

MATHS

BOOKS - A N EXCEL PUBLICATION

BINOMIAL THEOREM

1. Evaluate
$$\left(2+\sqrt{3}
ight)^7+\left(2-\sqrt{3}
ight)^7$$

Watch Video Solution

2. Using binomial theorem evaluate $\left(0.99
ight)^5+\left(1.01
ight)^5$

3. Write the middle term in the expansion of the following,

$$\left(x+rac{2}{\sqrt{x}}
ight)^{17}$$

6. The first term in the expansion of $(1 + ax)^n$ in ascending powers of x are $1 + 12x + 64x^2$, find n and a.

7. If $C_0, C_1, C_2...C_n$ denote the coefficients in the binomial expansion of $(1+x)^n$, prove that $C_0 + 3C_1 + 5C_2 + ... + (2n+1)C_n = (n+1)2^n$) Watch Video Solution **8.** Expand the following expressions $(1+2x)^5$ Watch Video Solution **9.** Expand the following expressions $\left(\frac{2}{x} + \frac{x}{2}\right)^{\circ}$ Watch Video Solution **10.** Expand the following expressions $\left(2x-3
ight)^6$ Watch Video Solution

11. Expand
$$\left(\frac{x}{3} + \frac{1}{x}\right)^5$$

Watch Video Solution
12. Expand $\left(x + \frac{1}{x}\right)^6$
Watch Video Solution

13. Using Binomial theorem evaluate the following $\left(96
ight)^3$

Watch Video Solution

14. Using Binomial theorem evaluate the following $\left(102
ight)^5$

19. Find
$$(x+1)^6+(x-1)^6$$
. Hence, or otherwise evaluate $\left(\sqrt{2}+1
ight)^6+\left(\sqrt{2}-1
ight)^6$

20. Show that $9^{n+1} - 8n - 9$ is divisible by 64.

Watch Video Solution

21. Prove that
$$\sum_{r=0}^n 3^r \ \hat{} \ nC_r = 4^n$$

Watch Video Solution

22. Find the coefficient of x^5 in $(x + 3)^8$.

27. Find the $13^t h$ term in the expansion of

$$\left(9x-rac{1}{3\sqrt{x}}
ight)^{18}$$

Watch Video Solution

28. Write the middle term in the expansion of the following,

$$\left(3-rac{x^3}{6}
ight)^7$$

Watch Video Solution

29. Find the middle term in the expansion of $\left(rac{x}{3}+9y
ight)^{10}$

Watch Video Solution

30. In the expansion of $(1+a)^{m+n}$, prove that the coefficient of a^m and

 a^n are equal.`

31. The coefficients of the $(r-1)^{th}$, r^{th} and $(r+1)^{th}$ terms in the expansion of $(x+1)^n$ are in the ratio 1:3:5. Find n and r

O Watch Video Solution

32. Prove that the coefficient of x^n in the expansion of $\left(1+x
ight)^{2n}$ is twice

the coefficient of x^n in the expansion of $\left(1+x
ight)^{2n-1}$

Watch Video Solution

33. Find the positive value of m for which the coefficient of x^2 in the expansion of $(1+x)^m$ is 6.

34. Consider the expansion of $\left(3x - \frac{x^3}{6}\right)^8$ Find the general term in the

expansion

Watch Video Solution

35. Consider the expansion of
$$\left(3x - \frac{x^3}{6}\right)^8$$
 How many terms are there in

the expansion?

Watch Video Solution

36. Consider the expansion of
$$\left(3x-rac{x^3}{6}
ight)^8$$
 Find the middle term in the

expansion.

Watch Video Solution

37. Find the coefficient of middle term in the expansion of $(1 + a)^8$

38. Find the coefficient of the middle term in the expansion of $\left(1+a\right)^7$

39. Consider
$$\left(\sqrt{2}+3^{1/5}
ight)^{10}$$
 Find the $r+1^{th}$ terms in the expansion of

the given expression

Watch Video Solution

40. Consider $\left(\sqrt{2}+3^{1/5}
ight)^{10}$ If the $r+1^{th}$ term is rational , find r. Hence ,

find the sum of the rational terms in the expansion of $\left(\sqrt{2}+3^{1/5}
ight)^{10}$

Watch Video Solution

41. Write the first three terms in the expansion of $(1+ax)^n, n\in N$

42. If the first three terms in the expansion of $(1 + ax)^n$ are 1,6x and $16x^2$, find a and n

			$\begin{pmatrix} 1 \\ 23 \end{pmatrix}$	
43. If t_r denotes the r^t	^h term in the	expansion of	$=\left(x+rac{1}{x} ight)$,find t_{12}

```
and t_{13} Hence ,prove that x^2 t_{13} = t_{12}
```

Watch Video Solution

Watch Video Solution

44. Let c_r denote the binomial coefficient nC_r Write the factorial formula

for c_r

45. Prove that
$$rac{{}^nC_r}{{}^nC_{r-1}}=rac{n-r+1}{r}$$

46. Let c_r denote the binomial coefficient nC_r Hence, show that $\frac{C_1}{C_0} + 2\frac{C_2}{C_1} + 3. \frac{C_3}{C_2} + ... + n. \frac{C_n}{C_{n-1}} = \frac{n(n+1)}{2}$ Watch Video Solution

47. Given that ${}^nC_r = {}^nC_{n-r}$ or $C_r = C_{n-r}$ Prove that $aC_0 + (a+b)C_1 + ... + (a+nb)C_n = (2a+nb)2^{n-1}$ Hence, prove that $C_0 + 4C_1 + 7C_2 + ... + (3n+1)C_n = (3n+2)2^{n-1}$

Watch Video Solution

48. Given that ${}^{n}C_{r} = {}^{n}C_{n-r}$ or $C_{r} = C_{n-r}$ Prove that $aC_{0} + (a+b)C_{1} + ... + (a+nb)C_{n} = (2a+nb)2^{n-1}$ Hence, prove that $C_{0} + 5C_{1} + 9C_{2} + ... + (4n+1)C_{n} = (4n+2)2^{n-1}$

49. What is the $\left(r+1
ight)^{th}$ term in the expansion of $\left(3x+2y
ight)^8$?

50. Using the $(r+1)^{th}$ term, find the 3rd,4th and 5th terms in the expansion of $(3x+2y)^8$

Watch Video Solution

51. find the middle term in the expansion of $\left(3x+2y
ight)^8$

Watch Video Solution

52. Expand
$$(1+x)^4$$
, $(1-x)^3$ and $(1-x)^2$

53. Expand
$$\left(1-x+x^2
ight)^4$$

54. Consider the expansion of
$$\left(\frac{4x}{5} - \frac{5}{2x}\right)^9$$
 Find the general term in

the expansion

Watch Video Solution

55. Consider the expansion of
$$\left(\frac{4x}{5} - \frac{5}{2x}\right)^9$$
 Find the 7th term in the

expansion

Watch Video Solution

56. Consider the expansion of
$$\left(rac{4x}{5}-rac{5}{4x}
ight)^8$$
 Find the $(r+1)^{th}$ term in

the expansion

57. Consider the expansion of
$$\left(\frac{4x}{5} - \frac{5}{4x}\right)^8$$
 Find the number of terms

in the expansion

Watch Video Solution

58. Consider the expansion of
$$\left(\frac{4x}{5} - \frac{5}{4x}\right)^8$$
 The middle term in the

expansion is ...{4th,5th,6th]

Watch Video Solution

59. Consider the expansion of
$$\left(\frac{4x}{5} - \frac{5}{4x}\right)^8$$
 Find the fourth term from

the end in the expansion.

60. Consider the expansion of $\left(3x^3+rac{2}{x^2}
ight)^{40}$ Find the general term in

the expansion

Watch Video Solution

61. Consider the expansion of $\left(3x^3 + \frac{2}{x^2}\right)^{40}$ Assuming the term containing x^{20} as the $(r+1)^{th}$ term, find the coefficient of x^{20} in the expansion of $\left(3x^3 + \frac{2}{x^2}\right)^{40}$

Watch Video Solution

62. Consider the expansion of $\left(3x^2-rac{1}{2x^3}
ight)^{10}$ Find the $\left(r+1
ight)^{th}$ term in

the expansion

in the expansion

71. Consider the expansion of $(x + a)^n$ If these are 112,7 and $\frac{1}{4}$ respectively, find x, a, n

72. Expand $(1 + ax)^n$ upto the third term if n is a positive integer

Watch Video Solution

73. If the first three terms in the expansion of $(1 + ax)^n$ are 1, -21xand $216x^2$ respectively, prove that $a = -\frac{3}{7}$ and n=49.

Watch Video Solution

74. What is the coefficient of the $(r + 1)^{th}$ term in the expansion of $(1 + x)^n$?

76. If they are in A.P, find the possible values of n

View Text Solution

77. Expand
$$2^{3n}$$
 by writing $2^{3n} = (1+7)^n$

Watch Video Solution

78. Using binomial theorem prove that $2^{3n} - 7n - 1$ is divisible by 49,

where $n \in N$

79. prove the result
$$(n + 1)C_r =^n C_{r-1} +^n C_r$$

80. Prove that
$${}^{n+1}C_{r+1}=rac{n+1}{r+1}{}^nC_r$$

Watch Video Solution

81.

Prove

that

 $(C_0+C_1)(C_1+C_2)(C_2+C_3)...(C_{n-1}+C_n)=rac{C_0C_1C_2...C_{n-1}(n+1)^n}{n!}$

Watch Video Solution

82. Prove that
$${}^{n+1}C_{r+1}=rac{n+1}{r+1}{}^nC_r$$

83. Prove that
$$C_0 + \frac{C_2}{3} + \frac{C_4}{5} + \dots = \frac{2^n}{n+1}$$

Watch Video Solution
84. Given that $\frac{C_r}{C_{r-1}} = \frac{n-r+1}{r}$ Evaluate $\frac{C_1}{C_0}, \frac{C_2}{C_1}$ and $\frac{C_3}{C_2}$
Watch Video Solution
85. Given that $\frac{C_r}{C_{r-1}} = \frac{n-r+1}{r}$ Prove that $\left(1 + \frac{C_1}{C_0}\right) \left(1 + \frac{C_2}{C_1}\right) \dots \left(1 + \frac{C_n}{C_{n-1}}\right) = \frac{(n+1)^n}{n!}$
Watch Video Solution

86. Given that $C_0+C_1x+C_2x^2+\ldots+C_nx^n=(1+x)^n$ prove that $C_0+5.\ C_1+5^2.\ C_2+\ldots+5^n.\ C_n=6^n$

96. Prove that
$$C_0C_2 + C_1C_3 + \ldots + C_{n-2}C_n = {}^{2n}C_{n-2}$$

97. Given that
$$\frac{1}{r+1}{}^{n}C_{r} = \frac{1}{n+1}{}^{n+1}C_{r+1}$$

Prove that $2^{10}C_{0} + \frac{2^{2}}{2}{}^{10}C_{1} + \frac{2^{3}}{3}{}^{10}C_{2} + \dots + \frac{2^{11}}{11}{}^{10}C_{10} = \frac{3^{11}-1}{11}$

98. Find a, b and n in the expansion of $\left(a+b
ight)^n$ if the first three terms of

the expansion are 729,7290 and 30375 respectively.

99. Find a if the coefficients of x^2 and x^3 in the expansion of $(3 + ax)^9$

are equal

100. Find the coefficient of x^5 in the product $(1+2x)^6(1-x)^7$ using binomial theorem.

Watch Video Solution

101. If a and b are distinct integers prove that a-b is a factor of a^n-b^n

whenever n is a positive integer.

102. Evaluate
$$\left(\sqrt{3}+\sqrt{2}
ight)^6-\left(\sqrt{3}-\sqrt{2}
ight)^6$$

103. Find the value of
$$(a^2 + \sqrt{a^2 - 1})^4 + (a^2 - \sqrt{a^2 - 1})^4$$

Watch Video Solution
104. Find an approximation of $(0.99)^5$ using the first three terms of its expansion
Watch Video Solution
105. Expand using Binomial theorem $(1 + \frac{x}{2} - \frac{2}{x})^4, x \neq 0$
Watch Video Solution
106. Find the expansion of $(3x^2 - 2ax + 3a^2)^3$ using Binomial theorem