©゙doubtnut

India's Number 1 Education App

MATHS

AIMED AT STUDENTS PREPARING FOR IIT JEE EXAMINATION

DIRECTION COSINES \& RATIOS

Solved Examples

1. If $\mathrm{P}(2,3,-6), \mathrm{Q}(3,-4,5)$ are two points, find the d.c's of $\overrightarrow{O P}, \overrightarrow{Q O}$ and $\overrightarrow{P Q}$ where O is the origin.

- Watch Video Solution

2. Find the dr's and dc'r of the line joining the points (4,-7,3),(6,-5,2).
3. If the d.c's of a line are proportional to ($1,-2,1$) find d.c's

- Watch Video Solution

4. Show that the line joining the points $P(0,1,2)$ and $Q(3,4,8)$ is parallel to the line joining the points $R\left(-2, \frac{3}{2},-3\right)$ and $S\left(\frac{5}{2}, 6,6\right)$

- Watch Video Solution

5. Show that the line joining the points $A(2,3,-1)$ and $B(3,5,-3)$ is perpendicular to the line joining $\mathrm{C}(1,2,3)$ and $D(3,5,7)$.

- Watch Video Solution

6. Show that the points $\mathrm{A}(1,2,3), \mathrm{B}(4,0,4), \mathrm{C}(-2,4,2)$ are collinear

- Watch Video Solution

7. Show that the lines whose d.c's are proportional to $(2,1,1)$, $(4, \sqrt{3}-1,-\sqrt{3}-1)$ are inclined to one another at angle $\frac{\pi}{3}$.

- Watch Video Solution

8. $\triangle A B C$ is formed by a $(1,8,4), \mathrm{B}(0,-11,4)$ and $\mathrm{C}(2,-3,1)$. If D is the foot of the perpendicular from A to $B C$. Then the coordinates of D are

- Watch Video Solution

9. Lines $\overline{O A}, \overline{O B}$ are drawn from O with direction cosines proportional to $(1,-2,-1),(3,-2,3)$. Find the direction cosines of the normal to the plane AOB.

- Watch Video Solution

10. If the d.c. 's (I, m, n) of two lines are connected by the relations $l+m+n=0,2 l m-m n+2 n l=0$ then the d.c.'s of the two lines are

(D) Watch Video Solution

11. If a variable line in two adjacent positions has direction cosines (l,m,n) and $(l+\delta l, m+\delta m, n+\delta n)$, then show that the small angle $\delta \theta$ between the two position is given by $(\delta \theta)^{2}=(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}$

- Watch Video Solution

12. There are three straight lines through the origin with direction cosines proportional to $(1,2,2),(2,3,6)(3,4,12)$, Find the direction cosines of a a line equally inclined to the given lines.

- Watch Video Solution

13. Find the direction ratios of the line bisecting the angles between the lines whose direction cosines are l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} and the angle between the lines is θ.

Additional Solved Examples

1. Show that tha angles between the diagonals of a rectangular parallelopiped having sides a, b and c are $\cos ^{-1}\left(\frac{|\alpha|}{a^{2}+b^{2}+c^{2}}\right)$, where $\alpha= \pm a^{2} \pm b^{2} \pm c^{2}$ and $|\alpha| \neq a^{2}+b^{2}+c^{2}$. Hence find the angle between the diagonals of a cube.

- Watch Video Solution

Exercise 6 Very Sort Answer Questions

1. A line makes angles $90^{\circ}, 60^{\circ}, 30^{\circ}$ with the positive direction of X, Y, Z axes respectively. Find its direction cosisnes.

- Watch Video Solution

2. If the d.c's of a line are $(1 / c, 1 / c, 1 c)$ then find c .

- Watch Video Solution

3. If the dirction cosines of a line are $\left(\frac{1}{2}, 0, n\right)$ and $n<0$, then find n .

- Watch Video Solution

4. A ray makes angles $\pi / 3, \pi / 3$ with $\overline{O X}$ and $\overline{O Y}$ respectively. Find the angle made by it with $\overline{O Z}$

- Watch Video Solution

5. A straight line is inclined to the axes of x and y at angles of 60° and 45° respectively. Find the its inclination to the z-axis.

- Watch Video Solution

6. If α, β, γ are the angles made by a line with the positive directions of the coordinate axes, then $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=$

- Watch Video Solution

7. If a line makes angles α, β, λ with the coordinate axes $\overrightarrow{O X}, \overrightarrow{O Y}, \overrightarrow{O Z}$ find the value of $\cos 2 \alpha+\cos 2 \beta+\cos 2 \lambda$,

- Watch Video Solution

8. Find the d.c's of a line that makes equal angles with the axes, and find number of such lines.

- Watch Video Solution

9. Find the direction ratios of the line joining the points $(3,4,0)$ and $(4,4,4)$.
10. The direction ratios of a line are ($-6,2,3$) Find its direction cosines.

- Watch Video Solution

11. If the direction ratios of a line are $(3,4,0)$ find its direction cosines and also the angles made with the coordinate axes.

- Watch Video Solution

12. If $\mathrm{P}(\sqrt{3}, 1,2 \sqrt{3})$ is a point in space, find direction cosines of $\overrightarrow{O P}$.

- Watch Video Solution

13. Find the direction cosines of the line joining the points ($-4,1,7$),(2,-3,2)
14. If $P(-2,4,-5)$ and $Q(1,2,3)$ are two points. Find the direction cosines of $\overline{P Q}$

- Watch Video Solution

15. Find the conine of the angle between the lines whose direction cosines are $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ and $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$.

- Watch Video Solution

16. Find the angle between the lines whose direction ratios are $(1,1,2)(\sqrt{3},-\sqrt{3}, 0)$

- Watch Video Solution

17. Show that the lines with direction cosines $\left(\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}\right)$ and $\left(\frac{4}{13}, \frac{12}{13}, \frac{3}{13}\right)$ are perpendicular to each other.

- Watch Video Solution

18. Find ' x ' if the angle between he lines with direction ratios ($x, 4,5$) and $(2,-1,2)$ is 90°

- Watch Video Solution

19. O is the origin, $\mathrm{P}(2,3,4)$ and $\mathrm{Q}(1, \mathrm{k}, 1)$ are points such that $\overline{O P} \perp \overline{O Q}$.

Find k .

- Watch Video Solution

20. Find the angle between $\overline{D C}$ and $\overline{A B}$ where $\mathrm{A}=(3,4,5), \mathrm{B}=(4,6,3), \mathrm{C}=$ $(-1,2,4)$ and $D(1,0,5$ _
21. Show that the lines $\overline{P Q}$ and $\overline{R S}$ are parallel where $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ are the poits (2,3,4), (4,7,8), (-1,-2,1) and (1,2,5) respectively.

- Watch Video Solution

22. Show that the line through $(4,7,8),(2,3,4)$ is parallel to the line through the points ($-1-2,1$) and ($1,2,5$).

- Watch Video Solution

23. Show that the line through the points (1,-1,2), (3,4,-2) is perpendicular to the line through the points ($0,3,2$), $(3,5,6)$.

- Watch Video Solution

24. For that value of ' x ' the line joining $A(4,1,2), B(5, x, 0)$ is perpendicular to the line joining $C(1,2,3), D(3,5,7)$?

- Watch Video Solution

Exercise 6 Very Short Questions

1. Find the direction cosines of the sides of the triangle whose vertices are (3,5,-4), (-1,1,2) and (-5,-5,-2).

- Watch Video Solution

2. If ($6,10,10$), ($1,0,-5$), ($6,-10,0$) are vertices of a triangle, find the direciton ratios of its sides. Determine wherther it is right angled or isosceles.
3. If the vertices of a triangle are $A(1,4,2), B(-2,1,2), C(2,3,-4)$ then find $\angle A, \angle B, \angle C$.

- Watch Video Solution

4. The direction cosines of a line are proportional to (2,3,6). A point P on the parallel line through the origin is distant 14 units from the origin.

Find its coordinates.

- Watch Video Solution

5. Show that the points ($2,3,-4$), ($1,-2,3$) and ($3,8,-11$) are collinear.

- Watch Video Solution

6. Show that the points (4,7,8), (2,3,4) and ($-1,-2,1),(1,2,5)$ are vertices of a parallelogram.
7. Show that the four points ($5,-1,1$),(-1,-3,4) (1,-6,10) and ($7,-4,7$) taken in order form a rhombus.

- Watch Video Solution

8. $A(6,-16,-3), B(3,-1,4), C(-2,5,0)$ are vertices of a triangle, Find the coordinates of the foot of the perpendicular drawn from A to $\overline{B C}$.

- Watch Video Solution

9. Find the direciton cosines of a line which is perpendicular to the lines whose direcition ratios are (1,-2,3) and (2,1,-1)

- Watch Video Solution

10. If $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ are d.c.s of two intersecting lines, show that d.c.s of two lines bisecting the angles between them are proportional to $l_{1}+l_{2}, m_{1}+m_{2}, n_{1}+n_{2}$.

- Watch Video Solution

11. $A(-1,2-3), B(5,0,-6), C(0,4,-1)$ are three points, Show that direction cosines of the bisectors of $\lfloor B A C$ are proportional to (25,8,5) and (-11,20,23).

- Watch Video Solution

Exercise 6 Long Answerquestions

1. Find the direction cosines of the two lines which are connected by the relations $l-5 m+3 n=0,7 l^{2}+5 m^{2}-3 n^{2}=0$
2. Find the angle between the lines whose direction cosines satisfy the equaitons $l+m+n=0, l^{2}+m^{2}-n^{2}=0$.

- Watch Video Solution

3. Find the angle between the lines whose direction cosines are given by the equation $31+m+5 n=0$ and $6 m n-2 n l+51 m=0$

- Watch Video Solution

4. Show that the lines whose d.c's are given by $I+m+n=0,2 m n+3 n l-$ $5 \ln =0$ are perpendicular to each other.

- Watch Video Solution

5. The angle between any two diagonals of a cube is
6. If a line makes angles $\alpha, \beta, \lambda, \delta$ with the four diagonals of a cube, then show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \lambda+\cos ^{2} \delta=\frac{4}{3}$.

- Watch Video Solution

Additional Exercise

1. find the number of straight lines that are equally inclined to threedimensional coordinate axes, is

- Watch Video Solution

2. If $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ are d.c's of two lines then find the value of $\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}+\left(m_{1} n_{2}-n_{1} m_{2}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} l_{2}+m_{1} m_{2}+n_{1}\right.$

- Watch Video Solution

3. Show that the condition that tha concurrent lines with direction cosines $\left(l_{1} . m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ and $\left(l_{3}, m_{3}, n_{3}\right)$ are coplanar is $l_{1}\left(m_{2} n_{3}-m_{3} n_{2}\right)+m_{1}\left(n_{2} l_{3}-n_{3} l_{2}\right)+n_{1}\left(l_{2} m_{3}-l_{3} n_{2}\right)=0$

- Watch Video Solution

4. Light from a point source at $A(7,0,0)$ strikes a small mirror at the origin the normal to which has direction ratios (2,1,2). Find the actual direction cosines of the reflected ray.

- View Text Solution

Exercise I

1. If the line joining the points $(2,3,4),(0,1,2)$ is perpendicular to the line joining the points $(x, 0,4),(7,-4,3)$ then $x=$
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

2. If O is origin, and $P=(1,-2,1)$ and $O P \perp O Q$ then $\mathrm{Q}=$
A. $(4,3,2)$
B. $(3,2,4)$
C. $(2,-3,4)$
D. $(1,-2,3)$

Answer: A

3. The d.r's of two parallel lines are $4,-3,-1$ and $\lambda+\mu, 1+\mu, 2$. Then
(λ, μ) is
A. $(1,7)$
B. $(-1,-7)$
C. $(7,1)$
D. $(-13,5)$

Answer: D

Watch Video Solution

4. A straight line is equally inclined to all the three coordinate axes. Then an angle made by the line with the y-axis
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
C. $\cos ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
D. $\frac{\pi}{4}$

Answer: B

- Watch Video Solution

Exercise li

1. A line passes through the points $(6,-7,-1)$ and $(2,-3,1)$. The d.c's of the line so directed that the angle made by it with the positive direction of x-axis is acute are
A. $\left(\frac{2}{3}, \frac{-2}{3}, \frac{1}{3}\right)$
B. $\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right)$
C. $\left(\frac{-2}{3}, \frac{-2}{3}, \frac{1}{3}\right)$
D. $\left(\frac{2}{3}, \frac{-2}{3}, \frac{-1}{3}\right)$

Answer:

2. If the angle between the lines whose direction cosines are $\left(-\frac{2}{\sqrt{21}}, \frac{C}{\sqrt{21}}, \frac{1}{\sqrt{21}}\right)$ and $\left(\frac{3}{\sqrt{54}}, \frac{3}{\sqrt{54}}, \frac{-6}{\sqrt{54}}\right)$ is $\frac{\pi}{2}$, then the value of C is
A. 6
B. 4
C. -4
D. 2

Answer:

- Watch Video Solution

3. Any point on a line has the coordinates $(r+1, r-3, r \sqrt{2}+4)$ where r is any real number. The d.r's of the line are
A. $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
B. $\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}$
C. $\frac{1}{2}, \frac{1}{2},-\frac{1}{\sqrt{2}}$
D. $1,1, \sqrt{2}$

Answer:

- Watch Video Solution

4. If $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ are d.c's of two lines then find the value of $\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}+\left(m_{1} n_{2}-n_{1} m_{2}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} l_{2}+m_{1} m_{2}+n_{1}\right.$
A. I,II
B. II,III
C. I,III
D. all the three
5. If the vertices of a triangle are $(1,4,2),(-2,1,2),(2,3,-4)$ then the angles are
A. $90^{\circ}, \cos ^{-1} \sqrt{\frac{9}{28}},\left[90^{\circ}-\cos ^{-1} \sqrt{\frac{9}{28}}\right]$
B. $\cos ^{-1}\left(\frac{1}{\sqrt{5}}\right), 90^{\circ}, \cos ^{-1} \frac{\sqrt{5}}{3}$
C. $90^{\circ}, 120^{\circ}, 30^{\circ}$
D. $30^{\circ}, 60^{\circ}, 90^{\circ}$

Answer:

- Watch Video Solution

6. The angle between the lines joining the points $(1,1,0)$, $(-3, \sqrt{3}+1,3)$ and $(0,-1,0),(-1, \sqrt{3}-1 \lambda)$ is $\cos ^{-1}\left(\sqrt{\frac{7}{16}}\right)$. If λ is an integer then λ is
A. 1
B. 0
C. -1
D. 2

Answer:

D Watch Video Solution

7. If $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right)$ are direction ratio of two lines such that $\left(a_{1}^{2}+b_{1}^{2}+c_{1}^{2}\right)\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right)^{2}=0$ then the two lines
A. are parallel
B. are perpendicular
C. include an angle $\frac{\pi}{4}$
D. include angle $\frac{\pi}{3}$

Answer:

8. The angle between any two diagonals of a cube is
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
C. $\cos ^{-1} \sqrt{\frac{2}{3}}$
D. $\cos ^{-1} \frac{2}{3}$

Answer:

- Watch Video Solution

9. In a unit cube. Find The angle between a diagonal of a cube and the diagonal of a face of the cube
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
C. $\cos ^{-1} \sqrt{\frac{2}{3}}$
D. $\cos ^{-1} \frac{2}{3}$

Answer:

- Watch Video Solution

10. Angle between a diagonal of a cube with edge of lenth 1 is
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(\frac{1}{2}\right)$
C. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
D. $\cos ^{-1}(\sqrt{3})$

Answer:

- Watch Video Solution

11. If a line makes angles $\alpha, \beta, \lambda, \delta$ with the four diagonals of a cube, then show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \lambda+\cos ^{2} \delta=\frac{4}{3}$.
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. $\frac{1}{5}$
D. $\frac{4}{3}$

Answer:

- Watch Video Solution

12. If a line makes angles $\alpha, \beta, \lambda, \delta$ with the 4 diagonals of a cube then $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \lambda+\sin ^{2} \delta$
A. $5 / 3$
B. $4 / 3$
C. $8 / 3$
D. $2 / 3$

Answer:

- Watch Video Solution

13. If the edges of rectangular parllelopiped are $3,2,1$ then the angle between two diagonals out of 4 diagonals id
A. $\cos ^{-1}\left(\frac{6}{7}\right)$
B. $\cos ^{-1}\left(\frac{2}{3}\right)$
C. $\cos ^{-1}\left(\frac{13}{14}\right)$
D. $\cos ^{-1}\left(\frac{9}{14}\right)$

Answer:

- Watch Video Solution

14. If $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ are d.c's of two lines whose angle between them is 30°, then d.c's of a line perpendicular to both these lines are $k\left(m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2} m_{1}\right), \mathrm{k}=$
A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

15. If the d.r.s of the two lines are $1,1,2,-1,2,1$ then d.c.s of a line which is perpendicular to both of them are
A. $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$
B. $\frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
C. $\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
D. $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$

Answer:

- Watch Video Solution

16. If the d.r.s of $O A, O B$ are $(1,1,-1),(1-2,1)$ then the d.c.s of the normal to the plane AOB are
A. $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
B. $\frac{2}{\sqrt{29}}, \frac{3}{\sqrt{29}}, \frac{4}{\sqrt{29}}$
C. $\frac{2}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
D. $\frac{1}{14}, \frac{2}{14}, \frac{3}{14}$

Answer:

17. If $(1,2,1),(1,-3,2)$ are the direction ratios of two lines and $(1, m, n)$ are the direction cosines of a line perpendicular to the given lines, then $I+m+n$
A. 1
B. $\pm \frac{1}{5 \sqrt{3}}$
C. $\pm \frac{1}{3 \sqrt{5}}$
D. $\pm \frac{1}{3 \sqrt{3}}$

Answer:

- Watch Video Solution

18. If the d.r's of the lines are $2,1,-2$ and $3,-2,6$ then the d.r,s of the line perpendicular to both the given lines is
A. 2,-18,-7
B. 2,18,-4
C. 2,-18,7

D. 2,18,4

Answer:

- Watch Video Solution

Practice Exercise

1. Match the following

List-1
(A)D.C's of x -axis

List-II
(B) D.C of y-axis
(2) $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
(C)D.C of z-axis
(3) $1,0,0$
(D)D.C's of a line which
(4) $0,1,0$
angles with axes
(5) $0,0,1$
A. $\begin{array}{llll}A & B & C & D \\ 3 & 4 & 5 & 2\end{array}$
B. $A \quad B \quad C \quad D$
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
с. $\begin{array}{llll}A & B & C & D \\ 2 & 3 & 4 & 5\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 5 & 4 & 3 & 2\end{array}$

Answer: A

- Watch Video Solution

2. The number of lines which are equally inclined to the coordinate axes is
A. 3
B. 4
C. 5
D. 6

Answer: B

- Watch Video Solution

3. If the d.c.s of the line joining the oints $P(4,3,5)$ and $Q(1,1, k)$ are $\frac{3}{7}, \frac{2}{7}, \frac{6}{7}$ then $\mathrm{k}=$
A. -1
B. 11
C. 1
D. -11

Answer: A

- Watch Video Solution

4. If d.c's of the line joining the origin and a point unit distance from the origin are $\frac{1}{\sqrt{3}}, \frac{1}{-(2)}, \lambda$ then the point is
A. $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}, \frac{1}{2} \sqrt{\frac{5}{3}}\right)$
B. $\left(\frac{2}{\sqrt{3}},-1, \sqrt{\frac{5}{4}}\right)$
C. $\left(\frac{-2}{\sqrt{3}}, 1-\sqrt{\frac{5}{4}}\right)$
D. $\left(\frac{1}{2}, \frac{1}{3}, \sqrt{\frac{5}{3}}\right)$

Answer: A

- Watch Video Solution

5. If $(1,2,2)$ are the D.R's of a line then Statement-I : The D.C's of the are
$\left[\frac{-1}{3}, \frac{-2}{3}, \frac{2}{3}\right]$
Statement-II : The D. C's of the line are $\left[\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right]$
Which of the above statement is correct :
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II
6. Assertion (A) : If a line make angles $45^{\circ}, 45^{\circ}$ with the x and y axis repectively then it makes angle 60° with z - axis

Reason (R): If α, β, λ are the angle made by a line with the coordinate axes then $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \lambda=1$
A. Both A and R are ture and R is the correct explanation of A
B. Both A and R are true but R is the correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: D

- Watch Video Solution

7. If a line makes angles $\cos ^{-1}(1 / 5), \cos ^{-1}(3 / 5)$ with X and Y - axes respectively, then the angle made by the line with Z-axis is
A. $\cos ^{-1}(1 / 5)$
B. $\cos ^{-1}(2 / 5)$
C. $\cos ^{-1} \sqrt{3 / 5}$
D. $\cos ^{-1}(4 / 5)$

Answer: C

- Watch Video Solution

8. The angle between the two lines whose direction cosines are $\left(\frac{\sqrt{3}}{4}, \frac{1}{4}, \frac{\sqrt{3}}{2}\right)$ and $\left(\frac{\sqrt{3}}{4}, \frac{1}{4},-\frac{\sqrt{3}}{2}\right)$
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$
9. The angle between the line passing through the points ($3,1,-2$) and $(4,0,-4)$ and the line passing through the points $(4,-3,3)$ and $(6,-2,2)$ is
A. $\cos ^{-1}\left(\frac{2}{63}\right)$
B. $\cos ^{1}\left(\frac{20}{63}\right)$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{5}$

Answer: D

- Watch Video Solution

10. If the d.r's of two lines are ($x, 3,5$) and $(2,-1,2)$ and if the anlgle between those lines is 45°, then $\mathrm{x}=$
A. 4
B. 5
C. 2
D. 1

Answer:

- Watch Video Solution

11. The d.r.s of two perpendicular lines are $1,-3,5$ and $\lambda, 1+\lambda, 2+\lambda$ then λ is
A. $-7 / 3$
B. $7 / 2$
C. $-1 / 4$
D. $1 / 2$

Answer: A

12. If the line joining the points $(-1,2,3)(2,-1,4)$ is perpendicular to the line joining ($x,-2,4$) and $(1,2,3)$ then $x=$
A. 3
B. 10
C. $\frac{-3}{10}$
D. $\frac{-10}{3}$

Answer: D

- Watch Video Solution

13. If $(1,-2,-2)$ and $(0,2,1)$ are direction ratios of two lines, then direction cosines of a line perpendicular to both the lines are
A. $\left(\frac{1}{3},-\frac{1}{3}, \frac{2}{3}\right)$
B. $c\left(\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right)$
C. $\left(-\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$
D. $\left(\frac{2}{\sqrt{14}},-\frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$

Answer: B

- Watch Video Solution

14. If the line joining the points ($1,4,2$) and $(-2,1,2)$ is inclined at an angle of $\frac{\pi}{3}$ to the line joining the points $(1,2,3),(2, \lambda, 1)$ then $\lambda=$
A. $\pm \sqrt{7}$
B. $\pm \sqrt{9}$
C. $\pm \sqrt{5}$
D. $\pm \sqrt{3}$

Answer: A

15. If the d.r's of $\overline{O A}, \overline{O B}$ are $(1,-2,3),(-3,4,5)$ then the d.c's of the normal to the plane $\overline{O A B}$ are
A. $\left(\frac{4}{\sqrt{29}}, \frac{3}{\sqrt{29}},-\frac{2}{\sqrt{29}}\right)$
B. $\left(\frac{11}{\sqrt{171}}, \frac{7}{\sqrt{171}}, \frac{1}{\sqrt{171}}\right)$
c. $\left(\frac{3}{\sqrt{29}},-\frac{2}{\sqrt{29}},-\frac{4}{\sqrt{29}}\right)$
D. $\left(\frac{3}{\sqrt{29}},-\frac{2}{\sqrt{29}},-\frac{4}{\sqrt{29}}\right)$

Answer: B

- Watch Video Solution

16. If $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ are d.c's of two lines then find the value of $\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}+\left(m_{1} n_{2}-n_{1} m_{2}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} l_{2}+m_{1} m_{2}+n_{1}\right.$
A. 3
B. 2
C. 1
D. 4

Answer: C

- Watch Video Solution

17. If the d.c's of the two lines are $\frac{2}{3}, \frac{2}{3}, \frac{1}{3}, \frac{5}{13}, \frac{12}{13}, 0$ then the d.r.s of the line bisecting the angle between the lines are
A. $40,60,13$
B. $41,60,10$
C. $41,62,13$
D. $41,60,13$

Answer: C

18. If ($6,-2,-3$), ($1,2,2$) are d.r's of two lines then the d.c's of line bisecting the angle between them are
A. $\left(\frac{25}{\sqrt{714}}, \frac{8}{\sqrt{714}}, \frac{5}{\sqrt{714}}\right)$
B. $\left(\frac{13}{\sqrt{714}}, \frac{4}{\sqrt{714}}, \frac{5}{\sqrt{714}}\right)$
C. $\left(\frac{-25}{\sqrt{714}}, \frac{8}{\sqrt{714}}, \frac{-5}{\sqrt{714}}\right)$
D. $\left(\frac{25}{\sqrt{714}}, \frac{8}{\sqrt{714}}, \frac{5}{\sqrt{714}}\right)$

Answer:

- Watch Video Solution

19. If $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ are direction cosines of two lines which inculude an angle 120°, then the direction cosines of the line which bisects the angle between them is
A. $\left(l_{1}+l_{2}\right),\left(m_{1}+m_{2}\right),\left(n_{1}+n_{2}\right)$
B. $\left(\frac{l_{1}-l_{2}}{\sqrt{3}}, \frac{m_{1}-m_{2}}{\sqrt{3}}, \frac{n_{1}-n_{2}}{\sqrt{3}}\right)$
C. $\left(\frac{l_{1}-l_{2}}{2}, \frac{m_{1}-m_{2}}{2}, \frac{n_{1}-n_{2}}{2}\right)$
D. $\left(\frac{l_{1}-l_{2}}{\sqrt{2}}, \frac{m_{1}-m_{2}}{\sqrt{2}}, \frac{n_{1}-n_{2}}{\sqrt{2}}\right)$

Answer: B

- Watch Video Solution

20. If the d.c's $(1, m, n)$ of two lines are related as $I+m+n=0,2 l m-m n+$ $2 \mathrm{nl}=0$, then the angle between the lines is
A. 30°
B. 45°
C. 90°
D. 120°

Answer: D

21. If the d.c's (l,m,n) of two lines are connected by the relations
$31+m+5 n=0,6 m n-2 n l+51 m=0$ then the angle between the lines is
A. $\cos ^{-1}\left(\frac{1}{6}\right)$ or $\pi-\cos ^{-1}\left(\frac{1}{6}\right)$
B. 45°
C. 60° or 120°
D. $\cos ^{-1} \frac{19}{\sqrt{364}}$

Answer: A

- Watch Video Solution

22. If the direction rations of two lines are given by $31 m-4 \mid n+m n=0$ and \mid
$+2 m+3 n=0$ then the angle between the lines is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$

Answer: A

- Watch Video Solution

23. If the d.c's of two lines are such that $1+3 m+n=0$, $3 l^{2}+5 m^{2}-4 n^{2}=0$, then the angle between them is
A. $\pi / 3$
B. $\pi / 2$
C. $\pi / 4$
D. $\pi / 6$

Answer: B

- Watch Video Solution

24. If the d.c's (l,m,n) of two lines are connected by the relations $7 l^{2}+5 m^{2}-3 n^{2}=0,1-5 m+3 n=0$ then the d.c's of the two lines are
A. $\left(\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right),\left(\frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$
B. $\left(\frac{1}{\sqrt{14}},-\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{6}}\right),\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}}\right)$
C. $\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right),\left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)$
D. $\left(\frac{1}{\sqrt{4}}, \frac{2}{\sqrt{4}}, \frac{3}{\sqrt{4}}\right),\left(\frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{8}}, \frac{-2}{\sqrt{8}}\right)$

Answer: C

- Watch Video Solution

25. The angle between two lines whose d.c's satisfy the equation $n=1+m$ and $m=2 l+3 n$ is
A. 0°
B. 90°
C. 60°
D. 30°

Answer: A

- Watch Video Solution

26. Assertion (A): The points $A(2,3,5) B(4,6,10), C(8,12,20)$ are collinear.

Reason (R) : Two lines will be parallel if their D.R's are proportional.
A. Both A and R are ture and R is the correct explanation of A
B. Both A and R are true but R is not the correct explanation of A
C. A is true but R is false
D. A is false But R is true

Answer: A

- Watch Video Solution

27. The projection of a vector on the three coordinate axes are $6,-3,2$ respectively. The direction cosines of the vector are
A. $6,-3,2$
B. $\frac{6}{5}, \frac{-3}{5}, \frac{2}{5}$
C. $\frac{6}{7}, \frac{-3}{7}, \frac{2}{7}$
D. $\frac{-6}{7}, \frac{-3}{7}, \frac{2}{7}$

Answer: C

- Watch Video Solution

28. The projection of the join of the points $(3,4,2),(5,1,8)$ on the line whose d.c's are $\left(\frac{2}{7}, \frac{-3}{7}, \frac{6}{7}\right)$ is
A. 7
B. $\frac{46}{13}$
C. $\frac{42}{13}$
D. $\frac{38}{13}$

Answer: A

- Watch Video Solution

29. The projection of the join of the two points $(1,4,5),(6,7,2)$ on the line whose d.r's are $(4,5,6)$ is
A. $\frac{17}{\sqrt{77}}$
B. $\frac{7}{6}$
C. 21
D. $\frac{7}{9}$

Answer: A

- Watch Video Solution

30. A $\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ are two points. Then the lenghts of projection on

List.1 List. II

A) x-axis

1) $\left|x_{2}-x_{1}\right|$
B) y - axis
2) $\left|y_{2}-y_{1}\right|$
C) z - axis
3) $\left|z_{2}-z_{1}\right|$
4) $\left|x-x_{1}\right|+\left|y_{2}-y_{1}\right|+\left|z_{2}-z_{1}\right|$
A. $A B C$
A.

123

- $A B C$
B. $3 \quad 5 \quad 9$
C. $\begin{array}{lll}A & B & C \\ 5 & 9 & 6\end{array}$
D. $\begin{array}{lll}A & B & C \\ 4 & 2 & 3\end{array}$

Answer: A

- Watch Video Solution

31. If $A(1,2,3), B(6,7,7), C(9,9,0)$ are three points, then the foot of the perpendicular drawn from the point A to the joining the points B and C is
A. $(3,5,7)$
B. $(3,5,9)$
C. $(5,9,6)$
D. $(4,2,3)$

Answer: B

- Watch Video Solution

32. Assertion (A): $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$. The projection of AB on the line with D.C's $(1, \mathrm{~m}, \mathrm{n})$ is $l\left(x_{2}-x_{1}\right)+m\left(y_{2}-y_{1}\right)+n\left(z_{2}-z_{1}\right)$

Reason (R): The projection of the join of A $\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ on yz plane is $\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
A. Both A and R are ture and R is the correct explanation of A
B. Both A and R are true but R is not the correct explanation of A
C. A is true but R is flase
D. A is flase but R is true

Answer: B

- Watch Video Solution

33. A line makes the same angle θ, with each of the x and z axis. If the angle β, which it makes with y - axis, is such that $\sin ^{2} \beta^{\prime}=3 \sin ^{2} \theta$ then $\cos ^{2} \theta=$
A. $2 / 3$
B. $1 / 5$
C. $3 / 5$
D. $2 / 5$

Answer: C

34. If a makes an angle of $\pi / 4$ with the positive direction of each of x-axis and y - axis, then the angle that the line makes with the positive direction of the z-axis is
A. $\pi / 2$
B. $\pi / 6$
C. $\pi / 3$
D. $\pi / 4$

Answer: A

- Watch Video Solution

35. A tetrahedron has vertices at $\mathrm{O}(0,0,0), \mathrm{A}(1,2,1), \mathrm{B}(2,1,3)$ and $\mathrm{C}(-1,1,2)$. Then the angle between the faces $O A B$ and $A B C$ will be
A. $\pi / 2$
B. $\cos ^{-1}\left(\frac{19}{35}\right)$
C. $\cos ^{-1}\left(\frac{17}{31}\right)$
D. $\pi / 6$

Answer: C

- Watch Video Solution

36. Tha angle between the lines whose d.c's satisfy the equation $l+m+n=0$ and $l^{2}=m^{2}+n^{2}$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$
