©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

NCERT - FULL MARKS CHEMISTRY(TAMIL)

GASEOUS STATE

Problem

1. Calculate the partial pressures N_{2} and H_{2} in
a mixture of two moles of N_{2} and two moles

D View Text Solution

2. If a gas diffuses at the rate of one-half as
fast as O_{2}, find the molecular mass of the gas.

- Watch Video Solution

3.75 ml of gas A effuses through a pin hole in

73 seconds the same volume of SO_{2} under

Calculate the molecular mass of A.

D Watch Video Solution

4. 7.5 g of a gas occupies a volume of 5.6 litres
at $0^{\circ} C$ and 1atm pressure. The gas is

D Watch Video Solution

5. Vanderwaal's constants for hydrogen
chloride gas are $\mathrm{a}=3.67 \mathrm{~atm} \mathrm{lit}^{-2}$ and $\mathrm{b}=$
$40.8 \mathrm{ml} \mathrm{mol}^{-1}$. Find the critical temperature and critical pressure of the gas.

D Watch Video Solution

6. The critical temperature of hydrogen gas is $33.2^{\circ} \mathrm{C}$ and its critical pressure is 12.4 atm.

Find out the values of a^{\prime} and b^{\prime} for the gas.

D Watch Video Solution

Self Test

1. Calculate the partial pressures of O_{2} and H_{2} in a mixture of 3 moles of O_{2} and 1 mole of H_{2} at S.T.P.

D View Text Solution

2. If a gas diffuses at the rate of one quarter as
fast as N_{2}. Find the molecular mass.
3.75 ml of gas A effuses through a pin hole in

73 seconds the same volume of SO_{2} under indential conditions effuses in seconds.

Calculate the molecular mass of A .

- Watch Video Solution

Questions Choose The Correct Answer

1. A curve drawn at constant temperature is
called an isotherm. This shows relationship
between
A. P and $\frac{1}{V}$
B. PV and V
C. P and V
D. V and $\frac{1}{P}$

Answer:

D Watch Video Solution
2. The temperature of a steel rod is 330 K . Its temperature in $0^{\circ} \mathrm{C}$ is
A. Above which it can no longer remain in
the gaseous state
B. Above which it can not be liquified by pressure
C. At which it solidifies
D. At which volume of gas becomes zero.

Answer:

3. If a gas expands at constant temperature.
A. Number of molecules of the gas
decreases
B. The kinetic energy of the molecules
decreases
C. The kinetic energy of the molecules
decreases
D. The kinetic energy of the molecules increases

Answer:

D Watch Video Solution

4. The molecules of a gas A travel four times
faster than the molecules of gas B at the same
temperature. The ratio of molecular weight
$\left(M_{A} / M_{B}\right)$ will be
A. $\frac{1}{16}$
B. 4
C. $\frac{1}{4}$
D. 16

Answer:

- Watch Video Solution

Questions B Fill In The Blanks

1. The correction term for pressure deviation is

......in the Vanderwaal equation of state.

D Watch Video Solution

2. The relation between inversion temperature and Vanderwaal's constants a^{\prime} and b^{\prime} is

3. To liquefy Helium ____ method is exclusively

 usedD Watch Video Solution
4. The adiabatic expansion of a real gas results
in

- Watch Video Solution

5. The rate of diffusion of gas is ____to square root of both ______ and molecular mass.

D Watch Video Solution

Questions D Write In One Or Two Sentence

1. Write the mathematical expression for Boyle's law.
(D) Watch Video Solution
2. Give the correction factors for the volume and pressure deviation for a Vanderwal's gas.

D Watch Video Solution

3. A sample of an ideal gas escapes into an evacuated container, there is no change in the kinetic energy of the gas. Why?

D Watch Video Solution

4. What is the change in temperature when a compressed real gas is allowed to expand adiabatically through a porous plug

D Watch Video Solution

5. State Boyle's law and Charles law.

D Watch Video Solution

6. What are measurable properties of gases?

- Watch Video Solution

7. What is the molar volume of nitrogen at 500 K and 600 atm according to ideal gas law?

- Watch Video Solution

8. Define Graham's law of diffusion.

- Watch Video Solution

9. Give the values of R-gas constant in calories

 and Joules.
D Watch Video Solution

10. What are the units of Vanderwaals constants a^{\prime} and b^{\prime} ?

D Watch Video Solution
11. Write the significance of Vanderwaal's constants

D Watch Video Solution
12. Write the limitations of vanderwaal equation of state.
(Watch Video Solution
13. Define Joule-Thomson effect

- Watch Video Solution

14. What is meant by inversion temperature ?

- Watch Video Solution

Questions E Explain Briefly On The Following

1. At $27^{\circ} \mathrm{C}, \mathrm{H}_{2}$ is leaked through a tiny hole
into a vessel for 20 minutes Another unknown
gas at the same T and P as that of H_{2} is leaked
through the same hole for 20 minutes. After effusion of the gas, the mixture exerts a pressure of 6 atm. The H_{2} content of the mixture is 0.7 moles. If volume of the container is 3 litres what is the molecular weight of unknown gas ?

D Watch Video Solution

2. Calculate the pressure exerted by 5 moles of
$C O_{2}$ in one litre vessel at $47^{\circ} \mathrm{C}$ using

Vanderwal's equation. Also report the
pressure of gas if it behaves ideally in nature.
Given that $\mathrm{a}=3.592 \mathrm{~atm} \mathrm{lit}^{2} \mathrm{~mol}^{-2} . \mathrm{b}=0.0427$
lit mol^{-1}

D Watch Video Solution

3. Calculate the total pressure in a 10 L cylinder which contains 0.4 g of helium, 1.6 g of oxygen and 1.4 g of nitrogen at $27^{\circ} \mathrm{C}$. Also calculate the partial pressures of He gas in the cylinder. Assume Ideal behaviour for gases.
$\mathrm{R}=0.082 \mathrm{~L}$ atm $k^{-1} \mathrm{~mol}^{-1}$

Watch Video Solution

4. The critical constants for water are $374^{\circ} \mathrm{C}$,

218 atm and 0.0566 litre mol^{-1}. Calculate
a^{\prime} and b^{\prime} of water

- Watch Video Solution

5. Vanderwal's constant in litre atmosphere per mole for carbon dioxide are $a=3.6$ and $b=$
4.28×10^{-2}.
Calculate
the
critical
temperature and critical volume of the gas. $\mathrm{R}=$ 0.0820 lit atm $K^{-1} . \mathrm{Mol}^{-1}$

D Watch Video Solution

6. Explain the causes for deviation for real gases from ideal behaviour.

D Watch Video Solution

7. Deduce the relationship between critical constants and Vanderwaal's constants.
8. Describe Linde's process of liquefaction of gases with neat diagram.

D Watch Video Solution

9. Describe Claude's process of liquefaction of gases with neat diagram.

10. What is meant by adiabatic demagnetisation? Explain its use in

liquefaction of gases.

D Watch Video Solution

Evaluate Yourself

1. Freon-12, the compound widely used in the
refrigerator system as coolant causes
depletion of ozone layer. Now it has been replaced by eco-friendly compounds. Consider
$1.5 \mathrm{dm}^{3}$ sample of gaseous Freon at a pressure of 0.3 atm . If the pressure is changed to 1.2 atm. at a constant temperature, what will be the volume of the gas increased or decreased?

- View Text Solution

2. Inside a certain automobile engine, the volume of air in a cylinder is $0.375 \mathrm{dm}^{3}$, when
the pressure is 1.05 atm . When the gas is compressed to a volume of $0.125 \mathrm{dm}^{3}$ at the
same temperature, what is the pressure of the compressed air?

D View Text Solution

3. A sample of gas has a volume of $3.8 d m^{3}$ at an unknown temperature. When the sample is submerged in ice water at $0^{\circ} C$, its volume gets reduced to $2.27 d m^{3}$. What is its initial temperature?
4. An athlete in a kinesiology research study has his lung volume of 7.05 dm 3 during a deep inhalation. At this volume the lungs contain 0.312 mole of air. During exhalation the volume of his lung decreases to $2.35 \mathrm{dm}^{3}$. How many moles of air does the athlete exhale during exhalation? (assume pressure and temperature remain constant)

- View Text Solution

5. A small bubble rises from the bottom of a
lake where the temperature and pressure are $8^{\circ} C$ and 6.4 atm . to the water surface, where the temperature is $25^{\circ} \mathrm{C}$ and pressure is 1 atm. Calculate the final volume in (mL) of the bubble, if its initial volume is 2.1 mL .

D View Text Solution

6. A mixture of He and O_{2} were used in the 'air' tanks of underwater divers for deep dives.

For a particular dive $12 d \mathrm{~m}^{3}$ of O_{2} at $298 \mathrm{~K}, 1$ atm. and $46 \mathrm{dm}^{3}$ of He , at 298 K , 1 atm. were both pumped into a $5 d m^{3}$ tank. Calculate the partial pressure of each gas and the total pressure in the tank at 298 K

D View Text Solution

7. A sample of solid KClO_{3} (potassium
chlorate) was heated in a test tube to obtain
O_{2} according to the reaction
$2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

The oxygen gas was collected by downward displacement of water at 295 K . The total pressure of the mixture is 772 mm of Hg . The vapour pressure of water is 26.7 mm of Hg at 300K. What is the partial pressure of the oxygen gas?

D View Text Solution

8. A flammable hydrocarbon gas of particular
volume is found to diffuse through a small
hole in 1.5 minutes. Under the same conditions
of temperature and pressure an equal volume
of bromine vapour takes 4.73 min to diffuse
through the same hole. Calculate the molar mass of the unknown gas and suggest what this gas might be, (Given that molar mass of bromine $=159.8 \mathrm{~g} / \mathrm{mole})$

D View Text Solution

9. Critical
$\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$, and CO_{2}
temperature
of
$647.4,405.5$ and $304.2 K$, respectively. When
we start cooling from a temperature of 700 K
which will liquefy first and which will liquefy

finally?

D View Text Solution

Evaluation Multiple Choice Questions

1. Gases deviate from ideal behavior at high
pressure. Which of the following statement(s)
is correct for non-ideality?
A. at high pressure the collision between
the gas molecule become enormous
B. at high pressure the gas molecules move only in one direction
C. at high pressure, the volume of gas
become insignificant
D. at high pressure the intermolecular interactions become significant

Answer: D

2. Rate of diffusion of a gas is
A. directly proportional to its density
B. directly proportional to its molecular
weight
C. directly proportional to its square root of its molecular weight
D. inversely proportional to the square root of its molecular weight

Answer: D

D View Text Solution

3. Which of the following is the correct expression for the equation of state of van der Waals gas?
A. $\left(P+\frac{a}{n^{2} V^{2}}\right)(V-n b)=n R T$
B. $\left(P+\frac{n a}{n^{2} V^{2}}\right)(V-n b)=n R T$
C. $\left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T$
D. $\left(P+\frac{n^{2} a^{2}}{V^{2}}\right)(V-n b)=n R T$

Answer: C

D View Text Solution

4. When an ideal gas undergoes unrestrained expansion, no cooling occurs because the molecules
A. are above inversion temperature
B. exert no attractive forces on each other
C. do work equal to the loss in kinetic

D. collide without loss of energy

Answer: B

D View Text Solution

5. Equal weights of methane and oxygen are mixed in an empty container at 298 K . The fraction of total pressure exerted by oxygen is
A. $1 / 3$
B. $1 / 2$
C. $2 / 3$

$$
\text { D. } 1 / 3 \times 273 \times 298
$$

Answer: A

D View Text Solution

6. The temperatures at which real gases obey
the ideal gas laws over a wide range of pressure is called
A. Critical temperature
B. Boyle temperature
C. Inversion temperature
D. Reduced temperature

Answer: B

D View Text Solution

7. In a closed room of $1000 m^{3}$ a perfume bottle is opened up. The room develops a smell. This is due to which property of gases?
A. Viscosity
B. Density
C. Diffusion
D. None

Answer: C

D View Text Solution
8. A bottle of ammonia and a bottle of HCl connected through a long tube are opened
simultaneously at both ends. The white ammonium chloride ring first formed will be
A. At the center of the tube
B. Near the hydrogen chloride bottle
C. Near the ammonia bottle
D. Throughout the length of the tube

Answer: B

D View Text Solution
9. The value of universal gas constant depends

upon

A. Temperature of the gas
B. Volume of the gas
C. Number of moles of the gas
D. units of Pressure and volume.

Answer: D
10. The value of the gas constant R is
A. $0.082 d \mathrm{~m}^{3}$ atm.
B. $0.987 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
C. $8.3 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}$
D. $8 \mathrm{erg} \mathrm{mol}{ }^{-1} K^{-1}$

Answer: C

D View Text Solution
11. Use of hot air balloon in sports at meteorological observation is an application of
A. Boyle's law
B. Newton's law
C. Kelvin's law
D. Brown's law

Answer: A

D View Text Solution
12. The table indicates the value of van der Waals constant 'a' in $\left(d m^{3}\right)^{2}$ atm mol^{-2}

Gas	O_{2}	$\mathrm{~N}_{2}$	NH_{3}	CH_{4}
a	1.360	1.390	4.170	2.253

The gas which can be most easily liquefied is
A. O_{2}
B. N_{2}
C. NH_{3}
D. CH_{4}

Answer: C
13. Consider the following statements
i) Atmospheric pressure is less at the top of a mountain than at sea level
ii) Gases are much more compressible than solids or liquids
iii) When the atmospheric pressure increases
the height of the mercury column rises Select
the correct statement
A. I and II

B. II and III

C. I and III

D. I, II and III

Answer: D

D View Text Solution

14. Compressibility factor for CO_{2} at 400 K
and 71.0 bar is 0.8697 . The molar volume of
CO_{2} under these conditions is
A. $22.04 d m^{3}$
B. $2.24 d m^{3}$
C. $0.41 d m^{3}$
D. $19.5 d m^{3}$

Answer: C

D View Text Solution

15. If temperature and volume of an ideal gas
is increased to twice its values, the initial pressure P becomes
A. 4 P
B. 2 P
C. P
D. 3P

Answer: C

D View Text Solution

16. At identical temperature and pressure, the rate of diffusion of hydrogen gas is $3 \sqrt{3}$ times
that of a hydrocarbon having molecular formula $C_{n} H_{2 n-2}$. What is the value of n ?
A. 8
B. 4
C. 3
D. 1

Answer: B

D View Text Solution
17. Equal moles of hydrogen and oxygen gases are placed in a container, with a pin-hole through which both can escape what fraction of oxygen escapes in the time required for one-half of the hydrogen to escape. (NEET phase 1)
A. $3 / 8$
B. $1 / 2$
C. $1 / 8$
D. $1 / 4$

Answer: C

D View Text Solution

18. The variation of volume V , with temperature T , keeping pressure constant is called the coefficient of thermal expansion ie $\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}$. For an ideal gas α is equal to
A. T
B. $1 / T$
C. P

D. none of these

Answer: B

D View Text Solution

19. Four gases P, Q, R and S have almost same
values of ' b ' but their ' a ' values (a, b are Vander

Waals Constants) are in the order
$Q<R<S<P$. At a particular temperature,
among the four gases the most easily
liquefiable one is
A. P
B. Q
C. R
D. S

Answer: A

D View Text Solution
20. Maximum deviation from ideal gas is expected from (NEET)
A. $C H_{4}(g)$
B. $\mathrm{NH}_{3}(g)$
C. $H_{2}(g)$
D. $N_{2}(g)$

Answer: B

- View Text Solution

21. The units of Vander Waals constants 'b' and
'a' respectively
A. molL^{-1} and $\mathrm{Latm}^{2} \mathrm{~mol}^{-1}$
B. mol L and $\mathrm{Latm} \mathrm{mol}^{2}$
C. $\mathrm{mol}^{-1} L$ and L^{2} atmmol ${ }^{-2}$
D. none of these

Answer: C

- View Text Solution

22. Assertion : Critical temperature of CO_{2} is

304 K , it can be liquefied above 304 K .

Reason : For a given mass of gas, volume is to directly proportional to pressure at constant temperature
A. both assertion and reason are true and reason is the correct explanation of assertion
B. both assertion and reason are true but
reason is not the correct explanation of

C. assertion is true but reason is false

D. both assertion and reason are false

Answer: D

D View Text Solution

23. What is the density of N_{2} gas at $227^{\circ} \mathrm{C}$ and 5.00 atm pressure ?
$\left(R=0.082 L a t m K-1 \mathrm{~mol}^{-1}\right)$
A. $1.40 \mathrm{~g} / \mathrm{L}$
B. $2.81 g / L$
C. $3.41 g / L$
D. $0.29 g / L$

Answer: C

D View Text Solution

24. Which of the following diagrams correctly describes the behaviour of a fixed mass of an ideal gas ? (T is measured in K)

D. All of these

Answer: C

D View Text Solution

25. 25 g of each of the following gases are taken at $27^{\circ} C$ and 600 mm Hg pressure. Which of these will have the least volume ?
A. HBr
B. HCl
C. HF
D. HI

Answer: D

D View Text Solution

1. A sample of gas at $15^{\circ} \mathrm{C}$ at 1 atm. has a volume of $2.58 \mathrm{dm}^{3}$. When the temperature is raised to $38^{\circ} \mathrm{C}$ at 1 atm does the volume of the gas increase? If so, calculate the final volume.

- View Text Solution

2. A sample of gas has a volume of $8.5 d \mathrm{~m}^{3}$ at an unknown temperature. When the sample is
submerged in ice water at $0^{\circ} C$, its volume gets reduced to $6.37 d m^{3}$. What is its initial temperature?

D View Text Solution

3. Of two samples of nitrogen gas, sample A contains 1.5 moles of nitrogen in a vessel of volume of $37.6 \mathrm{dm}^{3}$ at 298 K , and the sample B is in a vessel of volume $16.5 d m^{3}$ at 298 K .

Calculate the number of moles in sample B.

View Text Solution

4. Sulphur hexafluoride is a colourless, odourless gas, calculate the pressure exerted by 1.82 moles of the gas in a steel vessel of volume $5.43 \mathrm{dm}^{3}$ at $69.5^{\circ} \mathrm{C}$, assuming ideal gas behaviour

D View Text Solution

5. Argon is an inert gas used in light bulbs to retard the vaporization of the tungsten
filament. A certain light bulb containing argon
at 1.2 atm and $18^{\circ} \mathrm{C}$ is heated to $85^{\circ} \mathrm{C}$ at constant volume. Calculate its final pressure in atm.

D View Text Solution

6. A small bubble rises from the bottom of a
lake where the temperature and pressure are $6{ }^{\circ} C$ and 4 atm. to the water surface, where the temperature is $25^{\circ} \mathrm{C}$ and pressure is 1 atm. Calculate the final volume in (mL) of the bubble, if its initial volume is 1.5 mL .
7. Hydrochloric acid is treated with a metal to produce hydrogen gas. Suppose a student carries out this reaction and collects a volume of $154.4 \times 10^{-3} d m^{3}$ of a gas at a pressure of 742 mm of Hg at a temperature of 298 K . What mass of hydrogen gas (in mg) did the student collect?
8. It takes 192 sec for an unknown gas to diffuse through a porous wall and 84 sec for
N_{2} gas to effuse at the same temperature and pressure. What is the molar mass of the unknown gas?

D View Text Solution

9. A tank contains a mixture of 52.5 g of oxygen and 65.1 g of CO_{2} at 300 K the total pressure in the tanks is 9.21 atm . Calculate the
partial pressure (in atm.) of each gas in the mixture.

D View Text Solution

10. A combustible gas is stored in a metal tank at a pressure of 2.98 atm at $25^{\circ} \mathrm{C}$. The tank can withstand a maximum pressure of 12 atm after which it will explode. The building in which the tank has been stored catches fire.

Now predict whether the tank will blow up
first or start melting? (Melting point of the metal $=1100 \mathrm{~K})$.

- View Text Solution

