

India's Number 1 Education App

MATHS

AIMED AT STUDENTS PREPARING FOR IIT JEE EXAMINATION

DIRECTION COSINES & RATIOS

Solved Examples

1. If P(2,3,-6) , Q (3, -4,5) are two points, find the d.c's of \overrightarrow{OP} , \overrightarrow{QO} and \overrightarrow{PQ} where O is the origin.

Watch Video Solution

2. Find the dr's and dc'r of the line joining the points (4,-7,3),(6,-5,2).

- 3. If the d.c's of a line are proportional to (1,-2,1) find d.c's
 - Watch Video Solution

- **4.** Show that the line joining the points P(0,1,2) and Q(3,4,8) is parallel to the line joining the points $R\left(-2,\frac{3}{2},-3\right)$ and $S\left(\frac{5}{2},6,6\right)$
 - Watch Video Solution

- **5.** Show that the line joining the points A(2,3,-1) and B(3,5,-3) is perpendicular to the line joining C(1,2,3) and D(3,5,7).
 - Watch Video Solution

- **6.** Show that the points A(1,2,3), B(4,0,4), C (-2,4,2) are collinear
 - Watch Video Solution

7. Show that the lines whose d.c's are proportional to (2,1,1), $\left(4,\sqrt{3}-1,\ -\sqrt{3}-1\right) \text{ are inclined to one another at angle } \frac{\pi}{3}.$

8. ΔABC is formed by a (1,8,4), B (0, -11,4) and C(2,-3,1) . If D is the foot of the perpendicular from A to BC . Then the coordinates of D are

9. Lines \overline{OA} , \overline{OB} are drawn from O with direction cosines proportional to (1,-2,-1), (3,-2,3). Find the direction cosines of the normal to the plane AOB.

10. If the d.c. 's (l, m, n) of two lines are connected by the relations l+m+n=0, 2lm-mn+2nl=0 then the d.c.'s of the two lines are

11. If a variable line in two adjacent positions has direction cosines (l,m,n) and $(l+\delta l,m+\delta m,n+\delta n)$, then show that the small angle $\delta \theta$ between the two position is given by $(\delta \theta)^2=(\delta l)^2+(\delta m)^2+(\delta n)^2$

12. There are three straight lines through the origin with direction cosines proportional to (1,2,2), (2,3,6) (3,4,12), Find the direction cosines of a a line equally inclined to the given lines.

13. Find the direction ratios of the line bisecting the angles between the lines whose direction cosines are $l_1, m_1, n_1 \text{ and } l_2, m_2, n_2$ and the angle between the lines is θ .

Additional Solved Examples

Watch Video Solution

- **1.** Show that the angles between the diagonals of a rectangular parallelopiped having sides a,b and c are $\cos^{-1}\Big(\frac{|\alpha|}{a^2+b^2+c^2}\Big)$, where $\alpha=\pm a^2\pm b^2\pm c^2$ and $|\alpha|\neq a^2+b^2+c^2$. Hence find the angle between the diagonals of a cube.
 - Watch Video Solution

Exercise 6 Very Sort Answer Questions

- 1. A line makes angles $90^\circ, 60^\circ, 30^\circ$ with the positive direction of X,Y,Z axes respectively. Find its direction cosisnes.
 - Watch Video Solution

2. If the d.c's of a line are (1/c, 1/c, 1c) then find c.

Watch Video Solution

3. If the direction cosines of a line are $\left(\frac{1}{2},0,n\right)$ and n<0, then find n.

4. A ray makes angles $\pi/3, \pi/3$ with \overline{OX} and \overline{OY} respectively. Find the angle made by it with \overline{OZ}

5. A straight line is inclined to the axes of x and y at angles of 60° and 45° respectively. Find the its inclination to the z-axis.

6. If α, β, γ are the angles made by a line with the positive directions of the coordinate axes, then $\sin^2\alpha + \sin^2\beta + \sin^2\gamma =$

7. If a line makes angles α,β,λ with the coordinate axes $\overrightarrow{OX},\overrightarrow{OY},\overrightarrow{OZ}$ find the value of $\cos2\alpha+\cos2\beta+\cos2\lambda$,

8. Find the d.c's of a line that makes equal angles with the axes, and find number of such lines.

9. Find the direction ratios of the line joining the points (3,4,0) and (4,4,4).

U	Watch	Video	Solution	

10. The direction ratios of a line are (-6,2,3) Find its direction cosines.

11. If the direction ratios of a line are (3,4,0) find its direction cosines and also the angles made with the coordinate axes.

12. If $P(\sqrt{3}, 1, 2\sqrt{3})$ is a point in space, find direction cosines of \overrightarrow{OP} .

13. Find the direction cosines of the line joining the points (-4,1,7),(2,-3,2)

14. If P(-2,4,-5) and Q(1,2,3) are two points. Find the direction cosines of

15. Find the conine of the angle between the lines whose direction cosines are $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ and $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$.

16. Find the angle between the lines whose direction ratios are $(1,1,2)\big(\sqrt{3},\ -\sqrt{3},0\big)$

17. Show that the lines with direction cosines
$$\left(\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}\right)$$
 and $\left(\frac{4}{13}, \frac{12}{13}, \frac{3}{13}\right)$ are perpendicular to each other.

- **18.** Find 'x' if the angle between he lines with direction ratios (x,4,5) and (2,-1,2) is 90°
 - Watch Video Solution

- **19.** O is the origin, P(2,3,4) and Q(1,k,1) are points such that $\overline{OP} \perp \overline{OQ}$. Find k.
 - Watch Video Solution

20. Find the angle between \overline{DC} and \overline{AB} where A = (3,4,5), B = (4,6,3), C = (-1,2,4) and D(1,0,5

21. Show that the lines \overline{PQ} and \overline{RS} are parallel where P,Q,R,S are the poits (2,3,4), (4,7,8), (-1,-2,1) and (1,2,5) respectively.

22. Show that the line through (4,7,8), (2,3,4) is parallel to the line through the points (-1-2,1) and (1,2,5).

23. Show that the line through the points (1,-1,2), (3,4,-2) is perpendicular to the line through the points (0,3,2), (3,5,6).

24. For that value of 'x' the line joining A(4,1,2), B(5,x,0) is perpendicular to the line joining C(1,2,3), D(3,5,7) ?

Exercise 6 Very Short Questions

1. Find the direction cosines of the sides of the triangle whose vertices are (3,5,-4), (-1,1,2) and (-5,-5,-2).

2. If (6,10,10),(1,0,-5), (6,-10,0) are vertices of a triangle, find the direction ratios of its sides. Determine wherther it is right angled or isosceles.

3. If the vertices of a triangle are A(1,4,2), B(-2,1,2), C(2,3,-4) then find $\angle A, \angle B, \angle C$.

4. The direction cosines of a line are proportional to (2,3,6). A point P on the parallel line through the origin is distant 14 units from the origin. Find its coordinates.

5. Show that the points (2,3,-4), (1,-2,3) and (3,8,-11) are collinear.

6. Show that the points (4,7,8), (2,3,4) and (-1,-2,1),(1,2,5) are vertices of a parallelogram.

7. Show that the four points (5,-1,1),(-1,-3,4) (1,-6,10) and (7,-4,7) taken in order form a rhombus.

8. A(6,-16,-3), B(3,-1,4), C(-2,5,0) are vertices of a triangle, Find the coordinates of the foot of the perpendicular drawn from A to \overline{BC} .

9. Find the direciton cosines of a line which is perpendicular to the lines whose direcition ratios are (1,-2,3) and (2,1,-1)

10. If (l_1, m_1, n_1) , (l_2, m_2, n_2) are d.c.s of two intersecting lines, show that d.c.s of two lines bisecting the angles between them are proportional to $l_1 + l_2$, $m_1 + m_2$, $n_1 + n_2$.

Watch Video Solution

11. A (-1,2-3), B(5,0,-6), C(0,4,-1) are three points, Show that direction cosines of the bisectors of $\lfloor BAC \rfloor$ are proportional to (25,8,5)and (-11,20,23).

Exercise 6 Long Answerquestions

1. Find the direction cosines of the two lines which are connected by the relations $l-5m+3n=0,\,7l^2+5m^2-3n^2=0$

2. Find the angle between the lines whose direction cosines satisfy the equaitons $l+m+n=0,\, l^2+m^2-n^2=0.$

3. Find the angle between the lines whose direction cosines are given by the equation 3l + m + 5n = 0 and 6mn - 2nl + 5lm = 0

4. Show that the lines whose d.c's are given by I + m + n = 0.2mn + 3nI - 5ln = 0 are perpendicular to each other.

5. The angle between any two diagonals of a cube is

6. If a line makes angles α , β , λ , δ with the four diagonals of a cube, then show that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \lambda + \cos^2 \delta = \frac{4}{3}$.

Additional Exercise

1. find the number of straight lines that are equally inclined to threedimensional coordinate axes, is

2. If $(l_1, m_1, n_1), (l_2, m_2, n_2)$ are d.c's of two lines then find the value of $(l_1m_2-l_2m_1)^2+\left(m_1n_2-n_1m_2
ight)^2+\left(n_1l_2-n_2l_1
ight)^2+\left(l_1l_2+m_1m_2+n_$

3. Show that the condition that the concurrent lines with direction cosines $(l_1,m_1,n_1),(l_2,m_2,n_2)$ and (l_3,m_3,n_3) are coplanar is $l_1(m_2n_3-m_3n_2)+m_1(n_2l_3-n_3l_2)+n_1(l_2m_3-l_3n_2)=0$

Watch Video Solution

4. Light from a point source at A(7,0,0) strikes a small mirror at the origin the normal to which has direction ratios (2,1,2). Find the actual direction cosines of the reflected ray.

View Text Solution

Exercise I

1. If the line joining the points (2, 3, 4), (0,1,2) is perpendicular to the line joining the points (x, 0, 4), (7, -4,3) then x =

A. 1

- B. 2
- C. 3
- D. 4

Answer: B

Watch Video Solution

- **2.** If O is origin, and $P=(1,\ -2,1)\ {
 m and}\ OP\perp OQ$ then Q =
 - A.(4,3,2)
 - B.(3,2,4)
 - C.(2, -3, 4)
 - D. (1, -2, 3)

Answer: A

Watch Video Solution

3. The d.r's of two parallel lines are 4, - 3, -1 and
$$\lambda + \mu, 1 + \mu, 2$$
. Then (λ, μ) is

Answer: D

an angle made by the line with the y - axis

4. A straight line is equally inclined to all the three coordinate axes. Then

A.
$$\cos^{-1}\left(\frac{1}{3}\right)$$
B. $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$
C. $\cos^{-1}\left(\frac{2}{\sqrt{3}}\right)$

D.
$$\frac{\pi}{4}$$

Answer: B

Watch Video Solution

Exercise li

1. A line passes through the points (6,-7,-1) and (2,-3,1). The d.c's of the line so directed that the angle made by it with the positive direction of x-axis is acute are

$$A.\left(\frac{2}{3}, \frac{-2}{3}, \frac{1}{3}\right)$$

$$\mathsf{B.}\left(\frac{2}{3},\frac{2}{3},\frac{-1}{3}\right)$$

$$\mathsf{C.}\left(\frac{-2}{3},\frac{-2}{3},\frac{1}{3}\right)$$

$\mathsf{D.}\left(\frac{2}{3},\frac{-2}{3},\frac{-1}{3}\right)$

Answer:

Watalayidaa Calaiiaa

2. If the angle between the lines whose direcrtion cosines are

$$\left(-\frac{2}{\sqrt{21}},\frac{C}{\sqrt{21}},\frac{1}{\sqrt{21}}\right) \text{ and } \left(\frac{3}{\sqrt{54}},\frac{3}{\sqrt{54}},\frac{-6}{\sqrt{54}}\right) \text{ is } \frac{\pi}{2}, \text{ then the value of C is}$$

- A. 6
- B. 4
- C. -4
- D. 2

Answer:

Watch Video Solution

3. Any point on a line has the coordinates $\left(r+1,r-3,r\sqrt{2}+4\right)$ where r is any real number. The d.r's of the line are

C. I,III

D. all the three

- A. I,II B. II,III

- **4.** If $(l_1,\,m_1,\,n_1),\,(l_2,\,m_2,\,n_2)$ are d.c's of two lines then find the value of $\left(l_{1}m_{2}-l_{2}m_{1}
 ight)^{2}+\left(m_{1}n_{2}-n_{1}m_{2}
 ight)^{2}+\left(n_{1}l_{2}-n_{2}l_{1}
 ight)^{2}+\left(l_{1}l_{2}+m_{1}m_{2}+n_{1$
- Watch Video Solution

A. $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$

B. $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{\sqrt{2}}$

D. 1, 1, $\sqrt{2}$

 $\mathsf{C.}\,\frac{1}{2},\,\frac{1}{2},\,-\,\frac{1}{\sqrt{2}}$

Answer:

Answer:

5. If the vertices of a triangle are (1,4,2),(-2,1,2),(2,3,-4) then the angles are

A.
$$90^{\circ}$$
, $\cos^{-1}\sqrt{\frac{9}{28}}$, $\left[90^{\circ}-\cos^{-1}\sqrt{\frac{9}{28}}\right]$

B.
$$\cos^{-1} \left(\frac{1}{\sqrt{5}} \right)$$
, 90° , $\cos^{-1} \frac{\sqrt{5}}{3}$

C.
$$90^\circ$$
 , 120° , 30°

D.
$$30^\circ$$
 , 60° , 90°

Answer:

Watch Video Solution

angle between the lines joining the points The (1,1,0),

$$ig(-3,\sqrt{3}+1,3ig) \ ext{and} \ (0,\ -1,0), ig(-1,\sqrt{3}-1\lambdaig) \ ext{is} \ \cos^{-1}ig(\sqrt{rac{7}{16}}ig).$$

If λ is an integer then λ is

A. 1

B. 0

C. -1

D. 2

Answer:

Watch Video Solution

7. If $(a_1,b_1,c_1),(a_2,b_2,c_2)$ are direction ratio of two lines such that

$$ig(a_1^2 + b_1^2 + c_1^2ig)(a_1a_2 + b_1b_2 + c_1c_2ig)^2 = 0$$
 then the two lines

A. are parallel

B. are perpendicular

C. include an angle $\frac{\pi}{4}$

D. include angle $\frac{\pi}{3}$

Answer:

Watch Video Solution

8. The angle between any two diagonals of a cube is

A.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

B.
$$\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

$$\mathsf{C.}\cos^{-1}\sqrt{\frac{2}{3}}$$

D. $\cos^{-1} \frac{2}{3}$

Answer:

Watch Video Solution

9. In a unit cube. Find The angle between a diagonal of a cube and the diagonal of a face of the cube

A.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

B.
$$\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

$$\mathsf{C.}\cos^{-1}\sqrt{\frac{2}{3}}$$

D.
$$\cos^{-1} \frac{2}{3}$$

Answer:

Watch Video Solution

10. Angle between a diagonal of a cube with edge of lenth 1 is

A.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

$$\mathrm{B.}\cos^{-1}\!\left(\frac{1}{2}\right)$$

$$\mathsf{C.}\cos^{-1}\!\left(\frac{1}{\sqrt{3}}\right)$$

D. $\cos^{-1}(\sqrt{3})$

Answer:

Watch Video Solution

11. If a line makes angles $\alpha,\beta,\lambda,\delta$ with the four diagonals of a cube, then show that $\cos^2\alpha+\cos^2\beta+\cos^2\lambda+\cos^2\delta=\frac{4}{3}.$

- A. $\frac{1}{2}$
- $\mathsf{B.}\;\frac{2}{3}$
- $\mathsf{C.}\,\frac{1}{5}$
- D. $\frac{4}{3}$

Answer:

Watch Video Solution

12. If a line makes angles $\alpha,\beta,\lambda,\delta$ with the 4 diagonals of a cube then $\sin^2\alpha+\sin^2\beta+\sin^2\lambda+\sin^2\delta$

- A. 5/3
- B.4/3
- C.8/3

Answer:

Watch Video Solution

13. If the edges of rectangular parllelopiped are 3,2,1 then the angle between two diagonals out of 4 diagonals id

A.
$$\cos^{-1}\left(\frac{6}{7}\right)$$

$$\mathrm{B.}\cos^{-1}\!\left(\frac{2}{3}\right)$$

$$\mathsf{C.}\cos^{-1}\!\left(\frac{13}{14}\right)$$

D.
$$\cos^{-1}\left(\frac{9}{14}\right)$$

Answer:

Watch Video Solution

14. If $(l_1,m_1,n_1),(l_2,m_2,n_2)$ are d.c's of two lines whose angle between them is 30° , then d.c's of a line perpendicular to both these lines are $k(m_1n_2-m_2n_1,n_1l_2-n_2l_1,l_1m_2-l_2m_1)$, k =

B. 2

C. 3

D. 4

Answer:

15. If the d.r.s of the two lines are 1,1,2, -1,2,1 then d.c.s of a line which is perpendicular to both of them are

A.
$$\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$$

$$\mathrm{B.}\,\frac{-1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}$$

c.
$$\frac{1}{\sqrt{3}}$$
, $\frac{-1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$
D. $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$

Answer:

Watch Video Solution

16. If the d.r.s of OA, OB are (1,1,-1),(1-2,1) then the d.c.s of the normal to the plane AOB are

A.
$$\frac{1}{\sqrt{14}}$$
, $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$
B. $\frac{2}{\sqrt{29}}$, $\frac{3}{\sqrt{29}}$, $\frac{4}{\sqrt{29}}$
C. $\frac{2}{\sqrt{14}}$, $\frac{-2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$

$$\sqrt{14}$$
, $\sqrt{14}$, $\sqrt{14}$
D. $\frac{1}{14}$, $\frac{2}{14}$, $\frac{3}{14}$

Answer:

Watch Video Solution

17. If (1,2,1), (1,-3,2) are the direction ratios of two lines and (l, m,n) are the direction cosines of a line perpendicular to the given lines, then l+m+n

$$\texttt{B.}\pm\frac{1}{5\sqrt{3}}$$

$$\mathsf{C.}\pm\frac{1}{3\sqrt{5}}$$

$$\mathsf{D.}\pm\frac{1}{3\sqrt{3}}$$

Answer:

Watch Video Solution

18. If the d.r's of the lines are 2,1,-2 and 3,-2,6 then the d.r,s of the line perpendicular to both the given lines is

Answer:

Watch Video Solution

Practice Exercise

1. Match the following

List-II List-II

 $(A)D.C's of x-axis \qquad (1)1,1,1$

(B) D.C of y-axis $(2)\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$

(C)D.C of z-axis (3)1,0,0

(D)D.C's of a line which (4)0,1,0 makes equal

angles with axes

(5)0,0,1

A. 3 4 5 2

3 4 5 2

B. 1 2 3 4

 $\mathsf{C}. \stackrel{A}{\circ} \stackrel{B}{\circ} \stackrel{C}{\circ} \stackrel{D}{\circ}$

2 3 4 5

A B C D

Answer: A

Watch Video Solution

- 2. The number of lines which are equally inclined to the coordinate axes is

 - A. 3
 - B. 4
 - C. 5
 - D. 6

Answer: B

Watch Video Solution

- **3.** If the d.c.s of the line joining the oints P(4,3,5) and Q(1,1,k) are $\frac{3}{7}$, $\frac{2}{7}$, $\frac{6}{7}$
- then k =
 - A. -1
 - B. 11
 - C. 1
 - D. -11

Answer: A

Watch Video Solution

4. If d.c's of the line joining the origin and a point unit distance from the origin are $\frac{1}{\sqrt{3}}$, $\frac{1}{-(2)}$, λ then the point is

A.
$$\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}, \frac{1}{2}\sqrt{\frac{5}{3}}\right)$$

$$\mathsf{B.}\left(\frac{2}{\sqrt{3}},\;-1,\sqrt{\frac{5}{4}}\right)$$

C.
$$\left(\frac{-2}{\sqrt{3}},1-\sqrt{\frac{5}{4}}\right)$$
D. $\left(\frac{1}{2},\frac{1}{3},\sqrt{\frac{5}{3}}\right)$

Answer: A

Watch Video Solution

5. If (1,2,-2) are the D.R's of a line then Statement-I: The D.C's of the are

$$\left[\frac{-1}{3}, \frac{-2}{3}, \frac{2}{3}\right]$$

Statement-II: The D. C's of the line are $\left[\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right]$

Which of the above statement is correct:

A. Only I

B. Only II

- C. Both I and II

D. Neither I nor II

Answer: A

6. Assertion (A) : If a line make angles $45^{\circ}, 45^{\circ}$ with the x and y axis

repectively then it makes angle $60\,^\circ$ with z - axis

Reason (R) : If α,β,λ are the angle made by a line with the coordinate axes then $\cos^2\alpha+\cos^2\beta+\cos^2\lambda=1$

A. Both A and R are ture and R is the correct explanation of A

B. Both A and R are true but R is the correct explanation of A $\,$

C. A is true but R is false

D. A is false but R is true

Answer: D

Watch Video Solution

7. If a line makes angles $\cos^{-1}(1/5), \cos^{-1}(3/5)$ with X and Y- axes

respectively, then the angle made by the line with Z-axis is

B.
$$\cos^{-1}(2/5)$$

C. $\cos^{-1}\sqrt{3/5}$

A. $\cos^{-1}(1/5)$

D. $\cos^{-1}(4/5)$

Answer: C

Watch Video Solution

8. The angle between the two lines whose direction cosines are

$$\left(\frac{\sqrt{3}}{4}, \frac{1}{4}, \frac{\sqrt{3}}{2}\right)$$
 and $\left(\frac{\sqrt{3}}{4}, \frac{1}{4}, -\frac{\sqrt{3}}{2}\right)$

Α. π

B. $\frac{\pi}{2}$

C.
$$\frac{\pi}{3}$$

D. $\frac{\pi}{4}$

Answer: D

9. The angle between the line passing through the points (3,1,-2) and (4,0,-4) and the line passing through the points (4,-3,3) and (6,-2,2) is

A.
$$\cos^{-1}\left(\frac{2}{63}\right)$$

$$\mathsf{B.}\cos^1\!\left(\frac{20}{63}\right)$$

C.
$$\frac{\pi}{3}$$

D.
$$\frac{\pi}{5}$$

Answer: D

Watch Video Solution

10. If the d.r's of two lines are (x,3,5) and (2,-1,2) and if the anlgle between those lines is $45\,^\circ$, then x =

A. 4

D. 1

Answer:

B. 5

C. 2

Watch Video Solution

11. The d.r.s of two perpendicular lines are 1,-3,5 and $\lambda, 1+\lambda, 2+\lambda$ then

A. -7/3

 λ is

B.7/2

 $\mathsf{C.}-1/4$

D.1/2

Answer: A

12. If the line joining the points (-1,2,3) (2,-1,4) is perpendicular to the line joining (x,-2,4) and (1,2,3) then x =

- A. 3
- B. 10
- c. $\frac{-3}{10}$
- D. $\frac{-10}{3}$

Answer: D

Watch Video Solution

13. If (1,-2,-2) and (0,2,1) are direction ratios of two lines, then direction cosines of a line perpendicular to both the lines are

A.
$$\left(\frac{1}{3}, -\frac{1}{3}, \frac{2}{3}\right)$$

B.
$$c\left(\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}\right)$$

C.
$$\left(-\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$$
D. $\left(\frac{2}{\sqrt{14}}, -\frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$

Answer: B

Watch Video Solution

14. If the line joining the points (1,4,2) and (-2,1,2) is inclined at an angle of

$$\frac{\pi}{3}$$
 to the line joining the points (1,2,3), $(2,\lambda,1)$ then λ =

A.
$$\pm\sqrt{7}$$

$$\mathsf{B.}\pm\sqrt{9}$$

$$\mathsf{C}.\pm\sqrt{5}$$

D.
$$\pm\sqrt{3}$$

Answer: A

the plane \overline{OAB} are

A.
$$\left(\frac{4}{\sqrt{29}}, \frac{3}{\sqrt{29}}, -\frac{2}{\sqrt{29}}\right)$$
B. $\left(\frac{11}{\sqrt{171}}, \frac{7}{\sqrt{171}}, \frac{1}{\sqrt{171}}\right)$
C. $\left(\frac{3}{\sqrt{29}}, -\frac{2}{\sqrt{29}}, -\frac{4}{\sqrt{29}}\right)$

D. $\left(\frac{3}{\sqrt{29}}, -\frac{2}{\sqrt{29}}, -\frac{4}{\sqrt{29}}\right)$

Answer: B

Watch Video Solution

16. If
$$(l_1,m_1,n_1),\,(l_2,m_2,n_2)$$
 are d.c's of two lines then find the value of

15. If the d.r's of \overline{OA} , \overline{OB} are (1,-2,3),(-3,4,5) then the d.c's of the normal to

(
$$l_1m_2-l_2m_1$$
) $^2+(m_1n_2-n_1m_2)^2+(n_1l_2-n_2l_1)^2+(l_1l_2+m_1m_2+n_1m_2)^2$

Answer: C

Watch Video Solution

- 17. If the d.c's of the two lines are $\frac{2}{3}$, $\frac{2}{3}$, $\frac{1}{3}$, $\frac{5}{13}$, $\frac{12}{13}$, 0 then the d.r.s of the line bisecting the angle between the lines are
 - A. 40, 60, 13
 - B. 41, 60, 10
 - C. 41, 62, 13
 - D. 41, 60, 13

Answer: C

18. If (6,-2,-3),(1,2,2) are d.r's of two lines then the d.c's of line bisecting the angle between them are

A.
$$\left(\frac{25}{\sqrt{714}}, \frac{8}{\sqrt{714}}, \frac{5}{\sqrt{714}}\right)$$
B. $\left(\frac{13}{\sqrt{714}}, \frac{4}{\sqrt{714}}, \frac{5}{\sqrt{714}}\right)$
C. $\left(\frac{-25}{\sqrt{714}}, \frac{8}{\sqrt{714}}, \frac{-5}{\sqrt{714}}\right)$
D. $\left(\frac{25}{\sqrt{714}}, \frac{8}{\sqrt{714}}, \frac{5}{\sqrt{714}}\right)$

Answer:

19. If $(l_1,m_1,n_1),(l_2,m_2,n_2)$ are direction cosines of two lines which inculude an angle 120° , then the direction cosines of the line which bisects the angle between them is

A.
$$(l_1+l_2), (m_1+m_2), (n_1+n_2)$$

B.
$$\left(rac{l_1-l_2}{\sqrt{3}},rac{m_1-m_2}{\sqrt{3}},rac{n_1-n_2}{\sqrt{3}}
ight)$$

C.
$$\left(rac{l_1-l_2}{2},rac{m_1-m_2}{2},rac{n_1-n_2}{2}
ight)$$
D. $\left(rac{l_1-l_2}{\sqrt{2}},rac{m_1-m_2}{\sqrt{2}},rac{n_1-n_2}{\sqrt{2}}
ight)$

Answer: B

Watch Video Solution

- 20. If the d.c's (l,m,n) of two lines are related as l + m + n = 0, 2lm mn + n = 0
- 2nl = 0, then the angle between the lines is
 - $A.30^{\circ}$
 - B. 45°
 - $\mathsf{C}.\,90^\circ$
 - D. 120°

Answer: D

- 21. If the d.c's (l,m,n) of two lines are connected by the relations
- 3l+m+5n=0, 6mn 2nl + 5lm=0 then the angle between the lines is

A.
$$\cos^{-1}\left(\frac{1}{6}\right)$$
 or $\pi - \cos^{-1}\left(\frac{1}{6}\right)$

- B. 45°
- $\mathsf{C.}\,60^\circ\,\,\mathrm{or}\,\,120^\circ$
- D. $\cos^{-1}\frac{19}{\sqrt{364}}$

Answer: A

- 22. If the direction rations of two lines are given by 3lm-4ln+mn = 0 and l
- + 2m + 3n = 0 then the angle between the lines is
 - A. $\frac{\pi}{2}$
 - B. $\frac{\pi}{3}$
 - C. $\frac{\pi}{4}$

D.
$$\frac{\pi}{6}$$

Answer: A

Watch Video Solution

- 23. If the d.c's of two lines are such that I+3m+n =
- $3l^2+5m^2-4n^2=0$, then the angle between them is

A.
$$\pi/3$$

B.
$$\pi/2$$

C.
$$\pi/4$$

D.
$$\pi/6$$

Answer: B

24. If the d.c's (l,m,n) of two lines are connected by the relations

 $7l^2+5m^2-3n^2=0$, I - 5m + 3n = 0 then the d.c's of the two lines are

$$\begin{aligned} &\text{A.}\left(\frac{1}{\sqrt{6}},\,-\frac{1}{\sqrt{6}},\,\frac{1}{\sqrt{6}}\right), \left(\frac{1}{\sqrt{6}},\,-\frac{2}{\sqrt{6}},\,\frac{1}{\sqrt{6}}\right) \\ &\text{B.}\left(\frac{1}{\sqrt{14}},\,-\frac{2}{\sqrt{14}},\,\frac{3}{\sqrt{6}}\right), \left(\frac{1}{\sqrt{6}},\,\frac{1}{\sqrt{6}},\,-\frac{2}{\sqrt{6}}\right) \\ &\text{C.}\left(\frac{1}{\sqrt{14}},\,\frac{2}{\sqrt{14}},\,\frac{3}{\sqrt{14}}\right), \left(-\frac{1}{\sqrt{6}},\,\frac{1}{\sqrt{6}},\,\frac{2}{\sqrt{6}}\right) \\ &\text{D.}\left(\frac{1}{\sqrt{4}},\,\frac{2}{\sqrt{4}},\,\frac{3}{\sqrt{4}}\right), \left(\frac{-1}{\sqrt{3}},\,\frac{1}{\sqrt{8}},\,\frac{-2}{\sqrt{8}}\right) \end{aligned}$$

Answer: C

25. The angle between two lines whose d.c's satisfy the equation n = l + m

A.
$$0^{\circ}$$

and m = 2l + 3n is

B. 90°

C.	60°

D. 30°

Answer: A

Watch Video Solution

26. Assertion (A): The points A(2,3,5) B(4,6,10), C(8,12,20) are collinear.

Reason (R): Two lines will be parallel if their D.R's are proportional.

A. Both A and R are ture and R is the correct explanation of A

B. Both A and R are true but R is not the correct explanation of A

C. A is true but R is false

D. A is false But R is true

Answer: A

27. The projection of a vector on the three coordinate axes are 6,-3,2

respectively. The direction cosines of the vector are

B.
$$\frac{6}{5}$$
, $\frac{-3}{5}$, $\frac{2}{5}$

$${\rm C.}\,\frac{6}{7},\frac{-3}{7},\frac{2}{7}$$

D.
$$\frac{-6}{7}, \frac{-3}{7}, \frac{2}{7}$$

Answer: C

Watch Video Solution

28. The projection of the join of the points (3,4,2), (5,1,8) on the line whose $\begin{pmatrix} 2 & -3 & 6 \end{pmatrix}$

d.c's are
$$\left(\frac{2}{7}, \frac{-3}{7}, \frac{6}{7}\right)$$
 is

B.
$$\frac{46}{13}$$

c.
$$\frac{42}{13}$$

D.
$$\frac{38}{13}$$

Answer: A

Watch Video Solution

29. The projection of the join of the two points (1,4,5), (6,7,2) on the line whose d.r's are (4,5,6) is

A.
$$\frac{17}{\sqrt{77}}$$
 B.
$$\frac{7}{6}$$

C. 21

D. $\frac{7}{9}$

Answer: A

30. A $(x_1,y_1,z_1), B(x_2,y_2,z_2)$ are two points. Then the lenghts of projection on

List - I
A)
$$x - axis$$
 1) $|x_2 - x_1|$
B) $y - axis$ 2) $|y_2 - y_1|$
C) $z - axis$ 3) $|z_2 - z_1|$
4) $|x - x_1| + |y_2 - y_1| + |z_2 - z_1|$

A. $\frac{A}{1}$ $\frac{B}{2}$ $\frac{C}{3}$ B. $\frac{A}{3}$ $\frac{B}{5}$ $\frac{C}{9}$ C. $\frac{A}{5}$ $\frac{B}{9}$ $\frac{C}{6}$ D. $\frac{A}{4}$ $\frac{B}{2}$ $\frac{C}{3}$

Answer: A

31. If A(1,2,3), B(6,7,7), C(9,9,0) are three points, then the foot of the perpendicular drawn from the point A to the joining the points B and C is

- A. (3,5,7)
- B. (3,5,9)
- C. (5,9,6)
- D. (4,2,3)

Answer: B

Watch Video Solution

32. Assertion (A): $A(x_1,y_1,z_1),\,B(x_2,y_2,z_2).$ The projection of AB on the

line with D.C's (l,m,n) is $l(x_2-x_1)+m(y_2-y_1)+n(z_2-z_1)$

Reason (R) : The projection of the join of A $(x_1,y_1,z_1),\,B(x_2,y_2,z_2)$ on

yz plane is $\sqrt{\left(y_2-y_1
ight)^2+\left(z_2-z_1
ight)^2}$

A. Both A and R are ture and R is the correct explanation of A

B. Both A and R are true but R is not the correct explanation of A

C. A is true but R is flase

D. A is flase but R is true

Answer: B

Watch Video Solution

33. A line makes the same angle θ , with each of the x and z axis. If the angle eta, which it makes with y - axis, is such that $\sin^2 eta{'} = 3 \sin^2 heta$ then $\cos^2 \theta$ =

- A. 2/3
- B. 1/5
- C.3/5
- D.2/5

Answer: C

34. If a makes an angle of $\pi/4$ with the positive direction of each of x-axis and y - axis, then the angle that the line makes with the positive direction of the z-axis is

A.
$$\pi/2$$

B.
$$\pi/6$$

C.
$$\pi/3$$

D.
$$\pi/4$$

Answer: A

Watch Video Solution

35. A tetrahedron has vertices at O(0,0,0), A(1,2,1), B(2,1,3) and C(-1,1,2). Then the angle between the faces OAB and ABC will be

A.
$$\pi/2$$

$$\mathsf{B.}\cos^{-1}\!\left(\frac{19}{35}\right)$$

$$\mathsf{C.}\cos^{-1}\!\left(\frac{17}{31}\right)$$

D. $\pi/6$

Answer: C

Watch Video Solution

$$l + m + n = 0 \,\, {
m and} \,\, l^2 = m^2 + n^2 \, {
m is}$$

36. Tha angle between the lines whose d.c's satisfy the equation

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{2}$$

C.
$$\frac{\pi}{3}$$

D.
$$\frac{\pi}{4}$$

Answer: C

