©゙doubtnut

MATHS

BOOKS - A N EXCEL PUBLICATION

PRINCIPLE OF MATHEMATICL INDUCTION

Question Bank

1. Prove by using the principal of Mathematical Induction $P(n)=1+3+3^{2}+\ldots .+3^{n-1}=\frac{3^{n}-1}{2}$ is true for all $n \in N$

- Watch Video Solution

2. Using mathematical induction prove that
$1^{3}+2^{3}+3^{3}+\ldots .+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$
3. For all $n \geq 1$, prove that

$$
1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots \ldots .+\frac{1}{(1+2+3+\ldots .+n)}=\frac{2 n}{(n+1)}
$$

(Watch Video Solution

4.

> For
all

$$
n \geq 1
$$

prove
that
$1.2 .3+2.3 .4+\ldots \ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$

- Watch Video Solution

5. Using mathematical induction prove
$1 \cdot 3+2 \cdot 3^{2}+3 \cdot 3^{3}+\ldots .+n \cdot 3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4} \quad$ for \quad all $n \in N$

- Watch Video Solution

6.

$1.2+2.3+3.4+\ldots .+n(n+1)=\frac{n(n+1)(n+2)}{3}$ by using the principle of mathematical induction for all $n \in N$.

- Watch Video Solution

7. Using mathematical induction prove that
$1 \cdot 3+3 \cdot 5+5 \cdot 7+\ldots .+(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}$ true for all $n \in N$

- Watch Video Solution

8. Using mathematical induction prove that
$1 \cdot 2+2 \cdot 2^{2}+\ldots \ldots+n \cdot 2^{n}=(n-1) 2^{n+1}+2$ for all $n \in N$

- Watch Video Solution

9. Using the principal of Mathematical induction, prove that

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}
$$

Watch Video Solution

10. Using mathimatical induction prove that
$\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots . .+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{6 n+4} \quad$ for \quad all $n \in N$.

- Watch Video Solution

11. Using mathematical induction prove that

$$
\begin{aligned}
& \frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\ldots \ldots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)} \text { for all } \\
& n \in N
\end{aligned}
$$

- Watch Video Solution

12. Consider the following statement:
$P(n): a+a r+a r^{2}+\ldots \ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$
Hence by using the principle of mathematical induction, prove that $P(n)$ is true for all natural numbers n.

- Watch Video Solution

13. Using mathematical induction prove that
$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots \ldots\left(1+\frac{2 n+1}{n^{2}}\right)=(n+1)^{2} \quad$ for all $n \in N$

- Watch Video Solution

14. Using mathematical induction prove that

$$
\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots \ldots\left(1+\frac{1}{n}\right)=n+1 \text { for all } n \in N
$$

15. Using mathematical induction prove that
$1^{2}+3^{2}+5^{2}+\ldots .+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$ for all $n \in N$

- Watch Video Solution

16. Using mathematical induction prove that

$$
\begin{aligned}
& \frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots \ldots .+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1} \quad \text { for } \quad \text { all } \\
& n \in N
\end{aligned}
$$

Watch Video Solution

17. Using mathematical induction prove that

$$
\begin{aligned}
& \frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots \ldots . .+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)} \text { for all } \\
& n \in N
\end{aligned}
$$

- Watch Video Solution

18. For all $n \geq 1$,prove that
$1+2+3+\ldots \ldots+n<\frac{1}{8}(2 n+1)^{2}$

Watch Video Solution

19. Using principle of mathematical induction prove that $n(n+1)(n+5)$ is a multiple of 3 for all $n \in N$.

- Watch Video Solution

20. Using mathematical induction prove that $10^{2 n-1}+1$ is divisible by 11 for all $n \in N$

- Watch Video Solution

21. Using mathematical induction prove that $x^{2 n}-y^{2 n}$ is divisible by $\mathrm{x}+\mathrm{y}$ for all $n \in N$
22. Consider the statement
$P(n)=3^{2 n+2}-8 n-9$ is divisible by 8
Prove the statement using the principle of mathematical induction for all natural numbers.

- Watch Video Solution

23. Using mathematical induction prove that
$41^{n}-14^{n}$ is a multiple of 27 for all $n \in N$

- Watch Video Solution

24. Using mathematical induction prove that $(2 n+7)<(n+3)^{2}$ for all $n \in N$
25. Consider the statement $P(n): 2^{3 n}-1$ is divisible by 7

Is the statement $p(1)$ true? justify your answer

Watch Video Solution

26. Consider the statement $P(n): 2^{3 n}-1$ is divisible by 7

If $p(k)$ is true, show that $p(k+1)$ is also true

- Watch Video Solution

27. Let $P(n)$ be the statement " $n+3$ " is prime. Is $P(3)$ true?

What is your opinion when $\mathrm{n}=4$?

- Watch Video Solution

28. Let $\mathrm{P}(\mathrm{n})$ denotes the statement $10^{2 n-1}+1$ is divisible by 11 . If $\mathrm{P}(\mathrm{m})$ is true, prove that $\mathrm{P}(\mathrm{m}+1)$ is also true.
29. Using mathematical induction prove that
$1^{3}+2^{3}+3^{3}+\ldots .+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$

- Watch Video Solution

30. Let $P(n): n(n+1)(n+2)$ is divisible by 6 . Determine whether the statement is true or false, when $\mathrm{n}=3$ and $\mathrm{n}=5$. Justify your answer.

- Watch Video Solution

31. Let $\mathrm{P}(\mathrm{n})$ denotes the statement $2^{n}>n$ and if $\mathrm{P}(\mathrm{n})$ is true, show that $P(n+1)$ is also true
32. Show that $x^{n}-1$ is divisible by $\mathrm{x}-1$

- Watch Video Solution

33. Let $\mathrm{P}(\mathrm{n})$ denotes the statement ' $3^{n}>2^{n}$ '. Is $\mathrm{P}(1)$ true?

Watch Video Solution

34. By using mathematical induction prove that
$1+4+7+\ldots+(3 n-2)=\frac{n(3 n-1)}{2}$

- Watch Video Solution

35. For all $n \geq 1$, prove that
$1.2 .3+2.3 .4+\ldots \ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$

- Watch Video Solution

36. For all $n \geq 1$, prove that
$\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots \ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}$

- Watch Video Solution

37. Let $\mathrm{P}(\mathrm{n})$ denotes the statement $n^{3}+(n+1)^{3}+(n+2)^{3}$ is a multiple of 9

Prove that $\mathrm{P}(1)$ is true

- Watch Video Solution

38. Let $\mathrm{P}(\mathrm{n})$ denotes the statement $n^{3}+(n+1)^{3}+(n+2)^{3}$ is a multiple of 9

If $P(k)$ is true, prove that $P(k+1)$ is also true

- Watch Video Solution

39. Let $\mathrm{P}(\mathrm{n})$ denotes the statement $2^{n+3} \leq(n+3)$! Are $\mathrm{P}(1)$ and $\mathrm{P}(2)$ true?

Justify your answer.

- Watch Video Solution

40. By mathematical induction prove that the statement $3^{4 n+1}+2^{2 n+2}$ is divisible by 7 is true for all $n \in N$

D Watch Video Solution

