



# MATHS

# NCERT - FULL MARKS MATHEMATICS(TAMIL)

# **STRAIGHT LINES**



1. Find the slope of the lines :

Passing through the points (3, -2) and (-1, 4)

2. Find the slope of the lines :

Passing through the points (3, -2) and (7, -2)



**4.** Find the slope of the lines :

Making inclination of  $60^{\circ}$  with the positive direction of x- axis.

5. If the angle between two lines is  $\frac{\pi}{4}$  and slope of one the lines is  $\frac{1}{2}$ , find the slope of the other line.



**6.** Line through the points (-2, 6) and (4, 8) is perpendicular to the line through the points (8, 12) and (x, 24). Find the value of x.

7. Three points  $P(h,k), Q(x_1,y_1)$  and  $R(x_2,Y_2)$  lie on a

line. Show that  $(h-x_1)(y_2-y_1) = (k-y_1)(x_2-x_1).$ 

8. Find the equations of the lines parallel to axes and passing through (-2, 3).



9. Find the equation of the line through (-2,3) with slope

-4.



10. Write the equation of the line through the points (1, -1) and (3, 5).

11. Write the equation of the lines for which  $\tan \theta = \frac{1}{2}$ , where  $\theta$  is the inclination of the line and (i) y-intercept is  $-\frac{3}{2}$  (ii) x - intercept is 4.

Watch Video Solution

- 12. Find the equation of the line, which makes intercepts
- -3 and 2 on the x and y- axes respectively.



**13.** Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with positive direction of x - axis is  $15^{\circ}$ .

14. The Fahrenheit remperature F and absolute temperature K satisfy a linear equation. Given that  $K=273~{
m when}~F=32$  and that K = 373 when F = 212.

Express K in terms of F and find the value of F, when K = 0.



15. Equation of a line is 3x - 4y + 10 = 0. Find its (i) slope ,

(ii) x - and y - intercepts.



16. Reduce the equation of the line  $\sqrt{3}x + y - 8 = 0$  into

normal form. Find the values of p and  $\omega$ .



**19.** Find the equation of a line perpendicular to the line x - 2y + 3 = 0 and passing through the point (1, -2).

**20.** Find the distance of the point (3, -5) from the line 3x - 4y - 26 = 0.



**21.** Find the distance between the parallel lines 3x - 4y + 5 = 0

and 3x - 4y + 7 = 0

**22.** If the lines 2x + y - 3 = 0, 5x + ky - 3 = 0 and 3x - y - 2 = 0 are

concurrent , find the value of k.



**23.** Find the distance of the line 4x - y = 0 from the point P

(4,1) measured along the line making an angle of  $135^{\,\circ}$  with the positive x- axis.

Watch Video Solution

**24.** Assuming that straight lines work as the plane mirror for a point, find the image of the point (1, 2) in the line x - 3y + 4 = 0.



Watch Video Solution

**26.** A line is such that its segment between the lines 5x - y + 4 = 0 and 3x + 4y - 4 = 0 is bisected at the point (1, 5). Obtain its equation.

### Watch Video Solution

27. Show that the path of a moving point such that its distances from two lines 3x - 2y = 5 and 3x + 2y = 5 are

| equal is a | a straight | line. |
|------------|------------|-------|
|------------|------------|-------|



2. The base of an equilateral triangle with side 2a lies along the y-axis such that the mid-point of the base is at the origin. Find vertices of the triangle.



**3.** Find the distance between P( $x_1, y_1$ ) and Q( $x_2, y_2$ ) when :

i. PQ is parallel to the y-axis, ii. PQ is parallel to the x-axis.



**4.** Find a point on the x-axis, which is equidistant from the points (7,6) and (3, 4).



5. Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P(0, -4) and B (8,0).

**6.** Without using the Pythagoras theorem, show that the points (4,4), (3, 5) and (-1,-1) are the vertices of a right angled triangle.

Watch Video Solution

7. Find the slope of the line, which makes an angle of  $30^{\,\circ}\,$  with

the positive direction of y-axis measured anticlockwise.



**8.** Find the value of x for which the points (x, -1) (2,1) and (4,

5) are collinear.



**9.** Without using distance formula, show that points (-2, -1), (4, 0), (3, 3) and (-3, 2) are the vertices of a parallelogram.

**Watch Video Solution** 

10.. Find the angle between the x-axis and the line joining the

points (3, -1) and (4, -2).

Watch Video Solution

**11.** The slope of a line is double of the slope of another line. Iftangent of the angle between them  $\frac{1}{3}$ , find the slopes of the lines. 12. A line passes through  $(x_1, y_1)$  and (h, k). If slope of the line

is m, show that  $k-y_1=m(h-x_1).$ 



13. If three points (h, 0),(a, b) and (0, k) lie on a line, show that

$$rac{a}{h} + rac{b}{k} = 1$$

Watch Video Solution

### Exercise 10 2

1. Write the equations for the x-and y-axes.





5. Intersecting the x-axis at a distance of 3 units to the left of

origin with slope -2.



**6.** Intersecting the y-axis at a distance of 2 units above the origin and making an angle of  $30^{\circ}$  with positive direction of the x-axis.



7. Passing through the points (-1, 1) and (2, -4).

**8.** Find the equation of line which is at Perpendicular distance from the origin is 5 units and the angle made by the perpendicular with the positive x-axis is  $30^{\circ}$ .



9. The vertices of 
$$\Delta PQR$$
 are  $P(2,1), Q(-2,3)$  and  $R(4,5)$ . Find

equation of the median through the vertex R.

Watch Video Solution

10. Find the equation of the line passing through (-3, 5) and perpendicular to the line through the points (2, 5) and (-3, 6).



(1, 0) and (2, 3) divides it in the ratio 1: n. Find the equation of the line.

Watch Video Solution

12. Find the equation of a line that cuts off equal intercepts on

the coordinate axes and passes through the point (2, 3).



**13.** Find equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.



**14.** Find equation of the line through the point(0, 2) making an angle  $\frac{2\pi}{3}$  with the positive x-axis. Also, find the equation of line parallel to it and crossing the y-axis at a distance of 2 units below the origin.

Watch Video Solution

15. The perpendicular from the origin to a line meets it at the

point (-2, 9) find the equation of the line.



**16.** The length L (in centimetrs) of a copper rod is a linear function of its Celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L= 125.134 when C = 110, express L in terms of C.

Watch Video Solution

17. The owner of a milk store finds that, he can sell 980 litres of milk each week at ₹14/litres and 1220 litres of milk each week at ₹16/litre. Assuming a linear relationship between selling price and demand, how many litres could he sells weekly at ₹17/litres?



**18.** P (a, b) is the mid-point of a line segment between axes. Show that equation of the line is  $\frac{x}{a} + \frac{y}{b} = 2$ 

Watch Video Solution

19. Point R (h, k) divides a line segment between the axes in the

ratio 1: 2. Find equation of the line.



20. By using the concept of equation of a line, prove that the

three points (3,0), (-2, - 2) and (8, 2) are collinear.

**1.** Reduce the following equations into slope - intercept form and find their slopes and the y-intercepts.

$$(i)x+7y=0, \qquad (ii)6x+3y-5=0, \qquad (iii)y=0$$

Watch Video Solution

2. Reduce the following equations into intercept form and find

their intercepts on the axes.

 $(i)3x+2y-12=0,\,(ii)4x-3y=6,\qquad(iii)3y+2=0.$ 



**3.** Reduce the following equations into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive X-axis.

$$(i)x-\sqrt{3}y+8=0, (ii)y-2=0, (iii)3t+2=0.$$

**View Text Solution** 

**4.** Find the distance of the point (-1, 1) from the line 12(x+6) = 5(y-2).

Watch Video Solution

5. What are the points on the y-axis whose distance from the

$${\sf line}rac{x}{3}+rac{y}{4}=1{\sf is}\ {\sf 4}\ {\sf units}.$$

6. Find the distance between parallel lines

i. 15x+8y-34= 0 and 15x+8y+31=0

ii. l(x + y) + p = 0 and l(x + y) - r = 0.

Watch Video Solution

7. Find equation of the line parallel to the line 3x - 4y + 2 = 0 and passing through the point (-2, 3).

Watch Video Solution

8. Find equation of the line perpendicular to the line x - 7y + 5 = 0 and having x intercept 3.

9. Find angles between the lines 
$$\sqrt{3}x + y = 1$$
 and  $x + \sqrt{3}y = 1$ .  
Vatch Video Solution

10. The line through the points (h, 3) and (4,1) intersects the

line 7x - 9y - 19 = 0 at right angle. Find the value of h.



**11.** Prove that the line through the point  $(x_1, y_1)$  and parallel

to the line

$$Ax+By+C=0 \ \ ext{is} \ \ A(x-x_1)+B(y-y_1)=0.$$

**12.** Two lines passing through the point (2, 3) intersects each other at an angle of  $60^{\circ}$ . If slope of one line is 2, find equation of the other line.



14. Find the coordinates of the foot of perpendicular from the

point (-1, 3) to the line 3x - 4y - 16 = 0.

15. The perpendicular from the origin to the line y = mx + c meets it at the point (-1, 2). Find the values of m and c.

### Watch Video Solution

16. If p and q are the lengths of perpendiculars from the origin

to the lines  $x\cos heta-y\sin heta=k\cos2 heta$  and  $x\sec heta+y\cos ec heta=k$ , respectively, prove that  $p^2+4q^2=k^2.$ 

## Watch Video Solution

17. In the triangle ABC with vertices A(2,3), B(4, -1) and C(1, 2), find the equation and

length of altitude from the vertex A.



18. If p is length of perpendicular from the origin to the line

whose intercepts on the axes are a and b, then show that

$$rac{1}{p^2} = rac{1}{a^2} + rac{1}{b^2}.$$

Watch Video Solution

#### **Miscellaneous Exercise On Chapter 10**

**1.** Find the values of k for which the line $(k-3)x-ig(4-k^2ig)y+k^2-7k+6=0$ is

(a) Parallel to the x-axis,

(b) Parallel to the y-axis,

(c) Passing through the origin.



2. Find the value of  $\alpha$  and p if the equation  $x \cos \alpha + y \sin \alpha = p$  is the normal form of the line  $\sqrt{3x} + y + 2 = 0$ .

Watch Video Solution

3. Find the equations of the lines, whose sum and product of

intercepts are 1 and -6 respectively.



4. What are the points on the y-axis whose distance from the

line 
$$rac{x}{3}+rac{y}{4}=1$$
 is 4 units.

Watch Video Solution

**5.** Find perpendicular distance from the origin of the line joining the points ( $\cos \theta$ ,  $\sin \theta$ ) and ( $\cos \phi$ ,  $\sin \phi$ ).

Watch Video Solution

**6.** Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x - 7y + 5 = 0 and 3x + y = 0.

7. Find the equation of a line drawn perpendicular to the line

 $rac{x}{4}+rac{y}{6}=1$  through the point , where it meets the y-axis.

#### Watch Video Solution

8. Find the area of the triangle formed by the lines y - x = 0, x + y = 0 and x - k = 0.

Watch Video Solution

**9.** Find the value of p so that the three lines 3x + y - 2 = 0, px + 2y - 3 = 0 and 2x - y - 3 = 0 may intersect at one point.



| 10.                                         | lf         | three       | lines     | whose       | equations | are  |  |
|---------------------------------------------|------------|-------------|-----------|-------------|-----------|------|--|
| y = n                                       | $n_1 x + $ | $c_1,y=m_2$ | $_2x+c_2$ | and $m_3 x$ | $c + c_3$ | are  |  |
| concu                                       | rrent,     |             | then      | S           | show      | that |  |
| $m_1(c_2-c_3)+m_2(c_3-c_1)+m_3(c_1-c_2)=0.$ |            |             |           |             |           |      |  |

Watch Video Solution

11. The equations of the lines through the point (3, 2) which

makes an angle of  $45^{\circ}$  with the line x - 2y = 3 are

Watch Video Solution

12. Find the equation of a line passing through the point of

intersection of the lines 4x + 7y - 3 = 0 and 2x - 3y + 1 = 0 that has equal intercepts on the axes.



14. In what ratio, the line joining (-1, 1) and (5, 7) is divided by the line x + y = 4?

### Watch Video Solution

15. Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x - y = 0.

16. Find the direction in which a straight line must be drawn through the point (-1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.

Watch Video Solution

17. The hypotenuse of a right angled triangle has its ends at the points (1, 3) and (-4, 1). Find an equation of the legs (perpendicular sides) of the triangle.



**18.** Find the image of the points (3, 8) with respect to the line

x + 3y = 7 assuming the line to be a plane mirror.

### Watch Video Solution

**19.** If the lines y = 3x + 1 and 2y = x + 3 are equally inclined to

the line y = mx + 4,  $\left(rac{1}{2} < m < 3
ight)$  , then the values of m are

Watch Video Solution

**20.** If sum of the perpendicular distances of a variable point P(x, y) from the lines x + y - 5 = 0 and 3x - 2y + 6 = 0 is always 10. Show that P must move on a line.



21. Find equation of the line which is equidistant from parallel

lines 9x + 6y - 7 = 0 and 3x + 2y + 6 = 0.



**22.** A ray of light coming from the point (1,2) is reflected at a point A on the x-axis and it passes through the point (5,3). Find the co-ordinates of the point A.



23. Prove that the product of the lengths of the perpendiculars

drawn from the points 
$$\left(\sqrt{a^2-b^2},0
ight)$$
 and  $\left(-\sqrt{a^2-b^2},0
ight)$  to the line  $rac{x}{a}\cos heta+rac{y}{b}\sin heta=1$  is  $b^2$ .

**24.** A person standing at a junction (crossing) of two straight paths represented by the equations 2x - 3y + 4 = 0 and 3x + 4y - 5 = 0 seek to reach the path whose equation is 6x - 7y + 8 = 0 in the least times. Find the equation of the path that he should follow.