©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - V PUBLICATION

CONIC SECTIONS

Question Bank

1. Find an equation of the circle with centre at
$(0,0)$ and radius 2.
2. Find the equation of the circle with centre $(-3,2)$ and radius 4.

D Watch Video Solution

3. Find the centre and the radius of the circle
$x^{2}+y^{2}+8 x+10 y-8=0$

- Watch Video Solution

4. Find the equation of the circle which passes
through the points $(2,-2)$ and $(3,4)$ and whose centre lies on the line $x+y=2$

D Watch Video Solution

5. Find the equation of the circle in following cases.
centre (0,2) and radius 2.

6. Find the equation of the circle in following

cases.

centre ($-2,3$) and radius 4.

- Watch Video Solution

7. Find the equation of the circle with Centre
$\left(\frac{1}{2}, \frac{1}{4}\right)$ and radius $\frac{1}{12}$.

D Watch Video Solution

8. Find the equation of the circle with Centre $(1,1)$ and radius $\sqrt{2}$.

D Watch Video Solution

9. find the equation of the circle with Centre
$(-a,-b)$ and radius $\sqrt{a^{2}-b^{2}}$
(Watch Video Solution
10. Find the centre and radius of the circles
$(x+5)^{2}+(y-3)^{2}=36$.

D Watch Video Solution
11. Find the centre and radius of the following circles.
$x^{2}+y^{2}-4 x-8 y-45=0$

D Watch Video Solution
12. Find the centre and radius of the circle.
$x^{2}+y^{2}-8 x+10 y-12=0$.

D Watch Video Solution
13. Find the centre and radius of the following circles.
$2 x^{2}+2 y^{2}-x=0$

D Watch Video Solution
14. Find the equation of the circle passing through the points $(4,1)$ and $(6,5)$ and whose centre is on the line $4 x+y=16$

D Watch Video Solution

15. Find the equation of the circle passing
through the points $(2,3)$ and $(-1,1)$ and whose centre is on the line $x-3 y-11=0$
16. Find the equation of the circle with radius 5 whose centre lies on x-axis and passes through the point $(2,3)$.

D Watch Video Solution

17. Find the equation of the circle passing
through $(0,0)$ and making intercepts a and b on the coordinate axes.
18. Find the equation of the circle with centre
$(2,2)$ and passing through the point $(4,5)$.

D Watch Video Solution

19. Does the point $(-2.5,3.5)$ lie inside, outside or on the circle $x^{2}+y^{2}=25 ?$

- Watch Video Solution

20. Find the Focus, vertex and latus rectum of the parabola $y^{2}=8 x$.
21. Find the equation of the parabola with focus $(2,0)$ and directrix $x=-2$

- Watch Video Solution

22. Find the equation of the parabola with vertex at (0,0) and focus at (0,2).

D

23. Find the equation of the parabola which is symmetric about the y - axis, and passes through the point $(2,-3)$

D Watch Video Solution

24. Find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum $y^{2}=-8 x$

D Watch Video Solution

25. Find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum $y^{2}=-8 x$

D Watch Video Solution

26. Find the coordinates of the focus, axis of
the parabola, the equation of the directrix and the length of the latus rectum $x^{2}=-16 y$
27. Find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum $y^{2}=10 x$

D Watch Video Solution

28. Find the coordinates of the fòcus, axis of
the parabola, the equation of the directrix and
the length of the latus rectum $x^{2}=-9 y$
29. Find the equation of the parabola satisfying the following condition,
focus(6,0), directrix $x=-6$.

- Watch Video Solution

30. Find the equation of the parabola,Focus
$(0,-3)$, directrix $y=3$

- Watch Video Solution

31. Find the equation of the parabola satisfying the following condition,

Vertex (0,0), Focus (3,0).

D Watch Video Solution

32. Find the equation of the parabola,Vertex
$(0,0)$ focus $(-2,0)$.

D Watch Video Solution
33. Find the equation of the parabola satisfying the following condition,

Vertex $(0,0)$ passing through $(2,3)$ and axis along x-axis.

D Watch Video Solution

34. Find the equation of the parabola whose
vertex is $(0,0)$ which is passing through $(5,2)$
and which is symmetric with respect to y-axis
35. Find the coordinate of the foci,the length of the major axis, minor axis, latus rectum and eccentricity of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

D Watch Video Solution

36. Find the coordinates of the foci, the
vertices, the lengths of major and minor axes
and the eccentricity of the ellipse
$9 x^{2}+4 y^{2}=36$.
37. Find the equation of the ellipse vertices are
$(\pm 13,0)$ and foci are $(\pm 5,0)$

D Watch Video Solution

38. Find the equation of the ellipse whose
length of the major axis is 20 and foci are
$(0, \pm 5)$.

D Watch Video Solution
39. An ellipse whose major axis as x-axis and the centre $(0,0)$ passes through $(4,3)$ and $(-1,4)$.

Find is eccentricity.

D Watch Video Solution

40. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$
41. Find the coordinate of the foci, the verticles,the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
$\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$
(D) Watch Video Solution
42. Find the coordinate of the foci, the
verticles,the length of major axis, the minor axis, the eccentricity and the length of the
latus rectum of the ellipse.
$\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

- Watch Video Solution

43. Find the coordinates of the focii,vertices,eccentricity and the length of the latus Rectum of the ellipse
$100 x^{2}+25 y^{2}=2500$.

D Watch Video Solution
44. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$

- Watch Video Solution

45. Find the coordinates of the foci, the
vertices, the length of major axis, the minor axis, the eccentricity and the length of the
latus rectum of the ellipse. $\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$

Watch Video Solution

46. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. $16 x^{2}+y^{2}=16$

- Watch Video Solution

47. Find the ellipse satisfying the following conditions:
vertex $(\pm 5,0)$, foci $(\pm 4,0)$

- Watch Video Solution

48. Find the equation for the ellipse for Vertices $(0, \pm 13)$, foci $(0, \pm 5)$

- Watch Video Solution

49. Find the equation for the ellipse for Vertices $(\pm 6,0)$, foci $(\pm 4,0)$

- Watch Video Solution

50. Find the equation for the ellipse for Ends of major axis $(\pm 3,0)$, ends of minor axis $(0, \pm 2)$.

- Watch Video Solution

51. Find the equation for the ellipse for ends of major axis $(0, \pm \sqrt{5})$, ends of minor axis $(\pm 1,0)$
52. Find the ellipse satisfying the following conditions:

Length of the major axis 26 , foci $(\pm 5,0)$.

- Watch Video Solution

53. Find the equation for the ellipse for Length
of minor axis 16 , foci $(0, \pm 6)$.

D Watch Video Solution
54. Find the equation for the ellipse for Foci
$(\pm 3,0), a=4$

D Watch Video Solution
55. Find the ellipse satisfying the following

conditions:

$b=3, c=4$, centre at origin, foci on the x axis.
56. Centre at (0,0), major axis on the y-axis and passes through the points (3,2) and (1,6).

D Watch Video Solution

57. Find the equation for the ellipse for Major axis on the x-axis and passes through the points $(4,3)$ and (6,2$)$.

D Watch Video Solution

58. Find the coordinates of the foci and the
vertices, the eccentricity, the length of the latus rectum of the hyperbolas
$Q 1) \frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
Q2) $y^{2}-16 x^{2}=16$

- Watch Video Solution

59. Find the equation of the hyperbola with
foci $(0, \pm 3)$ and vertices $\left(0, \pm \frac{\sqrt{11}}{2}\right)$.
60. Find the equation of the hyperbola where
foci are $(0, \pm 12)$ and the length of the latus rectum is 36

- Watch Video Solution

61. Determine the eccentricity and length of
latus rectum of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$

- Watch Video Solution

62. Find the coordinates of foci, the vertices, eccentricity and length of latus rectum of the
following hyperbolas.
$\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$

- Watch Video Solution

63. Consider the conic find $9 y^{2}-4 x^{2}=36$

Length of latus rectum.
(Watch Video Solution
64. Find the coordinates of the foci and the
vertices, the eccentricity and the length of the
latus rectum of the hyperbolas for
$16 x^{2}-9 y^{2}=576$

- Watch Video Solution

65. Find the coordinates of foci, the vertices, eccentricity and length of latus rectum of the following hyperbolas.
$5 y^{2}-9 x^{2}=36$
66. Find the coordinates of the foci and the vertices, the eccentricity and the length of the
latus rectum of the hyperbolas for
$49 y^{2}-16 x^{2}=784$

D Watch Video Solution
67. Find the equations of the
hyperbola,Vertices $(0, \pm 5)$, foci $(0, \pm 8)$.

Watch Video Solution

68. Find the equations of the hyperbola,Vertices $(0, \pm 3)$, foci $(0, \pm 5)$.

D Watch Video Solution

69. Find the hyperbola satisfying the following conditions:

Foci $(\pm 5,0)$, the transverse axis is of length 8.

D Watch Video Solution

70. Find the hyperbola satisfying the following conditions:

Foci $(0, \pm 13)$, the conjugate axis is of length 24.

D Watch Video Solution

71. Find the equations of the hyperbola,Foci
$(\pm 3 \sqrt{5}, 0)$, the latus rectum is of length 24.

D Watch Video Solution

72. Find the equations of the hyperbola,Foci

$(\pm 4,0)$, the latus rectum is of length 12

- Watch Video Solution

73. Find the hyperbola satisfying the following conditions:

Vertices $(\pm 7,0), e=\frac{4}{3}$.

D Watch Video Solution

74. Find the equations of the hyperbola,Foci
$(0, \pm \sqrt{10})$, passing through $(2,3)$

D Watch Video Solution
75. Find the area of the triangle formed by the
lines joining the vertex of the parabola $x^{2}=12 y$ to the ends of its latus rectum.

D Watch Video Solution

76. An equilateral triangle is inscribed in the parabola $y^{2}=4 a x$, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.

- Watch Video Solution

77. Arun draws a circle with centre at $(-1,-2)$ and radius $\sqrt{5}$. What may be its algebric equation?
78. Find the equation of conic whose focus is
$(-1,0)$ and fixed line is $4 x-3 y+2=0$ and eccentricity $1 \sqrt{2}$

D View Text Solution

79. A few (circ)les are drawn below. Write their equations with the geometrical conditions given in each figure.
'(\#\#VPU_HSS_MAT_XI_C11_E05_013 _Q01\#\#)'
80. Verify that $x=a t^{2}, y=2 a t$ is satisfied by
the equation $y^{2}=4 a x$

D Watch Video Solution

81. If $P\left(a t_{1}^{2}, 2 a t_{1}\right), Q\left(a t_{2}^{2}, 2 a t_{2}\right)$ are two
points on a párabola $y^{2}=4 a x$. Find the equation of line through $P Q$.

D Watch Video Solution

82. If $P Q$ is a focal chord of the parabola.then prove that $t_{1} t_{2}=-1$.

D View Text Solution

83. The circle whose equation is
$x^{2}+(y-1)^{2}=1$ has the centre.....

- Watch Video Solution

84. Find the equation of the circle whose centre is at $(-3,-2)$ and radius equal to 7 .

D Watch Video Solution

85. Find the equation of the circle whose centre is $(-1,5)$ and which passes through
the point $(4,-3)$.

D Watch Video Solution

86. Find the equation of the circle whose area
is 154 sq. units and having $2 x-3 y+12=0$
and $x+4 y-5=0$ as diameters.

D Watch Video Solution

87. For the ellipse $x^{2}+3 y^{2}=a^{2}$, find the
length of major and minor axes, foci, vertices and the eccentricity.
88. The foci of a hyperbola coincide with the
foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$. Find the equation of the hyperbola if its eccentricity is
89.
