© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

AIMED AT STUDENTS PREPARING FOR
 IIT JEE EXAMINATION

LOCUS

Solved Examples

1. Find the locus of the point which is at a constant distance of 5 units from (4,-3).

- Watch Video Solution

2. The equation of the locus of the point whose distance from x - axis is twice its distance from the y-axis, is

- Watch Video Solution

3. The locus of the point, for which the sum of the sqaures of distances from the coordinate axes is 25 is
4. If the distances from P to the points
$(3,4),(-3,4)$ are in the ratio $3: 2$, then the locus of P is

(D) Watch Video Solution

5. $A(2,3), B(1,5), C(-1,2)$ are the three points . If P is a point such that $P A^{2}+P B^{2}=2 P C^{2}$, then find locus of P.
6. The ends of the hypertenuse of right angled triangle are $(0,6),(6,0)$. The locus of the third vertex is

D Watch Video Solution

7. $A(1,1), B(-2,3)$ are two points. If a point P forms a triangle of are 2 square units with A, B then find the locus of P.
8. $A(5,3), B(3,-2), C(2,-1)$ are the three points . If P is a point such that the area of the quadrilateral PABC is 10 square units, then find the locus of P .

- Watch Video Solution

9. $A(a, 0), B(-a, 0)$ are two point . If a point P moves such that $\angle P A B-\angle P B A=2 \alpha$ then find the locus of P.
10. An iron rod of length $2 l$ is sliding on two mutually perpendicular lines. Find the locus of the midpoint of the rod.

D Watch Video Solution

11. A straight rod of length 9 unit, slides with its ends A, B always on the x and y axes repectively.

Then the locus of the centroid of $\Delta O A B$ is

D Watch Video Solution

12. Find the number of points in the locus represented by the equation $x^{2}+y^{2}=0$

- Watch Video Solution

13. Find the locus of the point which is at a constant distance of 5 units from (4,-3).

- Watch Video Solution

14. Find the equation of locus of the point for which the sum of squares of distances from the
coordinate axes is 25

D Watch Video Solution

15. If the distance from P to the points $(3,4)$ and $(-3,4)$ are in the ratio $3: 2$, find the locus of P.

D Watch Video Solution

16. $A(2,3), B(1,5), C(-1,2)$ are the three points. If P is a point moves such that $P A^{2}+P B^{2}=2 P C^{2}$, then the locus of P is
17. The ends of the hypertenuse of right angled triangle are $(0,6),(6,0)$. The locus of the third vertex is
(D) Watch Video Solution
18. $A(1,1), B(-2,3)$ are two points. If a point

P forms a triangle of area 2 square units with
A, B then find the locus of P.
19. $A(5,3), B(3,-2), C(2,-1)$ are three points. If P is a point such that the area of the quadrilateral PABC is 10 sq. unit, then the locus of P is

- Watch Video Solution

20. An iron rod of length 21 is sliding on two mutually perpendicular lines. Find the locus of the midpoint of the rod.
21. A straight rod of length 9 unit, slides with its ends A, B always on the x and y axes repectively.

Then the locus of the centroid of $\Delta O A B$ is

D Watch Video Solution

Advanced Analytical Solved Examples

1. The line joining $(5,0)$ to $(10 \cos \theta, 10 \sin \theta)$ is divided internally in the ratio $2: 3$ at P . the locus

(Watch Video Solution

2. Equation of the locus of the centroid of the triangle whose vertices are
$(a \cos k, a \sin k),(b \sin k,-b \cos k)$ and $(1,0)$, where k is a perameter, is

Watch Video Solution

3. Find the equation of locus of point equidistant from the points $\left(a_{1} b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$.

D Watch Video Solution

4. The ends of a rod of length l move on two mutually perpendicular lines. The locus of the point on the rod which divides it in the ratio 1 : 2 is
5. $p, x_{1}, x_{2}, \ldots x_{n}$ and $q, y_{1}, y_{2}, \ldots, y_{n}$ are two arithmetic progressions with common differences a and b respectively. If α and β are the arithmetic means of
$x_{1}, x_{2}, \ldots X_{n}$, and $y_{1}, y_{2}, \ldots Y_{n}$ respectivley . then the locus of $p(\alpha, \beta)$ is

D Watch Video Solution

6. $A(a, 0), B(-a, 0)$ are two points. If a point P
moves such that $\angle P A B-\angle P B A=\pi / 2$ then find the locus of P.

(D) Watch Video Solution

7. $A(a, O), B(-a, 0)$ are two point . If a point P moves such that $\angle P A B-\angle P B A=2 \alpha$ then find the locus of P.

- Watch Video Solution

8. The locus of the represented by
$x=t^{2}+t+1, y=t^{2}-t+1$ is
9. The locus of the point which is at a distance 5 unit from $(-2,3)$ is

D Watch Video Solution

2. Find the equation to the locus of the point for which the square of whose distance from origin is 4 times its y-coordinate.
3. Find the equation to the locus of points equidistant from the points
(i) $(-3,2),(0,4)$
(ii) (a+b,a-b),(a-b,a+b)

D Watch Video Solution

4. Find the equation to the locus of points equidistant from the points
$(a+b, a-b),(a-b, a+b)$
5. The locus of the point which is equidistant to the coordinate axes is `

D Watch Video Solution

6. The locus of the point whose distances to the coordinates axes arc in the ratio $2: 3$ is

7. Find the equation of locus of the point which

 is at a distance 5 unit from the Y -axis.
D Watch Video Solution

8. Find the equation to the locus of a point P whose distance to $(2,0)$ is equal to its distance from y-axis.
(D) Watch Video Solution
9. The locus of P for which the distance from P to origin is double the distance from P to $(1,2)$
is

- Watch Video Solution

10. Find the locus of P if the distance of P from
$(3,0)$ is twice the distance of P from $(-3,0)$

D Watch Video Solution

Exercise 21 Short Answer Questions

1. If the distance from ' P ' to the points $(2,3)$ and
$(2,-3)$ are in the ratio $2: 3$, then find the equation of the locus of P.

D Watch Video Solution
2. If the distance from P to the points
$(5,-4)(7,6)$ are in the ratio $2: 3$, then find the
locus of P .

D Watch Video Solution
3. Find the locus of the point P such that
$P A^{2}+P B^{2}=2 c^{2} \quad:$ where" $\mathrm{A}(\mathrm{a}, 0), \mathrm{B}(-\mathrm{a}, 0) \quad$ and
$0<|a|<|c|$.

D Watch Video Solution

4. $A(1,2), B(2,-3), C(-2,3)$ are 3 points.

A point P moves such that
$P A^{2}+P B^{2}=2 P C^{2}$. Show that the equation to the locus of P is $7 x-7 y+4=0$.
5. Find the locus of a point P If the join of the points $(2,3)$ and $(-1,5)$ subtends a right angle at P.

- Watch Video Solution

6. Find the the locus of the third vertex of a right angled triangle, the ends of whose hypotenuse are $(4,0)$ and $(0,4)$.
7. $A(2,3) B(-3,4)$ are two points P moves such that the area of $\triangle P A B$ is 8.5 square units, then find the locus of P

D Watch Video Solution

8. $A(5,3) B(3,-2)$ are two points . If a point P forms a triangle of area 9 square units with A, B then find the locus of P.
9. $O(0,0) A(6,0)$ and $B(0,4)$ are three points .If P is
a point such that the area of $\triangle P O B$ is twice the area of $\triangle P O A$, then find the locus of P .

D Watch Video Solution

10. Find the equation of locus of the points
which is collinear with the points $(3,4)$ and $(-4,3)$.
11. Find the equation of locus of a point, the sum of whose distances from $(0,2)$ and $(0,-2)$ is 6 .

D Watch Video Solution
12. Find the equation of the locus of P, if $A=(2,3)$, $B=(2,-3)$ and $P A+P B=8$.
(Watch Video Solution
13. Find the equation locus of a point, the difference of whose distances from ($-5,0$) and $(5,0)$ is 8

D View Text Solution

14. Find the equation of locus of P if

$$
A=(4,0), B(-4,0) \text { and }|P A-P B|=4
$$

D Watch Video Solution

1. The position of moving point in $x y$ plane at time ' t ' is given by $\left(u \cos \alpha t, u \sin \alpha\left(t-p t^{2}\right)\right)$ where u, α, p are constants. Find the equation of locus of the moving point.

D Watch Video Solution

2. $A B C$ is a variable triangle with a fixed centriod
$(5,5)$ the side $B C=13$ and B, C move on x and y axis respectively. Find the equation of locus of vertex 'A'.
3. A line $A B$ of length ' $2 l$ ' moves with the end ' A ' always on x - axis and the end ' B ' on the line $\mathrm{y}=$ $6 x$ find the equation of locus of middle point of AB

D Watch Video Solution

4. A and B are two fixed points and if the vertex
'C' of $\triangle A B C$ moves such that
$\cot A+\cot B=k$, then show that locus of ' C ' is a line parallel to $A B$.

- Watch Video Solution

5. $\triangle A B C$ is equilateral . P moves inside the triangle such that P in nearer to side $B C$ than to the sides $A B$ and $A C$. If locus of P gives a region then find its area, given that the side of $\triangle A B C$ is 2 untis.
6. Let $A=(-2,0), B=(2,0)$ and the point P moves
such
that
$P=(a, a+1), a \in[-10,10]$ and $\overline{A B}$
subtends acute angle at P then find the number of possible positions of P.

D Watch Video Solution
7. Let $O(0,0)$ and $A(2,2)$ are given points . A point P moves such that it is nearer to O than A, then find the locus of P
8. Let $P(x, y)$ be a point which moves such that
[x] = [y] where [] is greatest integer function,
$0 \leq x \leq \frac{7}{2}, 0 \leq y \leq \frac{7}{2}$. If the locus of P
constitutes a region, then find its area.

D Watch Video Solution

9. Let $P(x, y)$ moves such that the sum of its
distances to the co-ordinate axes is at most 2.

The set of all points P gives a region then find its area.

- Watch Video Solution

10. Find the number of points, having both coordinates as integers, that lie in the interior of the triangle with vertices $(0,0),(0,41),(41,0)$

- Watch Video Solution

Additional Solved Examples

1. Find the Cartesian equation of the locus

whose parametric equations are
$x=a \cos \theta, y=a \sin \theta \quad$ where $\quad \theta \quad$ is the parameter.

View Text Solution

2. Find the locus of the point
$(a-b \sec \theta, a-b \tan \theta) \quad$ where θ is the parameter.
3. Find the locus of the piont $\left(a \cos ^{3} \theta, b \sin ^{3} \theta\right)$
where θ is the parameter.

D Watch Video Solution

4. Find the locus of the point
$(\operatorname{cosec} \theta-\sin \theta, \sec \theta-\cos \theta), \theta \quad$ is \quad a parameter

Watch Video Solution

5. Find the locus of point

$(\tan \theta+\sin \theta, \tan \theta-\sin \theta)$ where θ is a parameter.

D Watch Video Solution

Exercise 2 Very Short Answer Qustions

1. The locus of the point which is at a distance 5
unit from $(-2,3)$ is
2. Find the equation to the locus of the point for which the square of whose distance from origin is 4 times its y -coordinate.

- Watch Video Solution

3. Find the equation to the locus of points equidistant from the points
(i) $(-3,2),(0,4)$
(ii) $(a+b, a-b),(a-b, a+b)$
4. Find the locus of the point which is equidistant from the coordinate axes.

D Watch Video Solution

5. Find the equation of locus of the point whose
distance from the coordinate axes are in the ratio 2:3
(D) Watch Video Solution
6. Find the equation of locus of the point which
is at distance 5 units from the Y -axis.

D Watch Video Solution

7. Find the equation to the locus of a point P whose distance to $(2,0)$ is equal to its distance from y-axis.
(D) Watch Video Solution
8. Find the locus of P for which the distance
from P to origin is double the distance from P to the point (1,2).

D Watch Video Solution
9. Find the locus of P If the distance of P from
$(3,0)$ is twice the distance of P from $(-3,0)$

- Watch Video Solution

1. If the distance from P to the points
$(2,3),(2,-3)$ are in the ratio $2: 3$ the find the
locus of P .

D Watch Video Solution
2. Find the locus of $P(x, y)$ which moves such that its distances from $A(5,-4), B(7,6)$ are in the ratio 2:3.
3. Find the locus of the point P such that
$P A^{2}+P B^{2}=2 c^{2} \quad:$ where" $\mathrm{A}(\mathrm{a}, 0), \mathrm{B}(-\mathrm{a}, 0) \quad$ and
$0<|a|<|c|$.

D Watch Video Solution

4. $A(1,2), B(2,-3), C(-2,3)$ are three points. A point P moves such that
$P A^{2}+P B^{2}=2 P C^{2}$. Show that the locus of P is $7 x-7 y+4=0$
5. Find the locus of a point P if the join of the points $(2,3)$ and $(-1,5)$ subtends a right angle at P.

- Watch Video Solution

6. Find the the locus of the third vertex of a right angled triangle, the ends of whose hypotenuse are $(4,0)$ and $(0,4)$.
7. $A(2,3) B(-3,4)$ are two points P moves such that the area of $\triangle P A B$ is 8.5 square units, then find the locus of P

D Watch Video Solution

8. $A(5,3) B(3,-2)$ are two points . If a point P forms a triangle of area 9 square units with A, B then find the locus of P.
9. $O(0,0) A(6,0)$ and $B(0,4)$ are three points .If P is
a point such that the area of $\triangle P O B$ is twice the area of $\triangle P O A$, then find the locus of P .

D Watch Video Solution

10. The locus of a point which is collinear with
the points $(3,4)$ and $(-4,3)$ is
11. Find the equation of locus of a point such that the sum of whose distances from $(0,2)$ and $(0,-2)$ is 6 .

D Watch Video Solution
12. Find the locus of P, if

$$
A=(2,3), B=(2,-3) \text { and } P A+P B=8
$$

13. Find the equation of locus of a point such that the difference of whose distances from $(-5,0)$ and $(5,0)$ is 8

(D) Watch Video Solution

14. Find the equation of locus of P, if
$A=(4,0), B=(-4,0)$
and
$|P A-P B|=4$

D Watch Video Solution

Additional Exercise

1. Find the locus of the point (x, y) where
$x=a+b \cos \theta, y=b+a \sin \theta$

- Watch Video Solution

2. Find the locus of the point (x, y) where
$x=a+b \sec \theta, y=b+a \tan \theta$
3. The locus of the point
$(a \sec \theta+b \tan \theta, b \sec \theta+a \tan \theta)$
where
$0 \leq \theta<2 \pi$ is

D Watch Video Solution
4. Find the locus of the point $\left(a \cos ^{4} \theta, a \sin ^{4} \theta\right)$
where θ is a parameter.
(D) Watch Video Solution
5. Find the locus of point $\left(a t^{2}, 2 a t\right)$ where t is a parameter.

D Watch Video Solution

6. Find the locus of point $\left(c t, \frac{c}{t}\right)$ where t is a parameter.
7. Find the locus of point $\left(a+b t, b-\frac{a}{t}\right)$ where t is a parameter.

- Watch Video Solution

8. Find the locus of point $\left(t+\frac{1}{t}, t-\frac{1}{t}\right)$ where t is a parameter.

- Watch Video Solution

Exercise I

1. The equation of the locus of the point whose distance from x-axis is twice its distance from the y-axis is

$$
\begin{aligned}
& \text { A. } y^{2}=4 x^{2} \\
& \text { B. } 4 y^{2}=x^{2} \\
& \text { C. } \mathrm{y}=3 \mathrm{x} \\
& \text { D. } 4 \mathrm{x}+\mathrm{y}=0
\end{aligned}
$$

Answer: 1
2. The locus of a point whose distance from the y-axis is half of its distance from origin is

$$
\begin{aligned}
& \text { A. } 2 x^{2}=y^{2} \\
& \text { B. } x^{2}=3 y^{2} \\
& \text { C. } 3 x^{2}=y^{2} \\
& \text { D. } x^{2}=2 y^{2}
\end{aligned}
$$

Answer: 3

- Watch Video Solution

3. The locus of the point for which the sum of the squares of distances from the corrdinate axes is 25 is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}=19 \\
& \text { B. } x^{2}+y^{2}=25 \\
& \text { C. } x^{2}+y^{2}=32 \\
& \text { D. } x^{2}+y^{2}=29
\end{aligned}
$$

Answer: 2
4. If the equation to the locus of points equidistant from the points $(-2,3),(6,-5)$
is $a x+b y+c=0$ where $a>0$ then, the ascending order of a, b, c is
A. a,b,c
B. c, b, a
C. b, c, a
D. a, c, b

Answer: 2
5. $A(2,1)$ and $B(1,2)$ are two points. If P is a point such that $P A: P B=2: 1$, then the locus of P is

$$
\begin{aligned}
& \text { A. } 3 x^{2}+3 y^{2}+4 x+14 y-15=0 \\
& \text { B. } 3 x^{2}+3 y^{2}-4 x-14 y+15=0 \\
& \text { C. } 3 x^{2}+3 y^{2}+2 x+7 y+13=0 \\
& \text { D. } 3 x^{2}+3 y^{2}-2 x-7 y+13=0
\end{aligned}
$$

Answer: 2
6. Let $A(1,0), B(-1,0), C(2,0)$ then the
locus of a point P such that
$P B^{2}+P C^{2}=2 P A^{2}$ is
A. a straight line parallel to x - axis
B. a straight line parallel to y-axis
C. parallel to $x+y=2$
D. $x y=0$

Answer: 2
7. If $A(a, 0), B(-a, 0)$ then the locus of the point P such that $P A^{2}+P B^{2}=2 c^{2}$ is
A. $x^{2}+y^{2}+a^{2}-c^{2}=0$
B. $x^{2}+y^{2}+a^{2}+c^{2}=0$
C. $2 x^{2}+y^{2}+3 a^{2}-c^{2}=0$
D. $x^{2}-y^{2}-a^{2}-c^{2}=0$

Answer: 1
8. The equation to the locus of P such that the
join of (a, b) and (b, a) subtend a right angle at P , is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-a x-b y+a b=0 \\
& \text { B. } x^{2}+y^{2}-a x-b y+2 a b=0 \\
& \text { C. } x^{2}+y^{2}-(a+b)(x+y)+a b=0 \\
& \text { D. } x^{2}+y^{2}-(a+b)(x+y)+2 a b=0
\end{aligned}
$$

Answer: 4
9. A line passes through a fixed point $A(a, b)$.

The locus of the foot of the perpendicular on it from origin is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}+a x+b y=0 \\
& \text { B. } x^{2}+y^{2}-a x-b y=0 \\
& \text { C. } x^{2}+y^{2}-a x+b y=0 \\
& \text { D. } x^{2}+y^{2}+a x-b y=0
\end{aligned}
$$

Answer: 2
10. The locus of a point which is collinear with the points $(3,4)$ and $(-4,3)$ is

$$
\begin{aligned}
& \text { A. } 2 x+3 y-12=0 \\
& \text { B. } 2 x+3 y+12=0 \\
& \text { C. } 3 x+2 y+12=0 \\
& \text { D. } x-7 y+25=0
\end{aligned}
$$

Answer: 4
(Watch Video Solution
11. If $A=(6,0), B=(0,4)$ and O is the origin, then the locus of P such that the area of $\triangle P O B=2$ (area of $\triangle P O A$) is
A. $x^{2}-3 y^{2}=0$
B. $x^{2}+3 y^{2}=0$
C. $x^{2}-9 y^{2}=0$
D. $x^{2}-4 y^{2}=0$

Answer: 3
12. The locus of P such that the area of $\triangle P A B$
is 12 sq. units where $A(2,2)$ and $B(-4,5)$ is

$$
\begin{aligned}
& \text { A. } x^{2}+6 x y+9 y^{2}-22 x-66 y-23=0 \\
& \text { B. } x^{2}-6 x y+9 y^{2}+22 x+66 y+23=0 \\
& \text { C. } x^{2}+5 x y+9 y^{2}+20 x+62 y+22=0 \\
& \text { D. } x^{2}+4 y^{2}+4 x y-12 x-24 y-28=0
\end{aligned}
$$

Answer: 4

D Watch Video Solution

13. The base of a triangle lies along the line $x=a$ and is of length a. The area of the triangle is $a^{\wedge} 2$. The locus of the third vertex is

$$
\begin{aligned}
& \text { A. }(x+a)(x-3 a)=0 \\
& \text { B. }(x-a)(x+3 a)=0 \\
& \text { C. }(x-a)(x-3 a)=0 \\
& \text { D. }(x-a)(x-2 a)=0
\end{aligned}
$$

Answer: 1
14. $A(5,3), B(3,-2), C(2,-1)$ are three points. If P is a point such that the area of the quadrilateral PABC is 10 sq. unit, then the locus of P is
A.

$$
16 x^{2}-24 x y+9 y^{2}-144 x+108 y-76=0
$$

B.

$$
16 x^{2}+24 x y+9 y^{2}+144 x+108 y+76=0
$$

C.
$16 x^{2}+24 x y+9 y^{2}-144 x+108 y-76=0$
D.

$$
16 x^{2}+24 x y+9 y^{2}+144 x+108 y-76=0
$$

Answer: 1

D Watch Video Solution

15. A line segment of length 21 sliding with ends on the axes, then the locus of the middle point of the line segment is

$$
\text { A. } x^{2}+y^{2}=4 l^{2}
$$

$$
\begin{aligned}
& \text { B. } x^{2}+y^{2}=l^{2} \\
& \text { C. } x^{2}-y^{2}=4 l^{2} \\
& \text { D. } x^{2}-y^{2}=l^{2}
\end{aligned}
$$

Answer: 2

- Watch Video Solution

16. A straight rod of length 31 unit slides with its ends A, B always on the x and y axes respectively. Then the locus of the centroid of $\triangle \mathrm{OAB}$ is

$$
\text { A. } x^{2}+y^{2}=3 l^{2}
$$

$$
\text { B. } x^{2}+y^{2}=l^{2}
$$

$$
\text { C. } x^{2}+y^{2}=4 l^{2}
$$

D. $x^{2}+y^{2}=2 l^{2}$

Answer: 2

D Watch Video Solution

17. Through $\left(x_{0}, y_{0}\right)$ variable line is drawn cut
ting the axes at A, B. If OACB is a rectangle then

$$
\begin{aligned}
& \text { A. } \frac{x_{0}}{2 x}+\frac{y_{0}}{2 y}=1 \\
& \text { B. } \frac{x_{0}}{x}+\frac{y_{0}}{y}=1 \\
& \text { C. } \frac{x_{0}}{3 x}+\frac{y_{0}}{3 y}=1 \\
& \text { D. } \frac{2 x_{0}}{x}+\frac{2 y_{0}}{y}=1
\end{aligned}
$$

Answer: 2

D Watch Video Solution

18. If h denote the arithmetic mean, k denote
G.M. of the intercepts made on axes by the lines passing through $(1,1)$ then (h, k) lies on
A. $y^{2}=2 x$
B. $y^{2}=4 x$
C. $y=2 x$
D. $x+y=2 x y$

Answer: 1

D Watch Video Solution

19. If a, b, c are in A.P., a, x, b are in G.P. and b, y, c are in G.P. the point (x, y) lies on
A. $x^{2}+y^{2}=2 b^{2}$
B. $x^{2}-y^{2}=2 b^{2}$
C. $x^{2}-y^{2}=3 b^{2}$
D. $x^{2}+y^{2}=3 b^{2}$

Answer: 1

D Watch Video Solution

20. Let $A=(2,5)$ and $B=(4,-1)$ are two vertices of a $A A B C$. Third vertex C moves along
$L=9 x+7 y+4=0$. The locus of the centroid of triangle $A B C$ is the line
A. $9 x-7 y-22=0$
B. $9 x+7 y+22=0$
C. $27 x+21 y-77=0$
D. $27 x+21 y-78=0$

Answer: 4

D Watch Video Solution
21. A point moves in the $x y$ - plane such that th
sum of its, distances from two mutually perpendicular lines is always equal to 5 units.

The area (in square units) enclosed by the locus of the point is
A. $\frac{25}{4}$
B. 25
C. 50
D. 100

- Watch Video Solution

22. If $A(a, 0), B(-a, 0)$ and $\angle A P B=45^{\circ}$, then the locus of P is
A. $x^{2}+y^{2}+2 a x+a^{2}=0$
B. $x^{2}+y^{2}-2 a x-a^{2}=0$
C. $x^{2}+y^{2}+2 y x+a^{2}=0$
D. $x^{2}+y^{2}-2 a y-a^{2}=0$

Answer: 4
23. $A=(a, 0), B=(-a, 0), \mathrm{P}$ is a moving point such that $\angle P A B-\angle P B A=\frac{\pi}{2}$. The locus of P is

$$
\begin{aligned}
& \text { A. } x^{2}-y^{2}=a^{2} \\
& \text { B. } x^{2}+y^{2}=a^{2} \\
& \text { C. } x^{2}-2 y^{2}=a^{2} \\
& \text { D. } x^{2}-y^{2}=2 a^{2}
\end{aligned}
$$

Answer: 1
24. The locus of a point such that the sum of its distances from the points $(0,2)$ and $(0,-2)$ is 6 is

$$
\begin{aligned}
& \text { A. } 9 x^{2}-5 y^{2}=45 \\
& \text { B. } 5 x^{2}+9 y^{2}=45 \\
& \text { C. } 9 x^{2}+5 y^{2}=45 \\
& \text { D. } 5 x^{2}-9 y^{2}=45
\end{aligned}
$$

Answer: 3
25. A point P moves so that the sum of its distance from the points (ae, 0), (-ae, o) is 2 a .

The locus of the point P is $(0<e<1)$

$$
\begin{aligned}
& \text { A. } \frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}\left(1+e^{2}\right)}=1 \\
& \text { B. } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1+e^{2}\right)}=1 \\
& \text { C. } \frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1 \\
& \text { D. } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1
\end{aligned}
$$

Answer: 4
26. The perimeter of triangle is 14 units and two of its vertices are $(-3,0),(3,0)$ then the locus of the 3rd vertex is

$$
\begin{aligned}
& \text { A. } \frac{x^{2}}{16}+\frac{y^{2}}{7}=1 \\
& \text { B. } \frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \\
& \text { C. } \frac{x^{2}}{7}+\frac{y^{2}}{16}=1 \\
& \text { D. } \frac{x^{2}}{16}+\frac{y^{2}}{25}=1
\end{aligned}
$$

27. $A(2,3), B(-2,3)$ are two points. The locus of P which moves such that $P A-P B=4$ is

$$
\begin{aligned}
& \text { A. } y+3=0, x \in(-2,2) \\
& \text { B. } y-3=0, x \in R-(-2,2) \\
& \text { C. } y-5=0 \\
& \text { D. } y^{2}-3=0
\end{aligned}
$$

Answer: 2
28. The locus of the point represented by

$$
x=\cos ^{2} t, y=2 \sin t \text { is }
$$

$$
\begin{aligned}
& \text { A. } y^{2}=4 x \\
& \text { B. } y^{2}=4 x+1 \\
& \text { C. } y^{2}+4 x=1 \\
& \text { D. } y^{2}+4 x=4
\end{aligned}
$$

Answer: 4
29. The locus of the point
$(\sec \theta+\tan \theta, \sec \theta-\tan \theta) \quad$ where θ is parameter, is
A. $x^{2}+y^{2}=1$
B. $x^{2}-y^{2}=1$
C. $x y=1$
D. $x y+1=0$

Answer: 3
30. The locus of the point
$(a(\cos \theta+\sin \theta), b(\cos \theta-\sin \theta))$, where θ is
the parameter, is

$$
\begin{aligned}
& \text { A. } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \text { B. } \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
& \text { C. } \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=2 \\
& \text { D. } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2
\end{aligned}
$$

Answer: 4
31. If $(\mathrm{p}, \mathrm{q}),(a \cos \theta, b \sin \theta),(b \cos \theta, a \sin \theta)$ are the vertices of a triangle, where θ is a parameter then the locus of the centriod of the triangle

$$
\begin{aligned}
& \text { A. }(3 x-p)^{2}+(3 y-q)^{2}=(a+b)^{2} \\
& \text { B. } x^{2}+y^{2}=9(a+b)^{2} \\
& \text { C. }(3 x+p)^{2}+(3 y+q)^{2}=(a+b)^{2} \\
& \text { D. } x(x-a)+y(y+b)=0
\end{aligned}
$$

32. The locus of the centroid of the triangle with vertices
at
$(a \cos \theta, a \sin \theta),(b \sin \theta,-b \cos \theta)$ and $(1,0)$ is
(Here θ is a parameter)

$$
\begin{aligned}
& \text { A. }(3 x-1)^{2}+9 y^{2}=a^{2}+b^{2} \\
& \text { B. }(3 x+1)^{2}+9 y^{2}=a^{2}+b^{2} \\
& \text { C. }(3 x+1)+9 y^{2}=a^{2}+b^{2} \\
& \text { D. }(3 x-1)^{2}+9 y^{2}=a^{2}-b^{2}
\end{aligned}
$$

D Watch Video Solution

33. The locus of the point
$x=a+\lambda^{2}, y=b-\lambda$ where λ is a parameter is

$$
\begin{aligned}
& \text { A. }(x-a)^{2}=b-y \\
& \text { B. } x-a=(b-y)^{2} \\
& \text { С. } x+a=y^{2}
\end{aligned}
$$

D. $x-a=y^{2}$

Answer: 2

D Watch Video Solution

34. The locus represented by
$x=\frac{a}{2}\left(t+\frac{1}{t}\right), y=\frac{a}{2}\left(t-\frac{1}{t}\right)$ is
A. $x^{2}+y^{2}=a^{2}$
B. $x^{2}-y^{2}=a^{2}$
C. $2 x^{2}-y^{2}=a^{2}$
D. $x^{2}-2 y^{2}=a^{2}$

Answer: 2

- Watch Video Solution

35. Statement-I
$A(0,0), B(\cos \alpha, \sin \alpha), C(\sin \alpha-\cos \alpha)$ are vertices of a trianlge then the locus of the centroid of triangle is $9 x^{2}+9 y^{2}=4$

Statement-II : The locus of the point $(a \cos \theta, b \sin \theta)$ is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ The correct statement is

A. only I

B. only II

C. both I and II
D. neither I nor II

Answer: 2

- Watch Video Solution

36. Let $P(x, y)$ be any point on the locus then observe the following lists
List - I
List - II
A) The sum of the squares 1$) x^{2}+y^{2}=25$
of distance from the coordinate axis is 25
B) distances to the

$$
\text { 2) } 4 x^{2}-9 y^{2}=0
$$

coordinate axes are
in the ratio $2: 3$
respectively
C) The square of whose 3) $x^{2}+y^{2}=4 y$
distance from origin is
4 times its y -coordinate
D) distance from P to
4) $x^{2}-3 y^{2}-8 x+16=0$ $(4,0)$ is double the
distance from P to the
x -axis
5) $9 x^{2}-4 y^{2}=0$

The correct matching is
$A \quad B \quad C \quad D$
A.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
B.
$\begin{array}{llll}1 & 5 & 3 & 4\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
C. $\begin{array}{llll}1 & 2 & 4 & 3\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 2 & 1 & 3 & 5\end{array}$

Answer: 1

D Watch Video Solution

37. Find the equation to the locus of points equidistant from the points
$(-3,2),(0,4)$
A. A true, R true and R is correct explanation
of A
B. A true, R true but R is not correct explanation of A
C. A true, R false

D. A false, R true

Answer: 1

D Watch Video Solution

38. The line joning (5,0) and $(10 \cos \theta, 10 \sin \theta)$
is divided internally in the ratio 2:3 at P . Then
locus of P is
A. a pair of straight lines

B. straight line

C. a circle
D. a parabola

Answer: 3

(Watch Video Solution

39. The locus given by
$16 x^{2}-24 x y+9 y^{2}-62 x+34 y+46=0$ is
A. pair of lines
B. circle
C. parabola
D. Hyperbola

Answer: 3

D Watch Video Solution

40. The locus given by $25 x^{2}+16 y^{2}=400$ is
A. hyperbola

B. ellipse

C. parabola

D. circle

Answer: 2

D Watch Video Solution

41. The locus given by $2 x^{2}-y^{2}=4 a^{2}$ is
A. pair of lines
B. circle

C. ellipse

D. Hyperbola

Answer: 4

D Watch Video Solution

42.

The
equation
$\sqrt{(x-2)^{2}+y^{2}}+\sqrt{(x+2)^{2}+y^{2}}=4$
represents
A. a pair of lines

B. a parbola

C. a line sement

D. a circle

Answer: 3

D Watch Video Solution

43. A and B are fixed points of $P A+P B=K$
constant) and $K>A B$ then the locus of P is
A. Hyperbola

B. an ellipse

C. Parabola

D. a circle

Answer: 2

D Watch Video Solution

44. Equation of the locus of the centroid of the triangle whose vertices are
$(a \cos k, a \sin k),(b \sin k,-b \cos k)$ and (1,0)
where k is a p arameter is

$$
\begin{aligned}
& \text { A. }(1-3 x)^{2}+9 y^{2}=a^{2}+b^{2} \\
& \text { B. }(3 x-1)^{2}+9 y^{2}=2 a^{2}+2 b^{2} \\
& \text { C. }(3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2} \\
& \text { D. }(3 x+1)^{2}+(3 y)^{2}=3 a^{2}+3 b^{2}
\end{aligned}
$$

Answer: 1

D Watch Video Solution

45. If $A(5,4)$ and $B(7,6)$ are points in a plane,
then the set of all points $P(x, y)$ in the plane such that $A P: P B=2: 3$ is
A. a circle

B. a hyperbola

C. an ellipse
D. a parabola

Answer: 1

D Watch Video Solution

Practice Exercise

1. The locus of the point which is equidistant to the coordinate axes is `

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}=0 \\
& \text { B. } x(2)-y^{2}=0 \\
& \text { C. } x+y=0 \\
& \text { D. } x-y=0
\end{aligned}
$$

Answer: 2
(Watch Video Solution
2. The locus of a point whose distance from y axis is one-third of its distance from origin is

$$
\begin{aligned}
& \text { A. } y^{2}=8 x^{2} \\
& \text { B. } 8 y^{2}=x^{2} \\
& \text { C. } x^{2}+y^{2}=9 \\
& \text { D. } x^{2}+2 y^{2}=9
\end{aligned}
$$

Answer: 1

- Watch Video Solution

3. The equation to the locus of points equidistant from the points $(-3,4),(3,4)$ is
A. $x=1$
B. $x=2$
C. $x=3$
D. $x=0$

Answer: 4

(D)
4. If the equation of the locus of a point equidistant from the points $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is $\left(a_{1}-a_{2}\right) x+\left(b_{1}-b_{2}\right) y+c=0 \quad$ then the value of c is

$$
\begin{aligned}
& \text { A. } \sqrt{a_{1}^{2}+b_{1}^{2}-a_{2}^{2}-b_{2}^{2}} \\
& \text { B. } \frac{1}{2}\left(a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}\right) \\
& \text { C. } a_{1}^{2}-a_{2}^{2}+b_{1}^{2}-b_{2}^{2} \\
& \text { D. } \frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}\right)
\end{aligned}
$$

Answer: 2
5. The equation to the locus of points equidistant from the points $(-2,3),(6,-5)$
is $a r+b y+c=0$ then increasing order of a,
b, c is
A. a, b, c
B. c, b, a
C. b, c, a
D. $\mathrm{a}, \mathrm{c}, \mathrm{b}$

- Watch Video Solution

6. $A(-9,0)$ and $B(-1,0)$ are two points. If
$P(x, y)$ is a point such that $3 P B=P A$, then
the locus of P is

$$
\begin{aligned}
& \text { A. } x^{2}-y^{2}=9 \\
& \text { B. } x^{2}-y^{2}+9=0 \\
& \text { C. } x^{2}+y^{2}=9 \\
& \text { D. } x^{2}+y^{2}=3
\end{aligned}
$$

(D) Watch Video Solution

7. $A(2,3), B(1,5), C(-1,2)$ are three points and $P A^{2}+P B^{2}=2 P C^{2}$ then locus of P is
A. $10 x+8 y-29=0$
B. $10 x+8 y+29=0$
C. $10 x-8 y+29=0$
D. $10 x-8 y-29=0$

Answer: 1
8. Let $P(2,0), Q(-2,0)$ and $R(4,0)$ then the locus of S such that $S Q^{2}+S R^{2}=2 S P^{2}$ is
A. a straight line parallel to x-axis
B. a straight line parallel to y-axis
C. $x+y=4$
D. $x y=0$

Answer: 2

9. The point P moves such that the sum of the

 squares of its distances from two fixed points $A(a, 0), B(-a, 0)$ is $8 a^{2}$ the locus of P is$$
\text { A. } x^{2}-y^{2}=a^{2}
$$

$$
\text { B. } x^{2}+y^{2}=a^{2}
$$

$$
\text { C. } x^{2}+y^{2}=3 a^{2}
$$

$$
\text { D. } x^{2}+y^{2}=6 a^{2}
$$

Answer: 3
10. $A(2,3), B(-1,1)$ are two points if P is a point such that $\angle A P B=90^{\circ}$ then the locus of P is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-x-4 y+1=0 \\
& \text { B. } x^{2}+y^{2}+x+4 y-1=0 \\
& \text { C. } x^{2}+y^{2}-x+4 y-1=0 \\
& \text { D. } x^{2}+y^{2}+x-4 y-1=0
\end{aligned}
$$

Answer: 1
11. A line passes through a fixed point $A(h, k)$. The locus of the foot of the perpendicular on it from origin is

$$
\begin{aligned}
& \text { A. 1) } x^{2}+y^{2}+h x+k y=0 \\
& \text { B. 2) } x^{2}+y^{2}-h x-k y=0 \\
& \text { C. 3) } x^{2}+y^{2}-k x-h y=0 \\
& \text { D. 4) } x^{2}+y^{2}+k x+h y=0
\end{aligned}
$$

Answer: 2
12. The locus of a point which is collinear with the points $A(3,4)$ and $B(4,3)$ is

A. 1$) x+y-7=0$

B. 2$) x+y+7=0$
C. 3) $x-y=7$
D. 4$) x-y+7=0$

Answer: 1
(Watch Video Solution
13. $O(0,0), A(4,0), B(0,6)$ are the points. If P is a point such that the area of $\triangle P O B$ is twice the area of $\triangle P O A$, then the locus of P is

$$
\begin{aligned}
& \text { A. 1) } 2 x^{2}=3 y^{2} \\
& \text { В. 2) } 3 x^{2}=4 y^{2} \\
& \text { C. 3) } 9 x^{2}=16 y^{2} \\
& \text { D. 4) } 4 x^{2}=9 y^{2}
\end{aligned}
$$

Answer: 3

14. $A(2,3), B(-3,4)$ are two points. If a point P moves such that the area of $\triangle P A B$ is 8.5 sq . units, then locus of P is

$$
\begin{aligned}
& \text { A. } x^{2}+10 x y+25 y^{2}-34 x-170 y=0 \\
& \text { B. } x^{2}+10 x y-25 y^{2}-34 x-170 y=0 \\
& \text { C. } x^{2}-10 x y+25 y^{2}-34 x+170 y=0 \\
& \text { D. } x^{2}-10 x y-25 y^{2}+34 x+170 y=0
\end{aligned}
$$

Answer: 1

15. $A(1,1), B(2,3), C(-1,1)$ are the points.

If P is a point such that the area of the quadrilateral PABC is 3 sq. units, then the locus of P is

$$
\begin{aligned}
& \text { A. } y^{2}+6 y=0 \\
& \text { B. } y^{2}-6 y=0 \\
& \text { C. } x^{2}+6 x=0 \\
& \text { D. } x^{2}-6 x=x
\end{aligned}
$$

Answer: 2
16. A line segment of length 10 sliding with ends
on the axes, then the locus of middle point of
the line segment is

$$
\text { A. } x^{2}-y^{2}=25
$$

B. $y^{2}-x^{2}=25$
C. $x^{2}+y^{2}=25$
D. $x^{2}+y^{2}=50$

Answer: 3
17. A straight rod of length 9 unit, slides with its ends A, B always on the x and y axes repectively.

Then the locus of the centroid of $\Delta O A B$ is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}=3 \\
& \text { B. } x^{2}+y^{2}=9 \\
& \text { C. } x^{2}+y^{2}=1 \\
& \text { D. } x^{2}+y^{2}=81
\end{aligned}
$$

Answer: 2
18. Sum of the distances of a point from two per pendicular lines is 3 . The area enclosed by the locus of the point is
A. 18
B. 16
C. 4
D. 15

Answer: 1
19. Let $A(1,2), B(3,4)$ are two vertices of a
$\triangle A B C$. The third vertex C moves along
$L=7 x+5 y-10=0$. The locus of the centroid of $\triangle A B C$ is
A. $21 x+15 y-68=0$
B. $7 x+5 y-4=0$
C. $7 x+5 y+68=0$
D. $7 x+5 y-17=0$

- Watch Video Solution

20. From a point P perpendiculars $P M$ and $P N$ are drawn upon x, y axes respectively. If MN passes through a fixed point (a, b) then the locus of P is

$$
\begin{aligned}
& \text { A. } \frac{x}{a}+\frac{y}{b}=1 \\
& \text { B. } \frac{x}{a}-\frac{y}{b}=1 \\
& \text { C. } \frac{a}{x}+\frac{b}{y}=1 \\
& \text { D. } \frac{a}{x}-\frac{b}{y}=1
\end{aligned}
$$

Answer: 3

D Watch Video Solution

21. Let $A(2,-3), B(-2,1)$ be vertices of a triangle $A B C$. If the centroid of this triangle moves on the line $2 x+3 y=1$, then locus of the vertex 'C' is the line
A. $3 x+2 y=5$
B. $2 x-3 y=7$
C. $2 x+3 y=4$

$$
\text { D. } 2 x+3 y-9=0
$$

Answer: 4

D Watch Video Solution

22. If $A(3,0)$ and $B(-3,0)$ are two points and
$P A+P B=10$, then the locus of P where P is any point (x, y) is

$$
\begin{aligned}
& \text { А. } \frac{x^{2}}{16}+\frac{y^{2}}{7}=1 \\
& \text { B. } \frac{x^{2}}{16}-\frac{y^{2}}{7}=1
\end{aligned}
$$

> C. $\frac{x^{2}}{7}+\frac{y^{2}}{16}=1$
> D. $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$

Answer: 4

D Watch Video Solution

23. $A(2,3), B(2,-3)$ are two points. The equation to the locus of P such that $P A+P B=8$ is

$$
\text { A. } 16 x^{2}+7 y^{2}-64 x-48=0
$$

B. $16 x^{2}+7 y^{2}-64 x+48=0$
C. $16 x^{2}-7 y^{2}+64 x-48=0$
D. $16 x^{2}-7 y^{2}+64 x+48=0$

Answer: 1

D Watch Video Solution

24. $A(2,0), B(-2,0)$ are two points. The locus of the point P which moves such that
$P A-P B=2$ is

$$
\text { A. } 3 x^{2}+y^{2}=3
$$

B. $3 x^{2}-y^{2}=3$
C. $x^{2}+3 y^{2}=3$
D. $x^{2}-3 y^{2}=3$

Answer: 2

D Watch Video Solution

25. $A=(0,5), B=(0,-5)$ are the points
and $|A P-P B|=8$ then the locus of P is
A. $16 x^{2}-9 y^{2}+144=0$
B. $16 x^{2}+9 y^{2}+144=0$
C. $x^{2}+9 y^{2}+144=0$
D. $16 x^{2}-9 y^{2}-144=0$

Answer: 1

D Watch Video Solution

26. If $A=(0,4), B=(0,-4) \quad$ and
$|A P-P B|=6$, then the locus of P is

$$
\text { A. } 7 x^{2}-9 y^{2}+63=0
$$

$$
\text { B. } 9 x^{2}-7 y^{2}+63=0
$$

$$
\text { C. } 7 x^{2}-9 y^{2}-63=0
$$

$$
\text { D. } 9 x^{2}-7 y^{2}-63=0
$$

Answer: 2

D Watch Video Solution

27. The locus of the point
$(\operatorname{cosec} \theta+\cot \theta, \operatorname{cosec} \theta-\cot \theta)$ is
A. $x^{2}+y^{2}=1$
B. $x^{2}-y^{2}=1$
C. $x y=1$
D. $x y+1=0$

Answer: 3

D View Text Solution

28. Locus of centroid of the triangle whose
$(a \cos \theta, a \sin \theta),(b \sin \theta,-b \cos \theta)$ and $(2,0)$
where θ is a parameter is

$$
\begin{aligned}
& \text { A. }(3 x-2)^{2}+y^{2}=a^{2}+b^{2} \\
& \text { B. }(3 x-2)^{2}+3 y^{2}=a^{2}+b^{2} \\
& \text { C. }(3 x-2)^{2}+9 y^{2}=a^{2}+b^{2} \\
& \text { D. }(3 x-2)^{2}+9 y^{2}=a^{2}-b^{2}
\end{aligned}
$$

Answer: 3

D Watch Video Solution
29. Statement-I : The locus of the point, whose distance from the X-axis is twice its distance from the y-axis is $y^{2}=4 x$

Statement-II : The locus of the point
$(\cot \theta+\cos \theta, \cot \theta-\cos \theta)$
$\left(x^{2}-y^{2}\right)^{2}=16 x y$ Then the correct statement is
A. only I
B. only II
C. both I and II
D. neither I nor II

Answer: 2

- View Text Solution

30. $A(2,3), B(1,5), C(-1,2)$ are three
points. If P is a point moves such that
$P A^{2}+P B^{2}=2 P C^{2}$ then locus of P is
$l x+m y+n=0$. Then decreasing order of
I,m,n
A. I, n, m
B. I, m, n

C. m, n, l

D. $\mathrm{n}, \mathrm{I}, \mathrm{m}$

Answer: 2

D Watch Video Solution

31. Vertices of the triangle ('t' being parameter) are given in list-I and locus of the respective centroids is given in list-II. Match the two lists.
A) $A(1,2), B(-2,-2), C(2 t, t)$
B) $A(2,3), B(-2,0), C(t, t)$
C) $A(t, 2 t), B(3,0), C(0,1)$
D) $A(-1,-1), B(-t,-t), C(4,0)$

LIST - II
i) $6 x-3 y-5=0$
ii) $6 x-3 y-7=0$
iii) $3 x-3 y-4=0$
iv) $3 x-6 y+1=0$
v) $x-y+1=0$

The correct matching is

$\begin{array}{llll}A & B & C & D\end{array}$
A.
v iii $i i \quad i$
$A \quad B \quad C \quad D$
B.
$i \quad i i \quad v \quad i v$
$A \quad B \quad C \quad D$
C.
$i v \quad v \quad i \quad i i i$
$\begin{array}{llll}A & B & C & D\end{array}$
D.
$i \quad i i \quad i i i \quad i v$

Answer: 3
32. Assertion (A): The sum of the distances of a point from two perpendicular lines is 1 , then its
locus is a square
Reason (R): The locus of a point which is at a distance ' p ' from the given point is a circle
A. A true, R true and R is correct explanation of A
B. A true, R true but R is not a correct explanation of A
C. A true, R false

D. A false, R true

Answer: 2

D Watch Video Solution

33. The equation $x^{2}+y^{2}-2 x-4 y-5=0$ represents a
A. circle
B. pair of straight lines
C. ellipse

D. a point

Answer: 1

- Watch Video Solution

34. The locus represented by the equation
$x^{2}+y^{2}+4 x+2 y-8=0$ is
A. hyperbola
B. circle
C. ellipse

D. parabola

Answer: 4

D Watch Video Solution

$$
\begin{aligned}
& \text { 35. The locus } \\
& x^{2}-y^{2}+x+y-1=0 \text { is }
\end{aligned}
$$

A. circle
B. hyperbola
C. ellipse

D. pair of lines

Answer: 2

- Watch Video Solution

36. The locus of the point $(a \cosh x, b \sin h x)$ is
A. Circle
B. Ellipse
C. Hyperbola
D. Parabola

D Watch Video Solution

37. A and B are fixed points of $|P A-P B|=K$
(constant) and $K<A B$ then the locus of P is
A. Hyperbola
B. an ellipse
C. straight line
D. a circle

Answer: 1

D Watch Video Solution

