

MATHS

BOOKS - A N EXCEL PUBLICATION

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

Question Bank

1. Express the following in the form a+ib (i)

$$(4i)\left(\frac{1}{7}i\right)$$

(-3i)
$$\left(\frac{6}{7}i\right)$$

3. Express each one of the following in the form

a+ib. (i)
$$\frac{5+4i}{4+5i}$$

4. Express each one of the following in the form

a+ib. (i)
$$\dfrac{i\sqrt{-9}+7i}{1+\sqrt{-1}}$$

Watch Video Solution

Prove that the complex number

$$rac{3+2i}{2-3i}+rac{3-2i}{2+3i}$$
 is purely real

6. If
$$(\cos \theta - i \sin \theta)^2 = x - iy$$
, show that $x^2 + y^2 = 1$

7. Find the modulus of the complex number $\frac{(1+i)(2+i)}{3+i}$

8. If

$$(1+i)(1+2i)(1+3i)...(1+ni)=x+iy$$
,

show that 2.5.10... $\left(1+n^{2}
ight)=x^{2}+y^{2}$

9. Express the following complex numbers in a+ib form. (a) $(5\mathrm{i}) \left(-\frac{3}{5}i\right)$

10. Express the following complex numbers in a+ib form. (b) i^9+i^{19}

11. Express the following complex numbers in a+ib form. (c) $i^{\,-39}$

Watch Video Solution

12. Express the following in a+ib form

$$3(7+7i)+i(7+7i)$$

13. Express the following in a+ib form

$$(1-i)-(-1+6i)$$

Watch Video Solution

14. Express the following in a+ib form

$$\left(rac{1}{5}+irac{2}{5}
ight)-\left(4+rac{5}{2}i
ight)$$

15. Express the following in a+ib form.

$$\left\lceil \left(rac{1}{3}+irac{7}{3}
ight) + \left(4+irac{1}{3}
ight)
ight
ceil - \left\lceil -rac{4}{3}+i
ight
ceil$$

Watch Video Solution

16. Express the following in a+ib form. $(1-i)^4$

Watch Video Solution

17. Express the following in a+ib form

$$\left(rac{1}{3}+3i
ight)^3$$

$$\bigg(-2-\frac{1}{3}i\bigg)^3$$

19. Find the multiplicative inverse of the following complex number 4-3i

20. Find the multiplicative inverse of the following,

21. Find the multiplicative inverse of the following complex number -i

22. Express the following expression in the form

a+ib
$$\dfrac{\left(3+i\sqrt{5}
ight)\!\left(3-i\sqrt{5}
ight)}{\left(\sqrt{3}+\sqrt{2}i
ight)-\left(\sqrt{3}-i\sqrt{2}
ight)}$$

23. Write the values of i^2 , i^4 and i^6

- **24.** Show that $1 + i^2 + i^4 + i^6 = 0$
 - **Watch Video Solution**

25. Using the value of i^2 , prove that $\frac{1}{i} = -i$

Watch Video Solution

26. Prove that $\left(1+i\right)^4\!\left(1+rac{1}{i}\right)^4=16$

Watch Video Solution

27. Express $\frac{(3-i)^2}{2 + i}$ in the form x+iy

28. Find the conjugate of
$$\frac{(3-i)^2}{2+i}$$

Watch Video Solution

29. Using the results $\left|z^{2}\right|=\left|z\right|^{2}$ and

$$\left|rac{z_1}{z_2}
ight|=rac{|z_1|}{|z_2|}$$
 , find the modulus of $rac{\left(3-i
ight)^2}{2+i}$

Watch Video Solution

30. Express $\frac{1}{1-2i}+\frac{3}{1+i}$ in the form x + iy

31. Find the modulus of the complex number

$$igg(rac{1}{1-2i}+rac{3}{1+i}igg)igg(rac{3+4i}{2-4i}igg)$$

32.

$$\sqrt{-16} + 3\sqrt{-25} + \sqrt{-36} - \sqrt{-625}$$

33. A student writes the formula $\sqrt{ab} = \sqrt{a}\sqrt{b}$.

Then he substitutes a = -1, b = -1 and finds 1 = -1.

34. Evaluate $4x^2 + 8x + 35$, when

Explain where he is wrong?

 $x = 2 + \sqrt{-3}$

35. Consider the complex number $z_1 = 3 + i$ and $z_2 = 1 + i$. What is the conjugate of z_2 ?

Watch Video Solution

36. Consider the complex number $z_1 = 3 + i$ and $z_2=1+i$.Find $rac{1}{-}$

Watch Video Solution

37. Consider the complex number $z_1 = 3 + i$ and $z_2=1+i$.Using the value of $rac{1}{z}$, find $rac{z_1}{z}$

38. Prove that
$$\left| \dfrac{\left(a+i\right)^2}{2a-i}
ight| = \dfrac{a^2+1}{\sqrt{4a^2+1}}$$

39. If
$$\dfrac{\left(a+i
ight)^2}{2a-i}=p+iq$$
, prove that $p^2+q^2=\dfrac{\left(a^2+1
ight)^2}{4a^2+1}$

40. If
$$x=\frac{1+i}{\sqrt{2}}$$
, prove that $x^2=i$

Watch Video Solution

41. If
$$x=rac{1+i}{\sqrt{2}}$$
.Prove

 $x^6 + x^4 + x^2 + 1 = 0$

that

Watch Video Solution

42. Prove that $\left| \frac{1+i}{1-i} \right| = 1$

43. If a+ib =
$$\sqrt{rac{1+i}{1-i}}$$
, prove that $a^2+b^2=1$

- **44.** Prove that $|\cos \theta i \sin \theta| = 1$
 - **Watch Video Solution**

45. If $\left(\cos \theta - i \sin \theta \right)^2 = x - i y$, show that $x^2 + y^2 = 1$

46. Complete the following table

Complex number (z)	Re (z)	Im (z)	Z	z
3 + 7 <i>i</i>	, '			
1-i3	·			
9+3i ⁷				
$(1-i)^4$				

Watch Video Solution

47. When two complex numbers are equal? Find the real values of x and y for which 3x+2iy-ix+5y=7+5i

48. Match the following

Column A	Column B		
i ⁴	, –1		
i ⁶	i		
i ¹¹	-i		
i ¹⁷ .	1		
	0		

Watch Video Solution

49. Fill in the blanks by choosing the correct answer from the bracket $\overline{2i^3-i^2}=\dots,i^{-5}=\dots$ (1-2i,1+2i,i,-i,1,-1) Also express

 $ar{z}_1$

 $z_1 z_2$

x+iy

50. Suppose $z_1=1-i$ and $z_2=-2+4i$ Find

51. Suppose $z_1=1-i$ and $z_2=-2+4i$ Find

Watch Video Solution

 $\overline{2i^3-i^2}+\left(12i+i^{-5}
ight)-\left(\overline{5-i^5}
ight)$ in the form

Watch Video Solution

52. Suppose
$$z_1=1-i$$
 and $z_2=-2+4i$ Find Im $\left(rac{z_1z_2}{z_1}
ight)$ and Re $\left(rac{z_1z_2}{z_1}
ight)$. Hence, find $\left|rac{z_1z_2}{z_1}
ight|$

moduli

53. Suppose $z_1=1-i$ and $z_2=-2+4i$ Joseph evaluted $\left|\frac{z_1z_2}{z_1}\right|$ using the following properties (a)modulus of a quotient is the quotient of the

Modulus of a product is the product of the moduli

(c) Modulus of \bar{z} =Modulus of z

Write the steps carried out by Joseph

Watch Video Solution

54. Suppose z = x + iy and w = $\frac{1-iz}{z-i}$ Find 1 - iz and z - 1 in the standard form of a complex number.

55. Suppose
$$z = x + iy$$
 and $w = \frac{1 - iz}{z - i}$ Find $|w|$. If $|w| = 1$, prove that z is purely real

- **56.** Consider the complex number $z_1=2-i$ and $z_2= \ -2+i$ Find $rac{z_1z_2}{z_1}.$ Hence, find $\left|rac{z_1z_2}{z_1}
 ight|$
 - **Watch Video Solution**

57. Consider the complex number
$$z_1=2-i$$
 and $z_1=-2+i$ Raju prove that $\left|rac{z_1z_2}{z_1}
ight|=|z|_2$

and using it he derived the value of $\left|\frac{z_1z_2}{z_1}\right|$. Write the steps written by Raju.

Watch Video Solution

58. Consider the complex number
$$z_1=2-i$$
 and $z_2=2+i$ Find $\dfrac{1}{z_1z_2}.$ Hence, prove than $I_m\Bigl(\dfrac{1}{z_1z_2}\Bigr)=0$

59. Given that for any complex number z,

$$\leftert z
ightert ^{2}=zar{z}$$
 . Prove that

 $\left|z_{1}+z_{2}
ight|^{2}=\left|z_{1}
ight|^{2}+2Re(z_{1}ar{z}_{2})+\left|z_{2}
ight|^{2}$

60. Given that for any complex number z,

$$|z|^2=zar{z}$$
 . Prove that

$$|z_1+z_2|^2+|z_1-z_2|^2=2\Big\lceil |z_1|^2+|z_2|^2\Big
ceil$$

where z_1 and z_2 are any two complex numbers.

61. Represent the following complex numbers as points in the argand plane 2i

Watch Video Solution

62. Represent the following complex numbers as points in the argand plane 3 - i

Vatch Video Solution

63. Represent the following complex numbers as points in the argand plane the conjugate of 4 - i

64. Represent the complex number z=1+i in the polar form.

65. Represent each of the following numbers in polar form. $-\sqrt{3}+i$

66. Represent each of the following numbers in polar form. 4i

Watch Video Solution

67. Find the modulus-amplitude form of the complex number $\frac{1+7i}{\left(2-i\right)^2}$

Watch Video Solution

68. Prove that $(\cos 45^\circ + i \sin 45^\circ)^2 = i$

69. Represent the quotient

$$rac{7 \Big(\cos \Big(rac{3\pi}{4} \Big) + i \sin \Big(rac{3\pi}{4} \Big) \Big)}{21 \Big(\cos \Big(rac{\pi}{4} \Big) + i \sin \Big(rac{\pi}{4} \Big) \Big)}$$
 in polar form.

70. Show that the points representing the complex numbers 3+2i, 2-i and -7i are collinear.

71. Find the modulus and argument of the following complex number $z = -1 - i\sqrt{3}$

Watch Video Solution

72. Represent each of the following numbers in polar form. $-\sqrt{3}+i$

Watch Video Solution

73. Convert the following complex numbers into polar form 1 - i

74. Convert the following complex numbers into polar form -1 + i

75. Convert the following complex numbers into polar form -1 -i

76. Convert the following complex numbers into polar form -3

77. Represent the complex number $\sqrt{3}+i$ in the polar form.

78. express the complex number i in the polar form.

79. What is the conjugate of 2 + i?

Watch Video Solution

80. Express $(2+3i)^2$ in the form x + iy

82. Solve
$$rac{1}{z} + rac{1}{2+i} = rac{1}{1+3i}$$

Watch Video Solution

83. If |a+ib|=1 then what is the value of $a^2 + b^2$?

84. If
$$\left(a^2+b^2\right)=1$$
,Prove that

$$\frac{1+b+ai}{1+b-ai} = b+ai$$

Watch Video Solution

85. Match the following

z .	\overline{z}
1 + i ²⁷	, –2
$6+i^3$	0
i^2-i^4	1+i
$1 + i^{22} + i^{220} - i^{1000}$	6+i
	. 2

86. If $x=4+\sqrt{7}i$, find x^2 and x^3 .Hence, find the value of $x^3 - 4x^2 - 9x + 97$

Watch Video Solution

87. If
$$\dfrac{\left(a+i
ight)^2}{2a-i}=p+iq$$
, prove that $p^2+q^2=\dfrac{\left(a+1
ight)^2}{4a^2+1}$

88. Sheeba proved the same relation stated above by expressing $\frac{\left(a+i\right)^{2}}{2a-i}$ in x+iy form. Write

the steps written by Sheeba

Watch Video Solution

89. Match the following

Complex Number	Polar form
$4\sqrt{3}+4i$	$2\left(\cos\left(\frac{-2\pi}{3}\right) + i\sin\left(\frac{-2\pi}{3}\right)\right)$
$-\sqrt{3}+i$	$8\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$
$-1-i\sqrt{3}$	$2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$
$\frac{1+2i}{1-3i}$	$2\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$
	$\frac{1}{\sqrt{2}} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$

90. Suppose $z_1=2(\cos 60^\circ+i\sin 60^\circ)$ and

$$z_2=4(\cos 30^\circ + i {\sin 30^\circ})$$
 Find $z_1 z_2$

91. Suppose $z_1=2(\cos 60^\circ+i\sin 60^\circ)$ and $z_2=4(\cos 30^\circ+i\sin 30^\circ)$ find $rac{z_1}{z_2}$

92. Suppose $z_1=2(\cos 60^\circ+i\sin 60^\circ)$ and $z_2=4(\cos 30^\circ+i\sin 30^\circ)$ Find $z_1^2z_2^3$

93. Express
$$\frac{1-3i}{1+2i}$$
 in the form x+iy

94. Find the polar form of the complex number

$$\frac{1-3i}{1+2i}$$

95. Convert the following complex numbers into polar form 1 - i

Watch Video Solution

96. Represent the complex number $\sqrt{3}+i$ in the polar form.

Watch Video Solution

98. Express $(1-i)ig(\sqrt{3}+iig)$ in polar form

99. Plot the points represented by the complex numbers 1+i, 2+i, 2+3i, 1+3i

100. What are the cartesian co-ordinates of the points 1+i, 2+i, 2+3i, 1+3i?

Watch Video Solution

101. If two points P and Q are represented by the complex numbers z_1 and z_2 prove that

$$PQ = |z_1 - z_2|$$

102. If the points P,Q,R,S are representing the complex numbers -1, 3i, 3+2i and 2-i respectively on the argand plane, prove that PQRS is a square

103. If
$$z = x+iy$$
, prove that $arg(z -1) = tan^{-1} \left(\frac{y}{x-1}\right)$ and $arg(z+1) = tan^{-1} \left(\frac{y}{x+1}\right)$

104. If
$$arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{2}$$
, show that $x^2 + y^2 - 1 = 0$

105. Express $\sqrt{3}-i$ in polar form using the polar form of $\sqrt{3}+i$

106. Use De-Moivere's theorem to find $\left(\sqrt{3}-i\right)^9$ and $\left(\sqrt{3}-i\right)^{-1}$ in rectangular form (x+iy form)

107. Determine also, for which values of $eq \psi lon Z, \left(\sqrt{3}-i\right)^n$ is real

108. Express 1+i in modulus amplitude form

watch video Solution

109. Prove that $(1+i)^4 = -4$

Watch Video Solution

110. Represent the complex number $1+\sqrt{3}i$ in the polar form.

Watch Video Solution

111. What is the polar form of $1 - \sqrt{3}i$?

112. Prove that

$$\left(1+\sqrt{3}i
ight)^n+\left(1-\sqrt{3}i
ight)^n=2^{n+1}\cos\!\left(rac{n\pi}{3}
ight)$$

for any positive integer n

113. Solve : $x^2 - 2x + 4 = 0$

114. If lpha and eta are the roots of $x^2-2x+4=0$,

Prove that $lpha^n + eta^n = 2^{n+1} \cos \left(rac{n\pi}{3}
ight)$

115. Express
$$\dfrac{1+i}{\sqrt{3}}+i$$
 in the form x + iy. Hence, find the polar form of $\dfrac{1+i}{\sqrt{3}}+i$

116. Nisha derived the polar form of $\frac{1+i}{\sqrt{3}}+i$

by using the polar forms of (1+i) and $\sqrt{3}+i$.

Write the steps followed by Nisha.

View Text Solution

117. Using the polar form and x + iy form of

$$rac{1+i}{\sqrt{3}}+i$$
, prove that $rac{\cos\pi}{12}=rac{\sqrt{3}+1}{2}\sqrt{2}$ and

$$\frac{\sin\pi}{12} = \frac{\sqrt{3}-1}{2}\sqrt{2}$$

View Text Solution

118. Fill in the blank by choosing the correct answer from the bracket. If z is any complex number, $z\bar{z}=....\left(|z|^2,|z|,0,1\right)$

Watch Video Solution

119. Suppose α and β are two complex numbers so that $|\beta|$ = 1. Raju proved $\left|\frac{\beta-\alpha}{1-\overline{\alpha}\beta}\right|$ = 1 in the following way. Fill in the blanks and write the complete solution.

$$\left| \frac{\beta - \alpha}{1 - \overline{\alpha} \beta} \right| = \left| \frac{\beta - \alpha}{\beta \overline{\beta} - \overline{\alpha} \beta} \right| = \left| \frac{\beta - \alpha}{\beta (...)} \right| = \frac{|...|}{|\beta||...|}$$

120. Match the following

Complex number	Polar form
1 – i	$3(\cos \pi + i \sin \pi)$
-3	$\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right)+i\sin\left(-\frac{\pi}{4}\right)\right)$
-1+i	$\sqrt{2}\left(\cos\frac{9\pi}{4} + i\sin\frac{9\pi}{4}\right)$
$\sqrt{3} + i$	$\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$
	$\sqrt{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$

Watch Video Solution

121. Express the following in a+ib form. $\left(1-i\right)^4$

Watch video Solution

122. prove the following. $\left(\sqrt{3}+i\right)^6=-64$

Watch Video Solution

123. prove that $(-1+i)^2 = -2i$

Watch Video Solution

124. Solve $x^2 + 3 = 0$

125. Solve the equation $x^2+3=0$

Watch Video Solution

126. Solve $2x^2 + x + 1 = 0$

Watch Video Solution

127. Solve: $x^2 + 3x + 9 = 0$

128. Solve: $-x^2 + x - 2 = 0$

Watch Video Solution

129. Solve $x^2 + 3x + 5 = 0$

Watch Video Solution

130. Solve: $x^2 - x + 2 = 0$

131. Solve: $\sqrt{2}x^2 + x + \sqrt{2} = 0$

Watch Video Solution

132. Solve: $\sqrt{3}x^2 - \sqrt{2}x + 3\sqrt{3} = 0$

Watch Video Solution

133. Solve: $x^2 + x + \frac{1}{\sqrt{2}} = 0$

134. Solve: $x^2 + \frac{x}{\sqrt{2}} + 1 = 0$

Watch Video Solution

135. Solve: $x^2 + x + 1 = 0$

Watch Video Solution

136. Solve: $\sqrt{5}x^2 + x + \sqrt{5} = 0$

137. Solve: $\sqrt{2}x^2 - x - \sqrt{2} = 0$

Watch Video Solution

138. Solve:
$$x^2+rac{x}{\sqrt{3}}+1=0$$

Watch Video Solution

139. Evaluate
$$\left[i^{18} + \left(rac{1}{i}
ight)^{25}
ight]^3$$

140. For any two complex numbers z_1 and z_2

prove that

$$Re(z_1z_2) = Re(z_1)Re(z_2) - Im(z_1)Im(z_2)$$

141. Reduce
$$\left(\frac{1}{1-4i}-\frac{2}{1+i}\right)\left(\frac{3-4i}{5+i}\right)$$
 to the standard form

142. If
$$x-iy=\sqrt{rac{a-ib}{c-id}}$$
, prove that $\left(x^2+y^2
ight)^2=rac{a^2+b^2}{c^2+d^2}$

Watch Video Solution

143. Convert the following in to the polar form

$$\frac{1+7i}{\left(2-i\right)^2}$$

144. Consider the complex number $z=rac{1+3i}{1-2i}$.Write z in polar form.

145. Solve the following equations
$$3x^2-4x+rac{20}{3}=0$$

146. Solve the following equations
$$x^2-2x+rac{3}{2}=0$$

147. Solve the following equations

$$27x^2 - 10x + 1 = 0$$

148. Solve the equation $21x^2 - 28x + 10 = 0$

149. If
$$z_1=2-i, z_2=1+i$$

Hence find
$$\left| rac{z_1+z_2+1}{z_1-z_2+i}
ight|$$

Watch Video Solution

150. If
$$a+ib=rac{\left(x+i
ight)^2}{2x^2+1}$$
, prove that $a^2+b^2=rac{\left(x^2+1
ight)^2}{\left(2x^2+1
ight)^2}$

$$+ v = \frac{1}{(2x^2 + 1)^2}$$

151. Let
$$z_1=2-i, z_2=-2+i.$$
 Find Re (z_1z_2)

152. Let
$$z_1 = 2 - i, z_2 = -2 + i.$$
 Find Im

$$\left(\frac{1}{z_1\bar{z}_1}\right)$$

153. Find the modulus and argument of the complex number $\frac{1+2i}{1-3i}$

Watch Video Solution

154. Find the real numbers x and y if (x-iy)(3+5i) is the conjugate of - 6 - 24i

155. Find the modulus of
$$\dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}$$

watch video Solution

156. If
$$(x+iy)^3=u+iv$$
, then show that

157. If lpha and eta are different complex numbers with |eta|=1, then find $\left|rac{eta-lpha}{1-\overlinelpha\,eta}
ight|$

158. Find the number of non zero integral solutions of the equation $\left|1-i\right|^x=2^x$

159. If (a+ib) (c+id) (e+if) (g+ih) = A+iB, then show that
$$(a^2+b^2) \left(c^2+d^2\right) \left(e^2+f^2\right) \left(g^2+h^2\right) = A^2+B^2$$

160. If $\left(\frac{1+i}{1-i}\right)^m=1$ then find the least

integral value of m

