

MATHS

BOOKS - V PUBLICATION

CONIC SECTIONS

Question Bank

1. Find an equation of the circle with centre at

(0,0) and radius 2.

 $(\,-3,2)$ and radius 4 .

Watch Video Solution

3. Find the centre and the radius of the circle

$$x^2 + y^2 + 8x + 10y - 8 = 0$$

4. Find the equation of the circle which passes through the points (2, -2) and (3, 4) and whose centre lies on the line x + y = 2

5. Find the equation of the circle in following

cases.

centre (0,2) and radius 2.

6. Find the equation of the circle in following

cases.

centre (-2,3) and radius 4.

Watch Video Solution

7. Find the equation of the circle with Centre $\left(\frac{1}{2}, \frac{1}{4}\right)$ and radius $\frac{1}{12}$.

8. Find the equation of the circle with Centre

(1,1) and radius $\sqrt{2}$.

Watch Video Solution

9. find the equation of the circle with Centre

$$(\,-\,a,\,-\,b)$$
 and radius $\sqrt{a^2-b^2}$

10. Find the centre and radius of the circles

$$(x+5)^2 + (y-3)^2 = 36.$$

Watch Video Solution

11. Find the centre and radius of the following circles.

$$x^2 + y^2 - 4x - 8y - 45 = 0$$

12. Find the centre and radius of the circle.

$$x^2 + y^2 - 8x + 10y - 12 = 0.$$

Watch Video Solution

13. Find the centre and radius of the following circles.

$$2x^2 + 2y^2 - x = 0$$

14. Find the equation of the circle passing through the points (4,1) and (6,5) and whose centre is on the line 4x + y = 16

15. Find the equation of the circle passing through the points (2, 3) and (-1, 1) and whose centre is on the line x - 3y - 11 = 0

16. Find the equation of the circle with radius 5 whose centre lies on x-axis and passes through the point (2,3).

Watch Video Solution

17. Find the equation of the circle passing through (0,0) and making intercepts a and b on the coordinate axes.

18. Find the equation of the circle with centre

(2,2) and passing through the point(4,5).

20. Find the Focus, vertex and latus rectum of the parabola $y^2 = 8x$.

22. Find the equation of the parabola with

vertex at (0,0) and focus at (0,2).

23. Find the equation of the parabola which is symmetric about the y- axis, and passes through the point (2, -3)

Watch Video Solution

24. Find the coordinates of the focus, axis of

the parabola, the equation of the directrix and

the length of the latus rectum $y^2=\,-\,8x$

25. Find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum $y^2 = -8x$

Watch Video Solution

26. Find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum $x^2 = -16y$

27. Find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum $y^2 = 10x$

28. Find the coordinates of the fòcus, axis of the parabola, the equation of the directrix and

the length of the latus rectum $x^2=\ -9y$

29. Find the equation of the parabola satisfying the following condition, focus(6,0), directrix x = -6.

30. Find the equation of the parabola, Focus

 $(0,\ -3)$, directrix y=3

Watch Video Solution

31. Find the equation of the parabola satisfying the following condition, Vertex (0,0), Focus (3,0).

32. Find the equation of the parabola,Vertex (0,0) focus (-2,0).

33. Find the equation of the parabola satisfying the following condition,Vertex (0,0) passing through (2,3) and axis along x-axis.

Watch Video Solution

34. Find the equation of the parabola whose vertex is (0,0) which is passing through (5,2) and which is symmetric with respect to y-axis

35. Find the coordinate of the foci,the length of the major axis, minor axis, latus rectum and eccentricity of the ellipse
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

36. Find the coordinates of the foci, the vertices, the lengths of major and minor axes and the eccentricity of the ellipse
$$9x^2 + 4y^2 = 36.$$

 $(\ \pm\ 13,0)$ and foci are $(\ \pm\ 5,0)$

Watch Video Solution

38. Find the equation of the ellipse whose length of the major axis is 20 and foci are $(0, \pm 5).$

39. An ellipse whose major axis as x-axis and the centre (0,0) passes through (4,3) and (-1,4). Find is eccentricity.

40. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. $\frac{x^2}{36} + \frac{y^2}{16} = 1$

Watch Video Solution

41. Find the coordinate of the foci, the verticles, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

$$rac{x^2}{4} + rac{y^2}{25} = 1$$

Watch Video Solution

42. Find the coordinate of the foci, the verticles, the length of major axis, the minor axis, the eccentricity and the length of the

latus rectum of the ellipse.

$$rac{x^2}{16} + rac{y^2}{9} = 1$$

Watch Video Solution

44. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. $\frac{x^2}{49} + \frac{y^2}{36} = 1$ Watch Video Solution

45. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. $\frac{x^2}{100} + \frac{y^2}{400} = 1$

46. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. $16x^2 + y^2 = 16$

Watch Video Solution

47. Find the ellipse satisfying the following conditions:

vertex (\pm 5, 0), foci (\pm 4, 0)

49. Find the equation for the ellipse for Vertices (\pm 6, 0), foci (\pm 4, 0)

50. Find the equation for the ellipse for Ends of major axis (\pm 3, 0), ends of minor axis (0, \pm 2).

51. Find the equation for the ellipse for ends of major axis $\left(0,\ \pm\sqrt{5}
ight)$, ends of minor axis $(\ \pm\ 1,\ 0)$

52. Find the ellipse satisfying the following conditions:

Length of the major axis 26, foci $(\pm 5, 0)$.

Watch Video Solution

53. Find the equation for the ellipse for Length

of minor axis 16, foci $(0, \pm 6)$.

54. Find the equation for the ellipse for Foci

$$(\,\pm\,3,0)$$
 , $a=4$

Watch Video Solution

55. Find the ellipse satisfying the following conditions:

 $b=3,\,c=4$, centre at origin, foci on the x-

axis.

56. Centre at (0,0), major axis on the y-axis and

passes through the points (3,2) and (1,6).

57. Find the equation for the ellipse for Major axis on the x-axis and passes through the points (4, 3) and (6, 2).

58. Find the coordinates of the foci and the vertices, the eccentricity, the length of the latus rectum of the hyperbolas

$$egin{aligned} Q1 \end{pmatrix} & rac{x^2}{9} - rac{y^2}{16} = 1 \ Q2 \end{pmatrix} & y^2 - 16 x^2 = 16 \end{aligned}$$

59. Find the equation of the hyperbola with foci $(0, \pm 3)$ and vertices $\left(0, \pm \frac{\sqrt{11}}{2}\right)$.

60. Find the equation of the hyperbola where foci are $(0,\ \pm 12)$ and the length of the latus rectum is 36

Watch Video Solution

61. Determine the eccentricity and length of latus rectum of the hyperbola $rac{x^2}{16} - rac{y^2}{9} = 1$

62. Find the coordinates of foci, the vertices, eccentricity and length of latus rectum of the following hyperbolas.

$$rac{y^2}{9} - rac{x^2}{27} = 1$$

Watch Video Solution

63. Consider the conic find $9y^2 - 4x^2 = 36$

Length of latus rectum.

64. Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas for $16x^2 - 9y^2 = 576$

Watch Video Solution

65. Find the coordinates of foci, the vertices,

eccentricity and length of latus rectum of the

following hyperbolas.

$$5y^2 - 9x^2 = 36$$

66. Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas for $49y^2 - 16x^2 = 784$

Watch Video Solution

68. Find the equations of the hyperbola,Vertices $(0, \pm 3)$, foci $(0, \pm 5)$.

Watch Video Solution

69. Find the hyperbola satisfying the following

conditions:

Foci $(\pm 5, 0)$, the transverse axis is of length

8.

70. Find the hyperbola satisfying the following

conditions:

Foci $(0, \pm 13)$, the conjugate axis is of length

24.

71. Find the equations of the hyperbola, Foci

 $ig(\pm 3\sqrt{5},0ig)$, the latus rectum is of length 24 .

72. Find the equations of the hyperbola, Foci

 $(\pm4,0)$, the latus rectum is of length 12

73. Find the hyperbola satisfying the following conditions:

A

Vertices
$$(\,\pm\,7,0)$$
, $e=rac{4}{3}.$

74. Find the equations of the hyperbola, Foci

```
ig(0,\ \pm\sqrt{10}ig), passing through (2,3)
```

Watch Video Solution

75. Find the area of the triangle formed by the lines joining the vertex of the parabola $x^2=12y$ to the ends of its latus rectum.

76. An equilateral triangle is inscribed in the parabola $y^2 = 4ax$, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.

77. Arun draws a circle with centre at (-1,-2) and

radius $\sqrt{5}$. What may be its algebric equation?

78. Find the equation of conic whose focus is (-1,0) and fixed line is 4x - 3y + 2 = 0 and eccentricity $1\sqrt{2}$

View Text Solution

79. A few (circ)les are drawn below. Write their equations with the geometrical conditions given in each figure.

'(##VPU_HSS_MAT_XI_C11_E05_013 _Q01##)'

View Text Solution

80. Verify that $x = at^2$, y = 2at is satisfied by

the equation $y^2 = 4ax$

Watch Video Solution

81. If $P(at_1^2, 2at_1), Q(at_2^2, 2at_2)$ are two points on a párabola $y^2 = 4ax$. Find the equation of line through PQ.

82. If PQ is a focal chord of the parabola.then

prove that $t_1t_2 = -1$.

View Text Solution

 $x^2 + \left(y-1
ight)^2 = 1$ has the centre....

84. Find the equation of the circle whose centre is at (-3, -2) and radius equal to 7.

Watch Video Solution

85. Find the equation of the circle whose centre is (-1, 5) and which passes through the point (4, -3).

86. Find the equation of the circle whose area is 154 sq. units and having 2x - 3y + 12 = 0 and x + 4y - 5 = 0 as diameters.

Watch Video Solution

87. For the ellipse $x^2 + 3y^2 = a^2$, find the length of major and minor axes, foci, vertices and the eccentricity.

88. The foci of a hyperbola coincide with the foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$.Find the equation of the hyperbola if its eccentricity is 2.