# ©゙’doubtnut 

India's Number 1 Education App

## MATHS

## BOOKS - A N EXCEL PUBLICATION

## CONIC SECTION

## Question Bank

1. Find the equation of the circle with (a)
centre ( 0,2 ) and radius 2 (b) centre ( $-2,3$ ) and
radius 4
2. Find the equation of the circle in following cases.
centre $\left(\frac{1}{2}, \frac{1}{4}\right)$ and radius $\frac{1}{12}$.

## - Watch Video Solution

3. Find the equation of the circle with centre
$(1,1)$ and radius $\sqrt{2}$

- Watch Video Solution

4. Find the equation of the circle with centre (-a,-b) and radius $\sqrt{a^{2}-b^{2}}$

## D Watch Video Solution

5. Find the centre and the radius of the following circle $(x+5)^{2}+(y-3)^{2}=36$
6. Find the centre and radius of the following
circles.
$x^{2}+y^{2}-4 x-8 y-45=0$

## - Watch Video Solution

7. Find the centre and radius of the circle.
$x^{2}+y^{2}-8 x+10 y-12=0$.

- Watch Video Solution

8. Find the centre and radius of the following circles.
$2 x^{2}+2 y^{2}-x=0$

## D Watch Video Solution

9. Find the equation of the circle passing
through the points $(4,1)$ and $(6,5)$ and whose centre is on the line $4 x+y=16$
10. Find the equation of the circle passing through the points $(2,3)$ and $(-1,1)$ and whose centre is on the line $x-3 y-11=0$

## - Watch Video Solution

11. Find the equation of the circle with radius 5
whose centre lies on $x$-axis and passes
through the point $(2,3)$.

- Watch Video Solution

12. Find the equation of the circle passing through $(0,0)$ and making intercepts $a$ and $b$ on the co-ordinate axes.

## D Watch Video Solution

13. Find the equation of the circle with centre
$(2,2)$ and passing through the point $(4,5)$.

## D Watch Video Solution

14. Does the point $(-2.5,3.5)$ lie inside, outside or on the circle $x^{2}+y^{2}=25$

## - Watch Video Solution

15. Consider a circle with centre $(2,-1)$ and which passes through $(3,6)$ Find the radius of the circle

## - Watch Video Solution

16. Consider a circle with centre $(2,-1)$ and which passes through (3,6).Find the equation of the circle

## D Watch Video Solution

17. Find the point of intersection of the lines
$3 x-y=2$ and $x+2 y=3$

D Watch Video Solution
18. If the lines $3 x-y=2$ and $x+2 y=3$ are two
diameters of a circle and if the circle passes
through (2,0), find the equation of the circle.

## D Watch Video Solution

19. If $(-a,-a)$ are the co-ordinates of a point which lies on $x-2 y=3$, find the value of a

- Watch Video Solution

20. Find, the equation of the circle which touches both the axes and whose centre lies on $x-2 y=3$

## D Watch Video Solution

21. Consider a triangle whose sides are along
$x+y=2,3 x-4 y=6$ and $x-y=0$

Find the vertices of the triangle
22. Consider a triangle whose sides are along $x+y=2,3 x-4 y=6$ and $x-y=0$.Prove that the triangle is right angled

## D Watch Video Solution

23. Consider a triangle whose sides are along
$x+y=2,3 x-4 y=6$ and $x-y=0$. Find the mid point of the hypotenuse and the length of the hypotenuse
24. Consider a triangle whose sides are along
$x+y=2,3 x-4 y=6$ and $x-y=0$

Find the equation of the circum circle of the triangle

## D Watch Video Solution

25. Consider the points $A(4,3), B(8,-3)$ and $C$ $(0,9)$. Find the slopes of $A B$ and $B C$
26. Consider the points $A(4,3), B(8,-3)$ and $C$ $(0,9)$

Prove that $A, B, C$ can't lie on a circle

## D Watch Video Solution

27. 

Express
the
equation
$2 x^{2}+2 y^{2}-3 x+4 y-1=0 \quad$ in $\quad$ standard
form

- Watch Video Solution

28. Find the centre and radius of the circle

## D View Text Solution

29. Prove that the equations of concentric circles differ only in the constant term

- View Text Solution

30. Find the radius and hence the area of the
circle $x^{2}+y^{2}-6 x+12 y+15=0$
31. Find the equation of the circle concentric with the circle $x^{2}+y^{2}-6 x+12 y+15=0$ and double of its area

## - Watch Video Solution

32. Consider
the
circle
$x^{2}+y^{2}-4 x-6 y-3=0$. What is the general form of the equation of a circle concentric with the given circle?

$$
\begin{aligned}
& \text { 33. Consider } \\
& x^{2}+y^{2}-4 x-6 y-3=0
\end{aligned}
$$

Find the radius of the circle

## - Watch Video Solution

> 34. Consider $x^{2}+y^{2}-4 x-6 y-3=0$

If this circle touches the $y$ axis, find its equation
35. Arun draws a circle with centre at $(-1,-2)$ and radius $\sqrt{5}$. What may be its algebric equation?

## - Watch Video Solution

36. If $(-1,-2)$ and $(5,2)$ are the end points of a diameter of a circle, find its centre and radius
37. Can you write the equation of circle by using two different methods?

## D Watch Video Solution

38. Write the slopes of the lines $2 x+3 y-9=0$ and $4 x+6 y+19=0$. What do you observe?

## D Watch Video Solution

39. Find the distance between them.

## View Text Solution

40. If they are the tangents of a circle, write the radius of the circle

## - View Text Solution

> 41. Find the centre of the circle
> $x^{2}+y^{2}-5 x+2 y-48=0$

## - Watch Video Solution

42. Prove that $(5,6)$ lies on the circle $x^{2}+y^{2}-5 x+2 y-48=0$

## D Watch Video Solution

## 43. Find the equation of this normal

## D View Text Solution

44. Complete the following table
45. Find the equation of the circle passing through $(1,0),(2,7)$ and (8,1). Hence prove that (1,0),(2,-7),(8,1) and (9,-6) are concyclic

## D View Text Solution

46. For the following parabolas find the coordinates of the focus, equation to the directrix, equation to the axis, co-ordinates of the vertex and length of latus rectum. $y^{2}=6 x$

## - Watch Video Solution

47. For the following parabolas find the coordinates of the focus, equation to the directrix, equation to the axis, co-ordinates of the vertex and length of latus rectum. $2 y^{2}=-8 x$

## - Watch Video Solution

48. For the following parabolas find the coordinates of the focus, equation to the
directrix, equation to the axis, co-ordinates of the vertex and length of latus rectum. $x^{2}=4 y$

## D Watch Video Solution

49. For the following parabolas find the coordinates of the focus, equation to the directrix, equation to the axis, co-ordinates of the vertex and length of latus rectum. $16 x^{2}=-25 y$
50. Find the equation of the parabola if
the vertex is at the origin and the focus is (1,0)

## D Watch Video Solution

51. Find the equation of the parabola if
the vertex is at the origin and the focus is
(0,-4)

- Watch Video Solution

52. In each of the following cases, find the coordinates of the focus, axis of the parabola, the equations of the directrix and the length of the latus rectum $y^{2}=12 x$

## - Watch Video Solution

53. In each of the following cases, find the coordinates of the focus, axis of the parabola, the equations of the directrix and the length of the latus rectum $x^{2}=6 y$
54. In each of the following cases, find the coordinates of the focus, axis of the parabola, the equations of the directrix and the length of the latus rectum $y^{2}=-8 x$

## - Watch Video Solution

55. In each of the following cases, find the coordinates of the focus, equation of axis of the parabola, the equations of the directrix and
the length of the latus rectum
$x^{2}=-16 y$

## - Watch Video Solution

56. In each of the following cases, find the coordinates of the focus, axis of the parabola,
the equations of the directrix and the length of the latus rectum
$y^{2}=10 x$

## - Watch Video Solution

57. In each of the following cases, find the coordinates of the focus, axis of the parabola, the equations of the directrix and the length of the latus rectum
$x^{2}=-9 y$

## - Watch Video Solution

58. Find the equation of the parabola satisfying the following condition,
focus(6,0), directrix $x=-6$.
59. Find the equation of the parabola whose focus is $(0,-3)$ and directrix is $y=3$

## D Watch Video Solution

60. Find the equation of the parabola whose vertex is $(0,0)$ and focus is $(3,0)$
61. Find the equation of the parabola whose vertex is $(0,0)$ and focus is $(-2,0)$

## D Watch Video Solution

62. Find the equation of the parabola satisfying the following condition,

Vertex $(0,0)$ passing through $(2,3)$ and axis along $x$-axis.
63. Find the equation of the parabola whose vertex is $(0,0)$ which is passing through $(5,2)$ and which is symmetric with respect to $y$-axis

## - Watch Video Solution

64. What is the general form of the equation of a parabola with vertex at the origin and axis as the $x$-axis?
65. Find the equation of a parabola with vertex at the origin, focus at $(4,0)$ and directrix $x=-4$

## D Watch Video Solution

66. Find the equation of the parabola satisfying the following condition,

Vertex $(0,0)$ passing through $(2,3)$ and axis along $x$-axis.

- Watch Video Solution

67. Find the focus and latus rectum of this parabola

- View Text Solution

68. A parabolic path is with focus $(-6,-6)$ and vetex ( $-2,-2$ ). Find the equation of the parabolic path.

- View Text Solution

69. An equilateral triangle is inscribed in the parabola $y^{2}=4 a x$ whose one vertex is at the vertex of the parabola if 1 cms is the side of the equilateral triangle prove that the length of each altitude of the triangle is $\frac{1 \sqrt{3}}{2} \mathrm{cms}$

## - Watch Video Solution

70. An equilateral triangle with side 1c.m is inscribed in the parabola $y^{2}=4 a x$ whose one
vertex is at the vertex of the parabola
Prove that $\left[\frac{1 \sqrt{3}}{2}, \frac{1}{2}\right]$ is a point on the parabola

## D Watch Video Solution

71. An equilateral triangle is inscribed in the parabola $y^{2}=4 a x$ whose one vertex is at the vertex of the parabola

Show that sideofthe $\triangle=8 \sqrt{3} \mathrm{acms}$
72. In each of the following cases, find the coordinates of the focus, axis of the parabola, the equations of the directrix and the length of the latus rectum $x^{2}=6 y$

## - Watch Video Solution

73. Find the equation of the directrix of the parabola $y^{2}=-12 x$
74. Find the length of the latus rectum of the parabola $x^{2}=-8 y$

## D Watch Video Solution

75. Suppose that a parabola has vertex $(0,4)$ and focus $(0,2)$ Is $y$-axis the axis of the parabola?

- Watch Video Solution

76. Suppose that a parabola has vertex $(0,4)$ and focus $(0,2)$

Prove that the equation of the directrix of the parabola is $\mathrm{y}=6$

## D Watch Video Solution

77. Suppose that a parabola has vertex $(0,4)$ and focus $(0,2)$

Prove that the equation of the parabola is $x^{2}+8 y-32=0$

# 78. Complete the following table (\#\#ANE $P_{P} M P_{M} A T_{0} X I_{C} 11_{E} 02_{017}$ - Q01\#\#) 

## - View Text Solution

79. Find the equation of the parabola with
vertex at the origin and focus at ( $-4,0$ )
80. Match the following
$\left(\# \# A N E_{P} M P_{M} A T_{0} X I_{C} 11_{E} 02_{019}-Q 01 \# \#\right)$

## D View Text Solution

81. Find the lengths of the major and minor axis, co-ordinates of foci and vertices, eccentricity and equation to directrices for the ellipse, $9 x^{2}+25 y^{2}=225$

D Watch Video Solution
82. Find the ellipse satisfying the following conditions:
vertex $( \pm 5,0)$, foci $( \pm 4,0)$

## - Watch Video Solution

83. Find the equation to the ellipse with axes
along the $x$-axis and $y$-axis, with centre origin
and which passes through the points $P(4,3)$
and $Q(6,2)$
84. Find the equation of the ellipse passing through (4,1) and which is having foci $( \pm 3,0)$

## D Watch Video Solution

85. Find the co-ordinates of the foci, the
vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the following ellipses. $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$
86. Find the coordinate of the foci, the verticles,the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
$\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$

## - Watch Video Solution

87. Find the coordinate of the foci, the
verticles,the length of major axis, the minor
axis, the eccentricity and the length of the
latus rectum of the ellipse.
$\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

## D Watch Video Solution

88. Find the co-ordinates of the foci, the
vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the following ellipses $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$
89. Find the co-ordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the following ellipses $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$

## - Watch Video Solution

90. Find the co-ordinates of the foci, the vertices, the length of major axis, the minor
axis, the eccentricity and the length of the latus rectum of the following ellipses $\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$

## D Watch Video Solution

91. Find the co-ordinates of the foci, the
vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the following ellipses $36 x^{2}+4 y^{2}=144$
92. Find the co-ordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the following ellipses
$16 x^{2}+y^{2}=16$

## D Watch Video Solution

93. Find the co-ordinates of the foci, the
vertices, the length of major axis, the minor axis, the eccentricity and the length of the
latus rectum of the following ellipses

$$
4 x^{2}+9 y^{2}=36
$$

## D Watch Video Solution

94. Find the ellipse satisfying the following conditions:
vertex $( \pm 5,0)$, foci $( \pm 4,0)$

D Watch Video Solution
95. Find the equation of the ellipse whose vertices are $(0, \pm 13)$ and foci are $(0, \pm 5)$

## D Watch Video Solution

96. Find the equation of the ellipse whose vertices are $( \pm 6,0)$ and foci are $( \pm 4,0)$

## D Watch Video Solution

97. Find the equation of the ellipse satisfying
the conditions ends of major axis are
$(0, \pm \sqrt{5})$ and ends of minor axis are $( \pm 1,0)$

## - Watch Video Solution

98. Find the equations of the ellipse whose end points of major axis are $( \pm 3,0)$ and end points of minor axis are $(0, \pm 2)$
99. Find the equations of the ellipse satisfying the conditions length of minor axis is 16 and foci are $(0, \pm 6)$

## D Watch Video Solution

100. Find the equations of the ellipse satisfying the conditions minor axis is 16 and foci are $(0, \pm 6)$
101. Find the equation of the ellipse whose
length of major axis is 26 and foci are $( \pm 5,0)$

## D Watch Video Solution

102. Find the equation of the ellipse whose foci are $( \pm 3,0)$ and $a=4$

## D Watch Video Solution

103. Find the equations of the ellipse having
the following properties
centre is at $(0,0)$ and major axis as $Y$ axis.

## D Watch Video Solution

104. Centre at $(0,0)$, major axis on the $y$-axis
and passes through the points $(3,2)$ and $(1,6)$.

## D Watch Video Solution

105. Find the ellipse satisfying the following conditions:
$b=3, c=4$, centre at origin, foci on the $x$ axis.

## D Watch Video Solution

106. Find the equation of the ellipse with major axis on the $x$-axis and passes through the points (4,3) and (6,2)

# 107. Express the equation $3 x^{2}+2 y^{2}=6$ of an 

 ellipse in standard form
## D Watch Video Solution

108. Consider the equation of the ellipse
$3 x^{2}+2 y^{2}=6$. Find e , foci, directrices, length
of major axis and minor axis and length of
latus rectum of the above ellipse
109. Express the equation $9 x^{2}+16 y^{2}=144$ of an ellipse standard form

## D Watch Video Solution

110. Find the length of major axis and minor axis, co-ordinates of foci and vertices and the eccentricity of the ellipse $9 x^{2}+16 y^{2}=144$

## D Watch Video Solution

111. Consider an ellipse whose foci are $( \pm 2 \sqrt{3}, 0)$ and which passes through $(2 \sqrt{3}, 1)$ Prove that the equation of the ellipse may be written as $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}-12}=1$

## - Watch Video Solution

112. Consider an ellipse whose foci are $( \pm 2 \sqrt{3}, 0)$ and which passes through $(2 \sqrt{3}, 1)$

Find the value of $a^{2}$
113. Consider an ellipse whose foci are $( \pm 2 \sqrt{3}, 0)$ and which passes through $(2 \sqrt{3}, 1)$ Prove that the equation of the ellipse is $x^{2}+4 y^{2}=16$

## D Watch Video Solution

114. Consider an ellipse with eccentricity 4/5,
foci on $y$-axis, centre at origin and which is passing through $(3 \sqrt{2}, 5 \sqrt{2})$

Assuming the equation of the ellipse as $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, prove that $a^{2}=100$

## D Watch Video Solution

115. Consider an ellipse with eccentricity 4/5, foci on $y$-axis, centre at origin and which is passing through $(3 \sqrt{2}, 5 \sqrt{2})$

Prove that the equation of the ellipse is $\frac{x^{2}}{36}+\frac{y^{2}}{100}=1$

## D Watch Video Solution

116. Complete the following table (\#\#ANE_PMP_MAT_OXI_C11_EO3_028_Q01\#\#)

## D View Text Solution

117. For the hyperbola $9 x^{2}-16 y^{2}=144$.find the vertices, foci and eccentricity
118. Find the equation of the hyperbola with
vertices $( \pm 5,0)$ and foci $( \pm 7,0)$

D Watch Video Solution
119. Determine the eccentricity and length of
latus rectum of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$

## - Watch Video Solution

120. Find the coordinates of foci, the vertices, eccentricity and length of latus rectum of the following hyperbolas.
$\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$

## - Watch Video Solution

121. Find the co-ordinates of the foci and vertices, the eccentricity and the length of latus rectum of the following hyperbolas

$$
9 y^{2}-4 x^{2}=36
$$

122. Find the coordinates of the foci and the vertices, the eccentricity and the length of the
latus rectum of the hyperbolas for $16 x^{2}-9 y^{2}=576$

- Watch Video Solution

123. Find the coordinates of foci, the vertices, eccentricity and length of latus rectum of the
following hyperbolas.
$5 y^{2}-9 x^{2}=36$

## - Watch Video Solution

124. Find the co-ordinates of the foci and vertices, the eccentricity and the length of latus rectum of the following hyperbolas
$49 y^{2}-16 x^{2}=784$

- Watch Video Solution

125. Find the hyperbola satisfying the following conditions:

Vertices $( \pm 2,0)$, foci $( \pm 3,0)$.

## D Watch Video Solution

126. Find the equations of the hyperbola
having vertices $(0, \pm 3)$ and foci $(0, \pm 5)$

## D Watch Video Solution

127. Find the equation of the hyperbola having foci $( \pm 5,0)$ and transverse axis with length 8

## D Watch Video Solution

128. Find the hyperbola satisfying the following conditions:

Foci $(0, \pm 13)$, the conjugate axis is of length 24.
129. Find the hyperbola satisfying the following conditions:

Foci $( \pm 3 \sqrt{5}, 0)$, the latus rectum is of length 8.

## D Watch Video Solution

130. Find the equation of the hyperbola having
foci $( \pm 4,0)$ an d latus rectum with length 12
131. Find the hyperbola satisfying the following conditions:

Vertices $( \pm 7,0), e=\frac{4}{3}$.

## D Watch Video Solution

132. Find the equation of the hyperbola having
foci $(0, \pm \sqrt{10})$ and which is passing through
$(2,3)$

D Watch Video Solution
133. Express the equation $16 x^{2}-9 y^{2}=144$ of a hyperbola in standard form

## - Watch Video Solution

134. Find the length of transverse axis and conjute axis, eccentricity and the co-ordinates
of foci and vertices of $16 x^{2}-9 y^{2}=144$

- Watch Video Solution

135. Express the equation $3 x^{2}-y^{2}=4$ of a hyperbola in standard form

## D Watch Video Solution

136. Find the eccentricity, vertices, foci, equations to the directrices, length of transverse axis and conjugate axis and the length of latus rectum of the hyperbola $3 x^{2}-y^{2}=4$
137. Consider the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

If the hyperbola passes through $(3,0)$, find $a^{2}$

## - Watch Video Solution

138. Consider the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

If the hyperbola passes through $(3,0)$ and $(3 \sqrt{2}, 2)$, find the eccentricity of the hyperbola
139. Suppose $\quad x=\frac{e^{t}+e^{-t}}{2} \quad$ and
$y=\frac{e^{t}-e^{-t}}{2}$ are the parametric equations of a curve

Find $e^{t}$ and $e^{-t}$ in terms of $x$ and $y$

## D Watch Video Solution

140. Suppose $x=\frac{e^{t}+e^{-t}}{2} \quad$ and
$y=\frac{e^{t}-e^{-t}}{2}$ are the parametric equations of a curve

Eliminate $t$ and obtain the cartesian equation
of the curve. Hence, prove that the given curve is a hyperbola

## D View Text Solution

141. Complete the following table $\left(\# \# A N E_{P} M P_{M} A T_{0} X I_{C} 11_{E} 04_{009}-Q 01 \# \#\right)$

## D View Text Solution

142. Consider the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ and the hyperbola $\frac{x^{2}}{64}-\frac{y^{2}}{b^{2}}=1$. Find the
eccentricity of the ellipse

## D Watch Video Solution

143. Consider the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ and the hyperbola $\frac{x^{2}}{64}-\frac{y^{2}}{b^{2}}=1$.Find the eccentricity of the hyperbola

## D Watch Video Solution

144. Consider the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ and the hyperbola

$$
\frac{x^{2}}{64}-\frac{y^{2}}{b^{2}}=1 . \mathrm{If}
$$

the
eccentricities of ellipse and hyperbola are reciprocals to each other, find $b^{2}$

## D Watch Video Solution

145. If a parabolic reflector is 20 cm in a diameter and 5 cm deep, find the focus

## - Watch Video Solution

146. An arch is in the form of a parabola with
its axis vertical. The arch is 10 m high and 5 m
wide at the base. How wide is it at 2 m from the vertex of the paraabola

## D Watch Video Solution

147. An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the
height of the arch at a point 1.5 m from one end.

## D Watch Video Solution

148. A rod of length 12 cm moves with its ends always touching the co-ordinates axes.

Determine the equations of the locus of a point $P$ on the rod, which is 3 cm from the end in contact with the $x$-axis

## - Watch Video Solution

149. Find the area of the triangle formed by
the lines joining the vertex of the parabola $x^{2}=12 y$ to the ends of its latus rectum
150. A man running a race course notes that the sum of the distances from two flag posts from him is always 10 m and the distance between the flag posts is 8 m . find the equation of the posts traced by the man

## D Watch Video Solution

151. An equilateral triangle is inscribed in the parabola $y^{2}=4 a x$ whose one vertex is at the
vertex of the parabola
Show that sideofthe $\triangle=8 \sqrt{3} a \mathrm{cms}$

- Watch Video Solution

