© 'doubtnut India's Number 1 Education App

CHEMISTRY

BOOKS - V PUBLICATION

EQUILIBRIUM

Question Bank

1. A liquid is in equilibrium with its vapour in a sealed container at a fixed temoperature. The volume of the container is suddenly increased. What is the initial effect of the change on vapour pressyre?

- Watch Video Solution

2. What is ' $K_{_}$' for the following equilibrium when the equilibrium
$\left[\mathrm{SO}_{2}\right]=0.60 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.82 \mathrm{M}$ and $\left[\mathrm{SO}_{3}\right]=1.90 \mathrm{M}_{2} \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2$

- Watch Video Solution

3. At a certain temperature and total pressure of $10^{5} \mathrm{~Pa}$, iodine vapour contains 40% by volume of iodine atoms. Calaulate K_{p} for the equilibrium, $1_{2}(g) \Leftrightarrow 2 I(g)$.

- Watch Video Solution

4. Write the expression for the equilibrium constant, 'K_c' for each of the following reactions:
i) '2 NOCl_(g)^ hArr 2 NO_(g)+Cl_2(g)'
ii) '2 $2 \mathrm{Cu}\left(\mathrm{NO}_{2} 3\right)$ _(s) hArr $2 \mathrm{CuO}(\mathrm{s})^{\wedge} 2+4 \mathrm{NO}_{2} 2(\mathrm{~g})+\mathrm{O} _2(\mathrm{~g})^{\prime}$
iii) 'CH_3 COOC_2 H_5(aq)+H_2 O_(I) hArr CH_3 COOH_(aq)+C_2 H_5 OH_(aq)' iv) ' $\mathrm{Fe} \mathrm{e}_{-}(\mathrm{aq})^{\wedge}(3+)+3 \mathrm{OH}_{-}(\mathrm{aq})^{\wedge}-\mathrm{hArr} \operatorname{Fe}(\mathrm{OH})_{-} 3(\mathrm{~s})^{\prime}$
v) 'I_2(s)+5 F_2 hArr 2 IF_5'
5. Find out the value of K_{c} for each of the following equilibria from the value of K_{p}
$2 N O C l(g) \Leftrightarrow 2 N O(g)+C l_{2}(g), K_{p}=1.8 \times 10^{-2}$ at 500 K

(D) Watch Video Solution

6. For the following equilibrium, $K_{c}=6.3 \times 10^{14}$ at 1000 K
$N O(g)+O_{3}(g) \Leftrightarrow \mathrm{NO}_{2}(g)+O_{2}(g)$
What is K_{c} for the reverse reactions?

D Watch Video Solution

7. Explain why pure liquids and solids can be ignored while writing the equilibrium constant expression?

- Watch Video Solution

8. Reaction between 'N_2' and 'O_2' takes place as following:
'2 N_2 (g)+O_2(g) hArr 2 N_2 O_(g)'
If a mixture of ' 0.482 ' mol of ' $\mathrm{N} _2$ ' and ' 0.933 ' mol of ' $\mathrm{O}_{-} 2$ ' is placed in a reaction vessel of volume ' 10 L ' and allowed to form ' N 2 O' at a temperature for which ' $\mathrm{K} \mathrm{c}=2.0 \mathrm{xx} 10^{\wedge}-(37)^{\prime}$ ' Determine the composition of equilibrium mixture.

- Watch Video Solution

9. A mixture of 1.57 mol of $N_{2}, 1.92 \mathrm{~mol}$ of H_{2} and 8.13 mol of $N H_{3}$ is introduced into a 20 L vessel at $500 \mathrm{~K} . K_{c}$ for the reaction $N_{2}+3 H_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ is 1.7×10^{2} at 500 K . Is the reaction mixture at equilibrium. If not, what is the direction of the net reaction.

- Watch Video Solution

10. The equilibrium constant expression for a gas reaction is $\mathrm{Kc}=[\mathrm{N} \mathrm{H} 3]^{\wedge} 4$ $+[\mathrm{O} 2]^{\wedge} 5 /[\mathrm{N} \mathrm{O}]^{\wedge} 4+[\mathrm{H} 2 \mathrm{O}]^{\wedge} 6$ Write the balanced chemical equation
corresponding to this expression.

- Watch Video Solution

11. One mole of $\mathrm{H}_{2} \mathrm{O}$ and one mole of CO are taken in a 10L vessel and heated to 725 K . At equilibrium 40% of water (by mass) reacts with CO according to the equation

$$
\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(g)
$$

Calculate the equilibrium constant for the reaction.

- Watch Video Solution

12. Ethyl acetate is formed by the reaction between ethanol and acetic acid and equilibrium is represented as:

'CH_3 COOH_()+C_2 H_5 OH_(I) hArr CH_3 COOC_2 H_5_(I)+H_2 O_(I)'

i) Write the concentration ratio (reaction quotient), 'Q_c', for this reaction (note: water is not in excess and is not a solvent in this reaction)
ii) At '293 K', if one starts with ' 1.00 ' mol of acetic acid and ' 0.18 mol' of ethanol, there is ' 0.171 ' mol of ethyl acetate in the final equilibrium
mixture. Calculate the equilibrium constant.
iii) Starting with ' 0.5 ' mol of ethanol and ' 1.0 ' mol of acetic acid and maintaining it at $293^{\prime} \mathrm{K},{ }^{\prime} 0.214 \mathrm{~mol}$ of ethyl acetate is found after sometime. Has equilibrium been reached?

- Watch Video Solution

13. Equilibrium constant ' $\mathrm{K} _$_' for the reaction
'N_2(g)+3 H_2(g) hArr 2 N H_3(g)' at '500 K' is '0.061'
At a particular time, the analysis shows that composition of the reaction mixture is '3.0 $\mathrm{molL}^{\wedge}(-1) \mathrm{N} _2,2.0$ ' $\mathrm{mol}^{\prime} \mathrm{L}^{\wedge}(-1) \cdot \mathrm{H}^{\wedge} 2^{\prime}$ and ${ }^{\prime} 0.5 \mathrm{~mol}^{\wedge}(-1)$ NH_3 .' Is the reaction at equilibrium? If not in which direction does the reaction tend to proceed to reach equilibrium?

- Watch Video Solution

14. Calculate (a) ΔG^{0} and (b) the equilibrium constant for the formation of NO_{2} from NO and O_{2} at 298 K

$$
N O_{g}+\frac{1}{2} O_{2}(g) \Leftrightarrow N O_{2}(g)
$$

where $\Delta G_{f}^{0}\left(N O_{2}\right)=52.0 \mathrm{~kJ} / \mathrm{mol}$
$\Delta G_{f}^{0}(N O)=87.0 \mathrm{k} \mathrm{J} / \mathrm{mol}$
$\Delta G_{f}^{0}\left(O_{2}\right)=0 \mathrm{~kJ} / \mathrm{mol}$

- Watch Video Solution

15. Do the number of moles of reaction products increase, decrease or remain or remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?
$\mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \Leftrightarrow \mathrm{CaCO}_{3}(s)$

(Watch Video Solution

16. Which of the following reactions will get affected by increasing of pressure? Also mention whether change will cause the reaction to go into forward or backward direction?
i) 'COCl_2(g) hArr CO_(g)+Cl_2(g)'
ii) 'C H_4(g)+2 S_2(g) hArr CS_2(g)+2 H_2 S_(g)' iii) 'CO_2(g)+C_(s) hArr 2 CO_(g)'
iv) '2 $\mathrm{H}_{-} 2(\mathrm{~g})+\mathrm{CO}$ _ th) hArr CH_3 OH_(g)'
'v) CaCO_3(s) hArr CaO_(s)+CO_2(g)'
vi) ' $4 \mathrm{NH}_{3} 3(\mathrm{~g})+5 \mathrm{O}$ _2(g) hArr 4 NO (g)+6 H_2 O_(g'

- Watch Video Solution

17. Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction:
'C H_4(g)+H_2 O_(g) hArr C O_(g)+3 H_2(g)'
a) Write an expression'for ' $K _p$ ' for the above reaction.
b) How will the values of ' $K _p$ ' and composition of equilibrium mixture be affected by
i) increasing the pressure
ii) increasing the temperature
iii) using a catalyst.

- Watch Video Solution

18. Describe the effect of:
a) addition of H_{2}.
b) addition of $\mathrm{CH}_{3} \mathrm{OH}$
c) removal of CO
d) removal of $\mathrm{CH}_{3} \mathrm{OH}^{\circ}$
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{g} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}_{g}$

- Watch Video Solution

19. At '473 K', equilibrium constant Kc for decomposition of phosphorus pentachloride 'PCI_5' is ' $8.3 \mathrm{xx} 10^{\wedge}(-3)$.' If decomposition is depicted as, 'PCl_5(g) hArr PCl_3(g)+Cl_2(g), Delta, H^circ=124.0 kJmol^(-1)'
a. write an expression for ' K_{-}' for the reaction
b. what is the value of ' $K c$ ' for the reverse reaction at the same temperature?
c. what would be the effect on ' K ' c if (i) more 'PCl_5' is added (ii) pressure is increased.(iii) the temperature is increased?
20. Predict which of the following reaction will have appreciable concentration of reactants and products.
a) 'Cl_2(g) hArr $2 \mathrm{Cl}_{-} \mathrm{kg}, \mathrm{K}_{-} \mathrm{c}=5 \mathrm{xx} 10^{\wedge}(-39)$ '
b) 'Cl_2(g)+2 NO_(g) hArr 2 NOCl_(g) , K_c=3.7 xx 10^8'
c) 'Cl_2(g)+2 NO_2(g) hArr $2 \mathrm{NO}_{-} 2 \mathrm{Cl}_{-}(\mathrm{g}), \mathrm{K}_{-} \mathrm{c}=1.8$ '

- Watch Video Solution

21. The value of 'K_c' of the reaction '30_2 (g) gives $2 \mathrm{O}_{-} 3(\mathrm{~g})$ ' is ' $2.0 \times 10^{\wedge}\left(-50^{\prime}\right.$ at ' 25^{\wedge} circ C^{\prime}. If the equilibrium concentration of ' $\mathrm{O}_{-} 2^{\prime}$ in air át ' 25^{\wedge} circ C^{\prime} is ' $1.6 \times 10^{\wedge}(-2)^{\prime}$ ', what is the concentration of 'O_3' ?

(D) Watch Video Solution

22. What is meant by the conjugate acid base pair? Find the conjugate acid '/' base for the following species:
$\mathrm{HNO}_{2}, \mathrm{CN}, \mathrm{HClO}_{4}, \mathrm{~F}, \mathrm{OH}, \mathrm{CO}_{3}^{2-}$, and S^{2-}

- Watch Video Solution

23. Which of the following are lewis acids?
'H_2 O, B F_3, H^+ , N H4+

- Watch Video Solution

24. Write the conjugate bases of the following: $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NH}_{3}, \mathrm{HCO}_{3}^{-}$ and $\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

25. Write the conjugate acids of the following : $\mathrm{NH}_{3}, \mathrm{HCO}_{3}^{-}$and $\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

26. The species: 'H_2 O, HCO_3-, HSO_4-' and 'NH_3^-' can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and base.

- Watch Video Solution

27. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/ base: (a) 'OH'- (b) F'- (c) 'H^+(d) BCl_3' ?

- Watch Video Solution

28. The ionization constants of $\mathrm{HF}, \mathrm{HCOOH}$ and HCN at 298 K are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and 4.8×10^{-9} respectively. Calculate the ionizaion constants of the corresponding conjugate base.

- Watch Video Solution

29. Assuming complete dissociation, calculate the pH of the following solutions:
(a) ' 0.003 M HCl '
(b) ' 0.005 M NaOH '
(c) ' 0.002 M HBr '
(d) ' $0.002 \mathrm{M} \mathrm{KOH} '$

- Watch Video Solution

30. The degree of ionisation of 0.1 M bromoacetic acid solution is 0.132 .

Calculate the pH of the solution and the pKa of bromoacetic acid.

- Watch Video Solution

31. The ' $\mathrm{p}^{\wedge} \mathrm{H}$ ' of '0.005 M ' codeine '(C_(18) $\left.\mathrm{H}_{-}(21) \mathrm{NO} 3\right)$ ' solution is ' 9.95 '

Calculate its ionization constant and 'pK_b'
32. What is the pH of 0.001 M aniline solution. The ionization constant of aniline is $4.3 \times 10^{\wedge}-10$. Cálculate the degree of ionization of aniline in the solution. Also calculate the ionization constant for the conjugate acid of aniline?

- Watch Video Solution

33. the concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} \mathrm{M}$. what is its ph ?

- Watch Video Solution

34. The ' $\mathrm{p}^{\wedge} \mathrm{H}$ ' of ' 0.1 M ' solution of cyanic acid (HCNO) is 2.34. Calculate the ionization constant of the acid and its degree of ionization in the solution.

- Watch Video Solution

35. The ionization constant of nitrous acid is 4.5×10^{-4}. Calculate thr pH of 0.04 M sodium nitrite solution and also its degree of hydrolysis.

- Watch Video Solution

36. A 0.02 M solution of pyridinium hydrochloride has $\mathrm{p}^{\wedge} \mathrm{H}=3.44$ '.

Calculate the ionization constant of pyridine:

Watch Video Solution

37. Predict if the solution of the following salts are neutral, acidic or basic: ' $\mathrm{NaCl}, \mathrm{KBr}, \mathrm{NaCN}, \mathrm{NH}_{2} 4$ NO_3, NaNO_2' and 'KF'.

- Watch Video Solution

38. calculate the $\left[\mathrm{H}^{+}\right]$in the following biological fluid whose pH are given in brackets. Human muscle fluid(6.83)
39. The pH of milk, black coffee, tomato juice, lemon juice and egg white are '6.8,5.0', 4.2,2.2 and '7.8' respectively. Calculate corresponding hydrogen ion concentration in each.

- Watch Video Solution

40. What is the maximum concentration of equimolar solutions of ferrous sulphate and sodium sulphide so that when mixed in equal volumes, there is no precipitation of iron sulphide? (For iron sulphide ' $\mathrm{K}_{-} \mathrm{sp}=6.3 \mathrm{xx}$ 10^(-18)').

- Watch Video Solution

41. Two moles of $P \mathrm{Pl}_{5}$ were introduced in a 2 L flask and heated at 600 K to attain the equilibrium. PCl_{5} was found to be 40% dissociated into PCl_{3} and Cl_{2}. Calculate the value of Kc .
42. Determine the concentration of CO_{2} which will be in equilibrium with $2.5 \times 10^{-2} \mathrm{molL}^{-1}$ of CO at $100^{\circ} \mathrm{C}$ for the reaction. $F e O(s)+C O(g) \Leftrightarrow F e(s)+\mathrm{CO}_{2}(g), K_{c}=5.0$

- Watch Video Solution

43. The 'pH'.of a tomato juice is '4.4'. Calculate '[H_3 O^+]'

- Watch Video Solution

44. 4.9 g of sulphuric acid is present in 500 mL of the solution. Calculate the pH of a solution.

- Watch Video Solution

45. The ionization constant of acetic acid is $1.74 \times 10^{\wedge}(-5)$.Calculate the degree of dissociations of acetic acid in its ' 0.05 M ' solution. Calculate the concentration of acetate ion in the solution.

- Watch Video Solution

46. For the reaction $\mathrm{H}_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
$K c=54.8$ at $700 K$. Calculate the value of K_{p}

- Watch Video Solution

47. Calculate the pH of a solution when (i) 49.9 ml of 0.1 MNaOH and (ii) 50.0 ml of 0.1 MNaOH added to 50 ml of 0.1 MHCl

- Watch Video Solution

48. The ionic product of water at 310 K is 2.7×10^{-14}. What is the pH of neutral water at this temperature.

- Watch Video Solution

49. The ionization constant of benzoic acid is 6.46×10^{-5} and $K_{s p}$ for silver benzoate is 2.5×10^{-13}. How many times is silver benzoate more soluble in a buffer of pH 3.19 compared to its solubility in pure'water?

- Watch Video Solution

50. A 0.02 M solution of pyridinium hydrochloride has $\mathrm{ph}=3.44$. Calculate the ionization constant of pyridine.

- Watch Video Solution

51. Calculate ' $\left[\mathrm{OH}^{\wedge}-\right]$ ' in case of soft drink having 'pH=4.4'
52. Calulate the pH of the buffer solution formed by mixing $0.2 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ and 0.1M $\mathrm{NH}_{3} K_{b}$ of ammonia is 1.77×10^{-5}

- Watch Video Solution

53. The solubility of 'CaF_2' in water at ' 298 K ' is '1.7 xx $10^{\wedge}(-5)^{\prime}$ ' grams per '100 cm^3 .' Calculąte the solubility product of 'CaF_2' at '298 K'.

- Watch Video Solution

54. Benzoic acid is a monobasic acid. When '1.22' of its pure sample are dissolved is water and titrated against base ' 50 mL ' of ' 0.2 M ' NaOH are used up. Calculate the molar mass of benzoic acid.
55. The solubility of AgCl in water at ' 25^{\wedge} circ C^{\prime} ' is found to be ' 1.06 xx $10^{\wedge}(-5)^{\prime}$ moles per litre. Calculate the solubility product of AgCl at this temperature.

- Watch Video Solution

56. Lead chloride has a solubility product of '1.7 xx 10^(-5)' at ' 298 K .'

Calculate its solubility at this temperature.

- Watch Video Solution

57. The effect of increasing pressure on the gaseous equilibrium
'2A+3B=3A+2B' indicates that
A. forward reaction is favoured
B. backward reaction is favoured.
C. no effect of pressure
D. None of the these

Answer: C

- Watch Video Solution

58. For the equilibrium reaction $2 \mathrm{NO} 2(\mathrm{~g}) \leftrightarrow \mathrm{N} 2 \mathrm{O} 4(\mathrm{~g})+60.0 \mathrm{~kJ}$ The increase in temperature (1)Favour the formation of $\mathrm{N} O$ (2)Favours the decomposition of N 2 O 4 (3)does not effect the equilibrium (4)stops the reaction
A. favours the formation of ' N ' O
B. favours the decomposition of 'N_2 O_*
C. does not effect the equilibrium
D. stops the reaction

Answer: B

- Watch Video Solution

59. Which of the following will favours the reverse reaction in a chemical equilibrium? (1)Increasing the concentration of one of the reactants. (2)Removal of atleast one of the products at regular intervals. (3)Increasing the concentration of one or more of the products. (4)None of the these
A. Increasing the concentration of one of the reactants
B. Removal of atleast one of the products at regular intervals.
C. Increasing the concentration of one or more of the products
D. None of the these

Answer: C

- Watch Video Solution

60. Pick the correct statement from the following: the addition of a catalyst changes equilibrium constant., a catalyst speeds up the forward reaction but slows down the reverse reaction., the composition of
equilibrium is changed by catalyst., addition of catalyst does not change the equilibtium concentrations
A. the addition of a catalyst changes equilibrium constant.
B.a catalyst speeds up the forward reaction but slows down the reverse reaction.
C. the composition of equilibrium is changed by catalyst.
D. addition of catalyst does not change the equilibtium concentrations

Answer: D

- Watch Video Solution

61. In law of mass action, the rate of reaction is directly proportional to
A. yolume of the container
B. equilibrium constant
C. nature of reactants
D. molar concentration of reactants

Answer: D

- Watch Video Solution

62. In the manufacture of 'H_2 SO_4', the oxidation of 'SO_2' to 'SO_3' by 'O_2' is an exothermic reaction. The yield of 'SO_3' will be maximum if. :
A. temperature is increased and the pressure is decreased.
B. both the temperature and pressure are decreased.
C. the temperature is reduced and pressure is increased.
D. both the temperature and pressure are increased.

Answer: C

- Watch Video Solution

63. Nitrogen combines with oxygen to form nitric oxide:
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g), \Delta H=+80 \mathrm{kJmol}^{-1}$
The decomposition of $N O(g)$ is favoured by : decrease in the pressure, increase in pressure, decrease in temperature, increasing the concentration of N_{2}
A. decrease in the pressure
B. increase in pressure
C. decrease in temperature
D. increasing the concentration of ' $\mathrm{N} _2$ '

Answer: C

- Watch Video Solution

64. In the equilibrium
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
the equilibrium constant is most likely to be changed by: adding $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ion, adding $\mathrm{H}_{3} \mathrm{PO}_{4}$, adding a catalyst, heating the mixture
A. adding 'H_2 PO_4^-', ion
B. adding 'H_3 PO_4'
C. adding a catalyst
D. heating the mixture

Answer: D

- Watch Video Solution

65. $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g), \Delta H=-93.5 k J$. What will happen when helium gas is added to the vessel at constant volume: more NH_{3} is formed, less NH_{3} is formed, No effect., None of these
A. more ' NH ' is formed
B. less 'NH_3' is formed
C. No'effect.
D. None of these

Answer: C

- Watch Video Solution

66. aqueous solution of ammonium acetate is
A. faintly acidic
B. faintly alkaline
C. fairly neutral
D. fairly acidic

Answer: C

- Watch Video Solution

67. $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g), \Delta H=110 k$, the pressure of CO_{2} : increases on adding catalyst, decreases of T is raised, increases of T is raised, increases, if an inert gas is passed keeping T constant
A. increases on adding catalyst
B. decreases of ' T ' is raised
C. increases of ' T ' is raised
D. increases, if an inert gas is passed keeping T constant

Answer: C

- Watch Video Solution

68.1 mol of A and 0.5 mol of B were enclosed in a three litre vessel. The following equilibrium was established under suitable conditions:

$$
A+2 B \Leftrightarrow C
$$

At equilibrium, the amount of B was found to be 0.3 mol . The equilibrium constant K_{c} at the experimental temperature will be: 11.1, 1.11, 0.01, 2.5
A. 11.1
B. 1.11
C. 0.01
D. 2.5

Answer: A

- Watch Video Solution

69. K ' 'for the reaction:
'CO_2(g)+H_2(g) hArr CO(g)+H_2 O(g)' is found to be 16 at a given' temperature. Originally equal number of moles of 'H_2', and 'CO_2', were placed in the flask. At equilibrium, the pressure of 'H_2 .' is '1.20 atm'. What is the partial pressure of 'CO' and 'H_2 O'.
A. 1.20' atm. Each
B. '2.40 ~atm'. Each
C. 4.80' átm. Each

D. 9.60 ~atm'. Each

Answer: C

- Watch Video Solution

70. An equilibrium mixțure for the reaction:
'2 H_2 S(g) gives $2 \mathrm{H}_{-} 2(\mathrm{~g})+\mathrm{S} _2(\mathrm{~g})$ ' had 1 mol of hydrogen sulphide, '0.2' mole of 'H_2' and ' 0.8 ' mole of ' S ', in 2 litre vessel. The value of ' K_{-}c' is:
A. 0.004^{\prime}
B. 0.080^{\prime}
C. 0.016'
D. '0.160'

Answer: C

- Watch Video Solution

71. A vessel of ' 1000 K' contains 'CO_2', with a pressure of ' 0.5 atm .' Some of the 'CO_2' converted into 'CO' on the addition of graphite. The value of ' K ' if the total pressure at equilibrium is ' 0.8 atm'. is:
A. 0.18atm
B. 1.8atm
C. 0.3 atm
D. 3atm

Answer: B

- Watch Video Solution

72. In a system : . $A(s) \Leftrightarrow 2 B(g)+3 C(g)$ if the concentration of C at equilibrium is increased by a factor of 2 , it will cause the equilibrium concentration of B to change to : 2 times, $2 \sqrt{2}$ times the original value, $\frac{1}{2}$ of the original value $\frac{1}{2 \sqrt{2}}$ times the original value
A. 2 times
B. 2 sqrt2' times the original value
C. 1/2' of the original value
D. $1 /(2$ sqrt 3$)$ ' times the original value

Answer: D

- Watch Video Solution

73. For a gaseous reaction:
$2 X(g) \Leftrightarrow 2 Y(g)+Z(g), K_{p}=1.8$ at $700^{\circ} C$. The value of K_{c} for the reaction :
$2 Y(g)+Z(g) \Leftrightarrow 2 X(g) a t$
44.4
33.1
1.3×10^{-3}
0.031
A. 44.4
B. 33.1
C. 1.3×10^{-3}
D. 0.031

Answer: A

- Watch Video Solution

74. The reaction:
$A(g)+2 B(g) \Leftrightarrow 2 C(g)$
was studied by starting with equal amounts of A and B in a constant volume vessel. Which of the following is true at equilibrium. :
$[A]=[B]^{-},[C]=[B],[B]<[A],[A]<[B]$
A. $[\mathrm{A}]=[\mathrm{B}]^{\wedge}-{ }^{-}$
B. $[\mathrm{C}]=[\mathrm{B}]^{\prime}$
C. $[\mathrm{B}] \mathrm{It}[\mathrm{A}]^{\prime}$
D. $[\mathrm{A}] \mathrm{It}[\mathrm{B}]^{\prime}$

Answer: C

75. The ' p ' H of a solution is 5.9 . If the hydrogen ion concentration is decerased hundred xx , the solution will be
A. mora acidic
B. neutral
C. basic
D. of the same acidity

Answer: C

- Watch Video Solution

76. On adding ' 20 ml ' of ' $\mathrm{N} / 10 \mathrm{NaOH}$ ' solution to ' 10 ml ' of ' $\mathrm{N} / 10 \mathrm{HCl}$ ', the resulting solution will
A. turn blue litmus red
B. turn phenolphthalein solution pink
C. turn methyl orange red
D. will have no effect on red or blue litmus solution

Answer: B

- Watch Video Solution

77. The ' pH ' of a ' $10^{\wedge}(-8) \mathrm{M}$ ' solution of ' HCl ' is:
A. 8
B. 6
C. between 6 and 7
D. between 7 and 8

Answer: C

78. In a solution pH and pOH at 298 K is equal. to: zero, 14 , infinity, a negative number
A. zero
B. 14
C. infinity
D. a negative number

Answer: B

Watch Video Solution
79. Which of the following is a Lewis base? $\mathrm{AlCl3}, \mathrm{AgCl}, \mathrm{Al}\left(\mathrm{OH}_{3}\right), \mathrm{NH}_{3}$
A. AlCl3'
B. AgCl^{\prime}
C. $\mathrm{Al}\left(\mathrm{OH}_{-} 3\right)^{\prime}$
D. $\mathrm{NH}_{3}{ }^{\prime}$

Answer: D

- Watch Video Solution

80. Precipitation takes place when the product of concentration of ions: equals the solubility product, exceeds the solubility product, is less than the solubility product, is negligible
A. equals the solubility product
B. exceeds the solubility product
C. is less than the solubility product
D. is negligible

Answer: B

- Watch Video Solution

81. The solubility product of 'CaSO_4' is '6.4 $\mathrm{xx} 10^{\wedge}(-5)$.' The solubility of salt in moles/litre is:
A. $8 \times 10^{\wedge}(-16)^{\prime}$.
B. $8 \times x 0^{\wedge}(-2)^{\prime}$
C. ${ }^{\prime} 8 \mathrm{xx} 10^{\wedge}(-3)^{\prime}$
D. $1.6 \times x 10^{\wedge}(-2)^{\prime}$

Answer: C

- Watch Video Solution

82. Among the following, the one which does not represent a conjugate acid base pair is:
A. 'HCl' and 'Cl'
B. HOH ' and ' $\mathrm{OH}^{\wedge}-\quad$ '
C. SO_2' and 'H_2 SO_4'
D. 'NH_3' and 'NH_4^+'

Answer: C

- Watch Video Solution

83.4 gm ' of ' NaOH ' are added in 1 litre. The ' pH ' value, of the solution will be:
A. 1
B. zero
C. 7
D. 13

Answer: D
84. An aqueous solution of 'A I_2((SO_4)_3)' would show:
A. both acidic and basic reaction
B. a neutral reaction
C. a basic reaction
D. an acidic reaction

Answer: D

- Watch Video Solution

85. The $\left[\mathrm{OH}^{\wedge}-\right]$ of an aqueous solution is $11 \mathrm{xx} 10^{\wedge}(-5)$.' The ' pH ' of the solution is
A. 5
B. 9
C. 4.5
D. 11

Answer: B

D Watch Video Solution

86. Which of the following is amphoteric in nature: $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{Cl}^{-}, \mathrm{HSO}_{4}^{-}$, $\mathrm{CO}_{3}^{2}-$
A. $\mathrm{H}_{-} 3 \mathrm{O}^{\wedge}+{ }^{\prime}$
B. $\mathrm{Cl}^{\wedge}-\quad$
C. $\mathrm{HSO}_{-} 4^{\wedge}{ }^{-}$
D. $\mathrm{CO}_{-} 3^{\wedge} 2-{ }^{\prime}$

Answer: C

- Watch Video Solution

87. Which of the following will have highest pH in water solution? NaCl ,
$\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{KCl}, \mathrm{CuSO}_{4}$
A. NaCl^{\prime}
B. $\mathrm{Na}_{-} 2 \mathrm{CO}_{-} 3$ '
C. KCl^{\prime}
D. 'CuSO_4'

Answer: B

- Watch Video Solution

