

MATHS

BOOKS - V PUBLICATION

PRINCIPLE OF MATHEMATICAL INDUCTION

2. Prove that $2^n > n$ for all positive integtrs n.

3. For all $n \ge 1$, prove that $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$ Watch Video Solution

4. For every positive integer n,prove that $7^n - 3^n$ is divisible by 4 using principle of mathematical induction.

Watch Video Solution

5. Prove that $\left(1+x
ight)^n \geq 1+nx$, for all natural number 'n', where x > -1.

Watch Video Solution

6. For all $n\geq 1$, prove that p(n) : $2.7^n+3.5^n-5$ is divisible by 24.

$n \in N$

15. Using mathematical induction prove that

$$1\cdot 3 + 3\cdot 5 + 5\cdot 7 + + (2n-1)(2n+1) = rac{nig(4n^2+6n-1ig)}{3}$$

true for all $n \in N$

16. Using mathematical induction prove that

$$1\cdot 2+2\cdot 2^2+.....+n\cdot 2^n=(n-1)2^{n+1}+2$$
 for all $n\in N$

17. A statement p(n) for a natural number n is given by

$$p(n):rac{1}{2}+rac{1}{4}+rac{1}{8}+\ldots\ldots+rac{1}{2^n}=1-rac{1}{2^n}$$

Verify that p(1) is true.

Watch Video Solution

18. Using mathimatical induction prove that

$$rac{1}{2.5} + rac{1}{5.8} + rac{1}{8.11} + \dots + rac{1}{(3n-1)(3n+2)} = rac{n}{6n+4}$$
 for all

 $n\in N.$

Watch Video Solution

19. Using mathematical induction prove that

$$rac{1}{1.2.3} + rac{1}{2.3.4} + \ldots + rac{1}{n(n+1)(n+2)} = rac{n(n+3)}{4(n+1)(n+2)}$$
 for all $n \in N.$

20. Consider the following statement:

$$P(n)\!:\!a+ar+ar^2+\ldots\ldots+ar^{n-1}=rac{a(r^n-1)}{r-1}$$

Prove that P(1) is true.

Watch Video Solution

21. Using mathematical induction prove that

$$\left(1+rac{3}{1}
ight)\left(1+rac{5}{4}
ight)\left(1+rac{7}{9}
ight)....\left(1+rac{2n+1}{n^2}
ight)=(n+1)^2$$
 for all $n\in N$

Watch Video Solution

22. Using mathematical induction prove that

$$\left(1+rac{1}{1}
ight) \left(1+rac{1}{2}
ight) \left(1+rac{1}{3}
ight) \left(1+rac{1}{n}
ight) = n+1$$
 for all $n\in N$

23. Using mathematical induction prove that

Watch Video Solution

$$rac{1}{1.4}+rac{1}{4.7}+rac{1}{7.10}+.....+rac{1}{(3n-2)(3n+1)}=rac{n}{3n+1}$$
 for all $n\in N$

Watch Video Solution

25. Using mathematical induction prove that

$$rac{1}{3.5} + rac{1}{5.7} + rac{1}{7.9} + \dots + rac{1}{(2n+1)(2n+3)} = rac{n}{3(2n+3)}$$
 for all $n \in N$

26. For all $n \geq 1$, prove that

$$1+2+3+\ldots +n < rac{1}{8}(2n+1)^2$$

27. Using principle of mathematical induction prove that n(n+1)(n+5) is a multiple of 3 for all $n \in N$.

Watch Video Solution

28. Using mathematical induction prove that $10^{2n-1} + 1$ is divisible by 11

for all $n \in N$

29. Using mathematical induction prove that $x^{2n} - y^{2n}$ is divisible by x+y

for all $n \in N$

30. Consider the statement

 $P(n)=3^{2n+2}-8n-9$ is divisible by 8

Verify the statement for n=1.

Watch Video Solution

31. Using mathematical induction prove that

 41^n-14^n is a multiple of 27 for all $n\in N$

Watch Video Solution

32. Using mathematical induction prove that $(2n+7) < \left(n+3
ight)^2$ for all

 $n \in N$

36. If P(n) is the statement n(n+1)(n+2) is divisible by 12, prove that

P(3) and P(4) are true, but P(5) is not true

Watch Video Solution

37. Consider the statement P(n): n(n+1)(2n+1) is divisible by 6.

By assume that P(k) is true for a natural number k, Verify that P(k+1)

is true.

Watch Video Solution

38. Prove 'that $10^n + 3 imes 4^{n+2} + 5$ is divisible by 9 .

39. Prove by mathematical induction.

$$(\cos heta + i \sin heta)^n = (\cos n heta + i \sin n heta),$$

where $i=\sqrt{-1}$

Watch Video Solution

41. Prove that
$$1+rac{1}{4}+rac{1}{9}+.....$$
 $+rac{1}{n^2}<2-rac{1}{n}, (n>1)$

Watch Video Solution

42. Using principle of mathematical induction, prove that the product of

two consecutive natural numbers is an even number

43. Using mathematical induction prove that

$$1\cdot 3 + 3\cdot 5 + 5\cdot 7 + + (2n-1)(2n+1) = rac{nig(4n^2+6n-1ig)}{3}$$

true for all $n \in N$