of oxygen at S.T.P.
A. 22.4 L
B. 44.8 L
C. 11.2L
D. 5.6 L

Answer:

(D) Watch Video Solution

2. Avogadaro's number represents the number of atoms in
A. 12 g of C^{12}
B. 320 g of S
C. 32 g of Oxygen
D. 12.7 g of iodine.
3.

A. 22.4 L
B. 2.24 L
C. 11.2 L
D. 67.2 L

Answer:

4. The number of atoms present in 0.5 gram- atoms of Nitrogen is same as the atoms in
A. 12 g of C
B. 32 g of S
C. 8 g of the oxygen
D. 24 g of magnesium

Answer:

- Watch Video Solution

5. The number of gram-atoms of oxygen in 128 g of oxygen is
A. 4
B. 8
C. 128
D. $8 \times 6.02 \times 10^{23}$

Answer:

6. The total number of moles present in 111 g of CaCl_{2} is
A. One mole
B. Two moles
C. Three moles
D. Four moles

Answer:

- Watch Video Solution

7. Which of the following weighs the most?
A. One gram-atom of nitrogen
B. One mole of water
C. One mole of Sodium
D. One molecule of $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer:

D Watch Video Solution

8. Which of the following contain same number of carbon atoms as in 6 g of carbon -12 .
A. 6.0 g ethane
B. 8.0 g methane
C. 21.0g Propane
D. 28.0 g CO

Answer:

9. Which of the following contain same number of carbon atoms as in 6g of carbon-12.
A. 2.0g hydrogen
B. 2.0 g oxygen
C. 2.0 g nitrogen
D. 2.0 g methane

Answer:

D Watch Video Solution

10. Which one among the following is the standard for atomic mass?
A. H
B. ${ }^{12}-6 C$
C. ${ }^{14}-6 C$
D. ${ }^{16}-8 O$

Answer:

- Watch Video Solution

11. 2.0 g of oxygen contains number of atoms same as in
A. 4 g of S
B. 7 g of nitrogen
C. 0.5 g of H_{2}
D. 12.3 g of Na

Answer:

12. The number of molecules in 16.0 g of oxygen is:
A. 1 gm-molecule
B. 0.5 gm-molecule
C. 5 gm-molecule
D. 10 gm-molecule

Answer:

(D) Watch Video Solution

13. Hydrogen phosphate of certain metal has a formula MHPO_{4}, the formula of metal chloride is
A. MCl
B. $M C l_{3}$
C. $M C l_{2}$
D. $M C l_{4}$

Answer:

D Watch Video Solution

14. A compound contains 50% of X (atomic mass 10) and $50 \% Y$ (at. mass 20). Which formulate pertain to above date ?
A. XY
B. $X_{2} Y$
C. $X_{4} Y_{3}$
D. $\left(X_{2}\right)_{3} Y_{3}$

Answer:

15. Which of the following compound(s) has /have percentage of carbon same as that in ethylene $\left(C_{2} H_{4}\right)$.
A. propene
B. Cyclohexane
C. Ethyne
D. Benzene

Answer:

D Watch Video Solution

16. 5 L of 0.1 M solution of sodium Carbonate contains
A. 53 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
B. 106 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. 10.6 of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D. 5×10^{2} millimoles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Answer:

D Watch Video Solution

Question Fill In The Blanks

1. One mole of a triatomic gas contains \qquad atoms.

Watch Video Solution

2. One mole of Sulphuric acid contains \qquad Oxygen atoms.
3. Equal volumes of all gases contain equal number of \qquad .

(t) Watch Video Solution

5. A decimolar solution of NaOH contains \qquad of NaOH per litre of the solution.

D Watch Video Solution

6.7 g of CO contains \qquad O atoms.

Question Match The Following

1. Match the following.

Microbe	Uses	
i. Anabaena	a. Biogas	
ii. Penicillium notatum	b. Cheese	
iii. Methanobacterium	c. Penicillin	
iv. Monascus purpureus	d. Biofertiliser	

Question Answer The Following

1. Can two different compounds have same molecular formula ?

Illustrate your answer with two examples.
2. What are the essentials of a chemical equation ?

- Watch Video Solution

3. What are the informations conveyed by a chemical equation ?

D Watch Video Solution

4. Balance the following equations

$$
\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}
$$

D Watch Video Solution

5. Balance the following equations

$$
\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}
$$

6. Balance the following equations
$\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

- Watch Video Solution

7. Balance the following equations

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

