

MATHS

BOOKS - V PUBLICATION

RELATIONS AND FUNCTIONS

1. If (x + 1, y - 2) = (3, 1), find the values of x and y.

Watch Video Solution

2. If $P = \{a, b, c\}$ and $Q = \{r\}$, form the sets P imes Q and Q imes P. Are

these two products equal?

3. Let $A = \{1, 2, 3\}, B = \{3, 4\}$ and $C = \{4, 5, 6\}$.

Find

$$A imes \left(B \bigcap C \right)$$

Watch Video Solution

4. Let $P = \{1, 2\}$.Find P imes P imes P

Watch Video Solution

5. If R is the set of all real numbers, what do the cartesian products

R imes R and R imes R imes R represent?

Watch Video Solution

6. If
$$\left(rac{x}{3}+1,y-rac{2}{3}
ight)=\left(rac{5}{3},rac{1}{3}
ight)$$
, find the values

of x and y.

10. State whether each of the following statetments is true or false. If the statement is false, rewrite the given statement correctly. If P = {m,n} and Q = {n,m}, then $P \times Q$ ={(m,n),(n,m)}

Watch Video Solution

13. Let
$$A = \{1,2\}, B = \{1,2,3,4\}, C = \{5,6\}$$
 and

 $D=\{5,6,7,8\}.$ Verify that

$$A imes \left(B \bigcap C
ight) = (A imes B) \bigcap (A imes C)$$

14. Let A = {1,2} and B = {3,4}. Write $A \times B$. How many subsets will $A \times B$

have? List them.

15. Let A and B are two sets such that n(A) = 3 and n(B) = 2. If (x,1), (y,2),

(z,1) are in A imes B, find A and B, where x,y and z are distinct elements.

Watch Video Solution

16. The Cartesian product A imes A has 9 elements among which are found

(-1,0) and (0,1). Find the set A and the remaining elements of A imes A

17. Let $A=\{1,2,3,4,5,6\}$ be a set. Defined a relation R from A to A by $R=\{(x,y)\,/\,y=x+1\}$

Represent the relation R using an arrow diagram.

18. $A=\{1,2,3,\ldots,14\}$. R is a relation from A to A defined by $R=\{(x,y)\colon 3x-y=0,x,y\in A\}.$ Write the domain, range,co-domain

of ,R.

19. A relation R on set natural numbers is defined by $R = \{(x, y) : y = x + 5, x ext{ is a natural number less than 4, } x, y \in N \}$

Write the relation in roster form.

Watch Video Solution

20. A = {1,2,3,5} and B = {4,6,9}. Define a relation R from A to B by R = {(x,y):

the difference between x and y is odd: $x \in A, y \in B$ }. Write R in roster

from.

21. Shows a relationship between the sets P and Q. write this relation roster from. What is its domain and range ?

22. Let $A = \{1, 2, 3, 4, 6\}.$ Let R be the relation on

A defined by $R = \{(a,b)\!:\!a,b\in A,b ext{ is }$

exactly divisible by a}

Find the domain of R.

Watch Video Solution

23. Determine the domain and range of the

relation R defined by

 $R = \{(x,x+5)\!:\! x \in \{0,1,2,3,4,5\}\}$

Watch Video Solution

24. Write the relation $R = ig\{ (x, x^3) : x ext{ is a prime}$

number less than 10} in roster form.

25. Let A = {x,y,z) and B = {1,2}. Find the number of relations from A to B

27. Let N be the set of natural numbers and the relation'R be defined on N such that $R = \{(x, y) : y = 2x, x, \dot{y} \in N\}$ What, is the domain, codomain and range of R? Is this relation a function?

28. Examine each of the following relations given below and state in each case, giving reasons whether it is a function or not?

i) $R = \{(2,1), (3,1), (4,2)\}$

ii) $R = \{(2,2), (2,4), (3,3), (4,4)\}$

iii) $R = \{(1,2), (2,3), (3,4), (4,5), (5,6), (6,7)\}$

Watch Video Solution

29. Le't N be the set of natural numbers. A real valued function is defined

as $f\colon N o N$ by f(x)=2x+1. Using this definition, complete the table

given below:

o							
x	1	· 2	3 -	4	i·5	6 1	7
ý	f(1) =	f(2) =	f(3) =	f(4) =	f(5) =	f(6) =	f(7) =

Watch Video Solution

30. Draw the graph of the function $f\colon R o R$ defined by $f(x)=x^3, x\in R.$

31. Let
$$f(x) = x^2$$
 and $g(x) = 2x + 1$ be two

functions defined over the set of non-

negative real numbers. Find $(f+g)(x), \ (f-g)(x), (fg)(x)$ and $\Bigl(rac{f}{g}\Bigr)(x)$

Watch Video Solution

32. Let
$$f(x) = \sqrt{x}$$
 and $g(x) = x$ be two

functions defined over the set of non-

negative real numbers. Find $(f+g)(x), \ (f-g)(x), (fg)(x)$ and $\Bigl(rac{f}{g}\Bigr)(x)$

Watch Video Solution

33. Which of the following relations are functions ? Give reasons. If it is a functions determine its domain and range.{(2,1),(5,1),(8,1),(1,1),(14,1),(17,1)}

34. Find the domain and range of the following functions.

$$f(x)= \ - |x|$$

Watch Video Solution

35. A function f is defined as f(x) = 2x - 5.

Write down the values of f(0), f(7), f(-3).

Watch Video Solution

36. The function 't' which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $t(C) = \frac{9C}{5} + 32$. Find t (0)

37. Find the range of the following functions.

f(x)=2-3x, $x\in R$,x>0

Watch Video Solution

38. Let R be the set of real numbers. Define the real function. f: $R \to R$ by f(x) = x + 10 and sketch the graph of this function.

Watch Video Solution

39. Let R be a.relation from Q to Q defined by $R = \{(a,b) : a, b \in Q \text{ and } d \}$

- $a b \in Z$. Show that
- i) $(a,a)\in R$ for all $a\in Q$
- ii) $(a,b)\in R$ implies that $(b,a)\in R$

iii) $(a,b)\in R$ and $(b,c)\in R$ implies that $(a,c)\in R.$

40. Let $f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a linear function from Z into Z. Find

f(x).

41. Find the domain of the function

$$f(x)=rac{x^2+3x+5}{x^2-5x+4}$$

Watch Video Solution

42. The function f is defined by

$$f(x) = \left\{egin{array}{cccc} 2-x & x &< & 0 \ 2 & x &= & 0 \ 2+x & x &> & 0 \end{array}
ight.$$

Draw the graph of Find f(x)

43. The relation f is defined by $f(x) = \begin{cases} \frac{x^2, 0 \le x \le 3}{3x, 3 \le x \le 10} \end{cases}$ The relation g is defined by $g(x) = \begin{cases} \frac{x^2, 0 \le x \le 2}{3x, 2 \le x \le 10} \end{cases}$

show that f is a function and g is not a function

Watch Video Solution

44. If
$$f(x) = x^2$$
, find $rac{f(1.1) - f(1)}{(1.1-1)}$

Watch Video Solution

45. Find the domain of the following.

$$f(x)=rac{x^2+2x+1}{x^2-8x+12}$$

Watch Video Solution

46. Find the domain and range of the following

functions.

$$f(x) = \sqrt{x-1}$$

47. Find the domain and range of the following functions.

$$f(x) = \left|x-1\right|$$

Watch Video Solution

48. Let
$$f=\left\{ig(x,rac{x^2}{1+x^2}ig),x\in R
ight\}$$
 be a real

function from R to R. Determine the domain

and range of f.

49. Let f,g: R
$$\rightarrow$$
 R be defined, respectively by $f(x) = x + 1, g(x) = 2x - 3$. find $f + g, f - g$ and $\frac{f}{g}$

50. Let f = {(1,1), (2,3),(0, -1), (- 1, - 3)} be a function from Z to Z defined by f(x) = ax + b, for some integers a,b. determine a,b.

51. Let R be a relation from N to N defined by R = $\{(a,b) \in N \text{ and } a = b^2\}$. Are the following true? $\{(a,a) \in R, \text{ for all } a \in N\}$

Watch Video Solution

52. Let A = {1,2,3,4}, B = {1,5,9,11,15,16} and f = {(1,5),(2,9),(3,1),(4,5),(2,11),}. Are

the following true? F is a function from A to B. Justify your answer.

53. Let f be the subset of Z imes Z defined by $f = \{(ab, a+b) \colon a, b \in Z\}$ is

f a function from Z to Z? justify your answer.

54. Let A = {9,10,11,12,13} and let f : A \rightarrow N be defined by f (n) = the highest

prime factor of n. find the range of f.

Watch Video Solution

55. A relation R is defined on the set Z of integers as follows. $R = \{(x, y) \in R: x^2 + y^2 = 25\}$ Express R and R^{-1} as the sets of ordèred pairs and hence find their respective domains.

56. Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{1, 2, 3, \dots, 6, 7\}$. If R be a relation

from A to the set B defined by

i) is square root of

ii) is cube root of, find R and also its domain and range.

57. Find the domain and range of the function
$$f = \left\{ \left(x, \frac{x^2 - 1}{x - 1}\right) : x \in R, x \neq 1 \right\}$$
Watch Video Solution

58. Let R be the relation on the set Z of all integers defined by $R = \{(x, y) : x, y \in Z, x - y ext{ is divisible by n}\}.$ Prove that i) $(x, x) \in R$ for all $x \in , Z$ ii) $(x, y) \in R$ implies that $(y, x) \in R$ for all $x, y \in Z$

iii) $(x,y)\in R$ and $(y,z)\in R$ implies that $(x,z)\in R$ for all $x,y,z\in Z$

59. Let f be defined by f(x) = x - 4 and g be defined by

$$g(x)=rac{x^2-16}{x+4}, x
eq -4.$$

find λ such that f(x)=g(x) for all x

View Text Solution

60. If f is a real function defined by $f(x) = \frac{x-1}{x+1}$, then prove that $f(2x) = \frac{3f(x)+1}{f(x)+3}.$

Watch Video Solution

61. Find the domain and range of the following functions:

$${\mathfrak i})f(x)=rac{1}{\sqrt{x-5}}$$
 ${\mathfrak i}{\mathfrak i})\,f(x)=rac{x}{1+x^2}.$

62. Let f and g be two real functions defined by $f(x) = \frac{1}{x+4}$ and $g(x) = (x+4)^3$, find the following: i) f - gii) $\frac{f}{g}$ iii) 2f Watch Video Solution

63. Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

i)
$$\{(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)\}$$

ii) $\{(2, 1, (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)\}$
iii) $\{(0, 0), (1, 1), (1, -1), (4, 2), (4, -2), (9, 3)(9, -3), (16, -4$

64. If $f(x) = x^2 + x - 1$ and g(x) = 4x - 7. be real functions then find: i) (f + g)(2)ii) (f - g)(7)(iii) (fg)(-5)iv) $\left(\frac{f}{g}\right)(4)$

Watch Video Solution

65. Let f and g be real functions defined by $f(x)=\sqrt{x+4}, x\geq -4$ and $g(x)=\sqrt{x-4}, x\geq 4$. Find the functions $f+g, f-g, fg, rac{f}{g}$

Watch Video Solution

66. If
$$af(x)+bfigg(rac{1}{x}igg)=rac{1}{x}-5$$
 for $x
eq 0$, where $a
eq b$. Find $f(x)$

67. If $A = \{3, 4, 6\}, B = \{1, 3\}$ and $C = \{1, 2, 6\}$, then find (i) $A \times (B \cap C)$ (ii) $B \times (A \cup C)$ (iii) $(A - B) \times (A - C)$

Watch Video Solution

68. Let A and B are two sets such that n(A) = 3 and n(B) = 2. If (x,1), (y,2),

(z,1) are in A imes B, find A and B, where x,y and z are distinct elements.

Watch Video Solution

69. Let A be a non - empty set such that $A \times B = A \times C$ show that

B = C

70. Let $A \subset B, C \subset D$, then prove that $A imes C \subset B imes D$

74. If
$$f(x) = x + rac{1}{x}$$
 show that $(f(x))^3 = fig(x^3ig) + 3f(x)$

Watch Video Solution

75. Find the domain of the following.

$$f(x)=rac{x^2+2x+1}{x^2-8x+12}$$

Watch Video Solution

76. Draw the graph of the real function $y = x^2 + 2x + 3$

78. Let $f\!:\!R o R$ be a function defined by $f(x)=x^2+[x]+|x|-7,\,x\in R.$ Find the valueof 'f' at the points $-3.4,\,-2,\,-1.7,\,0,\,0.8,\,1,\,4.3$

Watch Video Solution

79. Let $f,g\colon R o R$ be functions defined respectively by $f(x)=x+1,\,g(x)=2x-3$ Find fg.