©゙’doubtnut

India's Number 1 Education App

PHYSICS

NCERT - FULL MARKS PHYSICS(TAMIL)

LAW OF MOTION

Example

1. An astronaut accidentally gets separateed
out of his small spaceship accelerating in
inter-stellar space at a constant rate of
$50 \mathrm{~ms}^{-2}$. What is the acceleration of the astronaut the instant after he is outside the spaceship? (Assume that there are no nearby stars to exert gravitational force on him.)

D Watch Video Solution

2. A bullet of mass 0.04 kg moving with a speed of $90 \mathrm{~ms}^{-1}$ enters a heavy wooden block and is stooped after a distance of 60 cm
. What is the average resistive force exerted by the block on the bullet?
3. The motion of a particle of mass m is described by $y=u t+\frac{1}{2} g t^{2}$. Find the force acting on the particale .

D Watch Video Solution

4. A batsman hits back a ball straight in the direction of the bowler without changing its initial speed of $12 m s^{-1}$. If the mass of the ball is 0.15 kg , determine the impulse
imparted to the ball. (Assume linear motion of the ball).

D Watch Video Solution
5. The speed of a car as a function of time as
shown figure. Find the acceleration and

distance travelled by the car in 8 seconds .

D Watch Video Solution

6. A mass of 6 kg is suspended by a rope of
length 2 m from a celling a force of 50 N in the
horizontal direction is applied at the midpoint
of the rope as shown in the figure what is the
angle the rope makes with the vertical is equalibrium take $g=10 \mathrm{~ms}^{-2}$ neglect mass of the rope

6 kg wt
7. Determine the maximum acceleration of the train in which a box lying on its floor will remain stationary given that the coefficeient of static friction between the box and the train 's floor is 0.15 take $g=10 \mathrm{~ms}^{-2}$

- Watch Video Solution

8. See Fig. A mass of 4 kg rests on a horizontal plane. The plane is gradually inclined until at an angle $\theta=15^{\circ}$ with the horizontal, the
mass just begins to slide. What is the coefficient of static friction between the block and the surface?

D Watch Video Solution

9. What is the acceleration of the block and trolley system shown in a Fig.(a), if the
coefficient of kinetic friction between the trolley and the surface is 0.04 ? What is the tension in the string? (Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$).

Neglect the mass of the string.

(a)

(b)
(c)
10. A cyclist speeding at $18 \mathrm{~km} / \mathrm{h}$ on a level road takes a sharp circular turn of radius 3 m without reducing the speed. The coefficient of static friction between the tyres and the road is 0.1 Will the cyclist slip while taking the turn ?

D Watch Video Solution

11. A circular racetrack of radius 300 m is
banked at an angle of 15° If the coefficient of friction between the wheels of a race car and
the road is 0.2 what is the (a) optimum speed of the race car to avoid wear and tear on its
tyres , and (b) maximum permissible speed to aviod slipping ?

D Watch Video Solution

12. A wooden block of mass 2 kg rests on a soft
horizontal floor. When aniron cylinder of mass

25 kg is placed on top of the block, the floor
yields steadily, and the block and the cylinder go down with an acceleration of $0.1 m s^{-2}$

What is the action of the block on the floor (a) before and (b) after the floor yields ? Take $g=10 \mathrm{~ms}^{-2}$. Identify the action reaction pairs in the problem .

- Watch Video Solution

Exercise

1. Give the magnitude and direction of the net
force acting on
(a) a drop of rain falling down with a constant

speed

(b) a crok of mass 10 g floating on water
(c) a kite skilfully held stationary in the sky
(d) a car moving with a constant velocity of $30 k h / h$ on a rough road
(e) a high speed electron in space free from all gravitational objects and free of electric and magnetic fields.
2. A pebble of mass 0.05 kg is thrown vertically
upwards Give the magnitude and direction of net force on the pebble (a) during its upward motion (b) during its downward motion (c) at the highest point where it is momentarily rest

Do your answers change if the pebble were thrown at an angle of say 45° horizontal direction Ignore air resistance .

- Watch Video Solution

3. Give the magnitude and direction of the force acting on a stone of mass 0.1 kg (a) just after it is dropped from the window of a stationary train
(b) just after it is dropped from the window of
a train running at a constant velocity of $36 \mathrm{~km} / \mathrm{hr}$
(c) just after it is dropped from the window of a train accelerating with $1 \mathrm{~ms}^{-2}$
(d) lying on the floor of a train which is accelerating with $1 m s^{-2}$ the stone being at
rest relative to the train .

Neglect the resistance of air throughout .

D Watch Video Solution

4. One end of a string of length 'l' is connected
to a particle of mass m and the other to a small peg on a smooth horizontal table. If the
particle moves in a circle with speed ' v ', the net force on the particle (directed towards the centre) is :(T is the tension in the string).
5. A constant retarding force of 50 N is applied to a body of mass 20 kg moving initially with a speed of $15 \mathrm{~ms}^{-1}$ How long does the body take to stop ?

D Watch Video Solution

6. A constant force acting on a body of mass
$3 k g$ changes its speed from $2 m s^{-1}$ to
$3.5 \mathrm{~ms}^{-1}$ in 25 s . The direction of motion of
the body remains unchanged . Calculte magnitutude and direction of the force.

D Watch Video Solution

7. A body of mass 5 kg is acted upon by two perpendicular forces 8 N and 6 N Give the magnitude and direction of the acceleration of the body .
8. The driver of a three wheeler moving with a speed of $36 \mathrm{~km} / \mathrm{h}$ sees a child standing in the middle of the road and brings his vehicle to rest in 4 s just in time to save the child What is the average retarding force on the vehicle ?

The mass of three wheeler is 400 kg and mass of the driver is 65 kg .

D Watch Video Solution

9. A rocket with a lift off mass 20000 kg is
blasted upwards with a net initial acceleration
of $5 \mathrm{~ms}^{-2}$ Calculate the initial thrust (force) of the blast.

- Watch Video Solution

10. A body of mass 0.40 kg moving initially with a constant speed of $10 \mathrm{~m} / \mathrm{s}$ to the north is subjected to a constant force of 8.0 N directed towards the south for 30 s Take the
instant the force is applied to be $\mathrm{t}=0$, and the position of the particle at that time to be x

$=0$, predict its position at

$t=-5 s, 25 s, 100 s ?$

D Watch Video Solution

11. A truck starts from rest and accelerate uniformly with $2 m s^{-2}$. At $\mathrm{t}=10 \mathrm{~s}$ a stone is dropped by a person standing on the top of the truck (6 m high from ground). What are
the (a) veloctiy and (b) acceleration of the stone at $\mathrm{t}=11 \mathrm{~s}$? Neglect air resistance.

D Watch Video Solution

12. A bob of mass 0.1 kg hung from the ceilling of a room by a string 2 m long is set into osillation The speed of the bob at its mean position $1 m / s$ What is the trajectory of the bob if the string is cut when the bob is (a) at one of its extreme position (b) at is mean position?

Watch Video Solution

13. A man of mass 70 kg stands on a weighing machine in a lift, which is moving (a) upwards with a unifrom speed of $10 \mathrm{~ms}^{-1}$ (b) downwards with a unifrom acceleration of $5 m s^{-2}$
(c) upwards with a unifrom acceleration of $5 m s^{-2}$ What would be th readings on the scale in each case?
(d) What would be the reading if the lift
machanism failed and it hurtled down freely
under gravity?

D Watch Video Solution

14. Figure shows the position-time graph of a particle of mass 4 kg . What is the (a) force on
the particle for $\mathrm{t}<0, \mathrm{t}>4 \mathrm{~s}, 0<\mathrm{t}<4 \mathrm{~s}$? impulse at $\mathrm{t}=0$ and $\mathrm{t}=4 \mathrm{~s}$? (Consider one-
dimensional motion only).

- Watch Video Solution

15. Two bodies of masses 10 kg and 20 kg respectively kept on a smooth horizontal surface are tied to the ends of a light string A horizontal force $\mathrm{F}=600 \mathrm{~N}$ is applied to (i) A
and (ii) B aling the direction of string . What is the tension in the string in each case?

D Watch Video Solution

16. Two masses 7 kg and 12 kg are connected at the two ends of a light inetensible string that goes over a frictionless pulley. Find the acceleration of the masses and the tension in the string when the masses are released.
17. A nucleus is at rest in the laboratory frame of reference Show that if it distintegrates into two smaller nuclei the products must be emitted in opposite directions.

- Watch Video Solution

18. Two billiard balls each of mass 0.05 kg moving in opposite directions with speed $6 \mathrm{~ms}^{-1}$ collide and rebound with the same speed What is the impulse imparted to each ball due to the other?

- Watch Video Solution

19. A bullet of mass $50 g$ is fired by a gun of mass 5 kg .If the muzzle speed of the bullet is $200 \mathrm{~ms}^{-1}$, what is the recoil speed of the gun?

- Watch Video Solution

20. A batsman deflects a ball by an angle of 45° without changing its initial speed which is equal to $54 k \frac{m}{h}$. What is the impulse
imparted to the ball ? (Mass of the ball is 0.15 kg)

D Watch Video Solution

21. A stone of of mass 0.25 kg tied to the end of a string is whirled round in a circle of radius
1.5 m with a speed of $40 \mathrm{rev} / \mathrm{min}$ in a
horizontal plane What is the tension in the string ? What is the maximum speed with which the stone can be whirled around If the
string can withstand a maximum tension of 200 N ?

D Watch Video Solution

22. If in $Q .21$ the speed of the stone is increased beyond the maximum permissible value and the string breaks suddenly which of the following correctly describes the trajectory of the stone after the string breaks :
(a) the stone jerks radially outwards
(b) the stone flies off tangentially from the
instant the string breaks
(c) the stone flies off at an angle with the tangent whose magnitude depends on the speed of the stone?

- Watch Video Solution

23. Explain why?
(a) a horse cannot pull a cart and run in empty space.
(b) passengers are thrown forward from their seats when a speeding bus tops suddenly
(c) It is easier to pull a lawn mower than to push it.
(d)a cricketer moves his hands backwards while holding a catch

- Watch Video Solution

Exercise Additional Exercise

1. Figure shows the position-time graph of a body of mass 0.04 kg . Suggest a suitable physical context for this motion. What is the
time between two consecutive impulses
received by the body? What is the magnitude of each impulse?

D Watch Video Solution

2. Figure shows a man standing stationary with respect to a horizontal conveyor belt that
is accelerating with $1 m s^{-2}$. What is the net
force on the man? If the coefficient of static friction between the man's shoes and the belt is 0.2 , up to what acceleration of the belt can the man continue to be stationary relative to the belt ? (Mass of the man $=65 \mathrm{~kg}$.)

3. A stone of mass m tied to the end of a string revolves in a vertical circle of radius R.

The net forces at the lowest and highest points of the circle directed vertically downwards are : [Choose the correct alternative

Lowest Potnt

(a) $m g-T_{\text {t }}$
(b) $m g+T_{1}$
(c) $m g+T_{4} \quad\left(m v_{1}^{2}\right) / R$
(d) $m g-T_{1}\left(m v_{2}^{2}\right) / R$

Highest Potnt
$m g+T_{2}$
$m g-T_{z}$
$m g T_{2}+\left(m v_{1}^{2}\right) / R$
$m g+T_{2}+\left(m v_{1}^{2}\right) / R$
T_{1} and v_{1} denote the tension and speed at the
lowest point. T_{2} and v_{2} denote corresponding values at the highest point.
4. A helicopter of mass 1000 kg rises with a vertical acceleration of $15 \mathrm{~ms}^{-2}$. The crew and
the passengers weigh 300 kg . Give the magnitude and direction of the
(a) force on the floor by the crew and passengers
(b) action of the rotor of the helicopter on the surroundings air:
(c) force on the helicopter due to the surroundings air:

- Watch Video Solution

5. A stream of water flowing horizontally with
a speed of $15 \mathrm{~ms}^{-1}$ pushes out of a tube of cross sectional area $10^{-2} m^{2}$ and hits a vertical wall near by what is the force exerted on the wall by the impact of water assuming.that it does not rebound? (Density of water $=1000 \mathrm{kgm}^{3}$)

D Watch Video Solution

6. Ten one-rupee coins are put on top of each other on a table. Each coin has a mass m. Give the magnitude and direction of
(a) the force on the $7^{\text {th }}$ coin (counted from the bottom due to all the coins on its top .
(b) the force on the $7^{t h}$ coin by the eigth coin.
(c) the reaction of the $6^{\text {th }}$ coin one th $7^{\text {th }}$ coin

D Watch Video Solution

7. An aircraft executes a horizontal loop at a speed of $720 \mathrm{kmh}^{-1}$ with its wings banked at 15°. What is the radius of the loop?

D Watch Video Solution

8. A train rounds an unbanked circular bend of
radius 30 m at a speed of $54 \mathrm{~km} / \mathrm{h}$ The mass
of the train is $10^{6} \mathrm{~kg}$ What provides the centripetal force required for this purpose ?

The engine or the rails ? What is the angle of banking required to prevent out the rails?

D Watch Video Solution

9. A block of mass 25 kg is raised by a 50 kg man in two different ways as shown in Fig.

What is the action on the floor by the man in
the two cases ? If the floor yields to a normal
force of 700 N , which mode should the man adopt to lift the block without the floor

yielding?

- Watch Video Solution

10. A monkey of mass 40 kg climbs on a rope.
which can stand a maximum tension of 600 N .

In which of the following cases will the rope break: the monkey (a) climbs up with an acceleration of $6 m s^{-2}$ (b) climbs down with an acceleration of $4 m s^{-2}$ (c) climbs up with a uniform speed of $5 m s^{-1}$ (d) falls down the rope nearly freely under gravity? (Ignore the
mass of the rope).

- Watch Video Solution

11. Two bodies A and B of masses 5 kg and 10
kg in contact with each other rest on a table
against a rigid wall. The coefficient of friction
between the bodies and the table is 0.15 . A
force of 200 N is applied horizontally to A .

What are (a) the reaction of the partition (b)
the action-reaction forces between A and B ?

What happens when the wall is removed?

Does the answer to (b) change, when the bodies are in motion? Ignore the difference
between μ_{s} and μ_{k}

- Watch Video Solution

12. A block of mass 15 kg is placed on a long trolly. The coefficient of friction between the block and trolly is 0.18 The trolly accelerates
from rest at $0.5 \mathrm{~m} / \mathrm{s}^{2}$ for 20 seconds and then moves with a unifrom velocity Discuss the motion of the block as viewed by (i) a stationary observer on the ground (ii) an observer moving with the trolly.

- Watch Video Solution

13. The rear side of a truck is open and a box of

40 kg mass is placed 5 m away from the open
end as shown in Fig. The coefficient of friction
between the box and the surface below it is
0.15. On a straight road, the truck starts from rest and accelerates with $2 m s^{-2}$. At what distance from the starting point does the box fall off the truck? (Ignore the size of the box).

- Watch Video Solution

14. A long plying record revolves with a speed of $33 \frac{1}{3} \mathrm{rev} \min ^{-1}$, and has a radius of 15 cm .

Two coins are placed at 4 cm and 14 cm away
from the centre of the record. If the coefficient of friction between the coins and the record is
0.15 , which of the two coins will revolve with the record ? Take $g=9.8 m s^{-2}$.

D Watch Video Solution

15. You may have seen in a circus a motorcyclist driving in vertical loops inside a death well (a hollow spherical chamber with holes so the spectators can watch from
outside) Explain clearly why the motorcyclist does not drop down when he is at the uppermost point of death well with no support from below What is the minimum speed required at the uppermost position to perfrom a vertical loop if the radius of the chamber is 25 m ?

- Watch Video Solution

16. A 70 kg man stands in contact against the inner wall of a hollow cylindrical drum of
radius $3 m$ rotating about its verticle axis. The coefficient of friction between the wall and his clothing is 0.15 . What is the minimum rotational speed of the cylinder to enable the man to remain stuck to the wall (without falling) when the floor is suddenly removed?

D Watch Video Solution

17. A thin circular wire of radius R rotatites
about its vertical diameter with an angular
frequency ω. Show that a small bead on the
wire remain at its lowermost point for
$\omega \leq \sqrt{g / R}$. What is angle made by the radius vector joining the centre to the bead with the vertical downward direction for
$\omega=\sqrt{2 g / R}$? Neglect friction.

- Watch Video Solution

