

MATHS

NCERT - FULL MARKS MATHEMATICS(TAMIL)

APPENDIX 1 INFINITE SERIES

Example

1. Expand
$$\left(1-rac{x}{2}
ight)^{-rac{1}{2}}$$
, when $|x|<2$.

Watch Video Solution

2. Find the sum of infinity of the G.P.,

$$\frac{-5}{4}, \frac{5}{16}, \frac{-5}{64}, \dots$$

3. Find the coefficient of x^2 in the expansion of e^{2x+3} as a series in powers of x.

5. If lpha, eta are the roots of the equation $x^2 - px + q = 0$, prove that

 $\log_eig(1+px+qx^2ig)=(lpha+eta)x-rac{lpha^2+eta^2}{2}x^2+rac{lpha^3+eta^3}{2}x^3-$

4. Find the value of e^2 , rounded off to one decimal place.

- **6.** Expand $\left(1-rac{x}{2}
 ight)^{-rac{1}{2}}$, when |x|<2.
 - Watch Video Solution

7. Find the sum of infinity of the G.P.,

$$\frac{-5}{4}, \frac{5}{16}, \frac{-5}{64}, \dots$$

Watch Video Solution

- **8.** Find the coefficient of x^2 in the expansion of e^{2x+3} as a series in powers of x.
 - Watch Video Solution

- **9.** Find the value of e^2 , rounded off to one decimal place.
 - **Watch Video Solution**

10. If α , β are the roots of the equation $x^2 - px + q = 0$, prove that

$$\log_eig(1+px+qx^2ig)=(lpha+eta)x-rac{lpha^2+eta^2}{2}x^2+rac{lpha^3+eta^3}{3}x^3-$$

