© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - BHARATI BHAWAN MATHS (HINGLISH)

Continuity, Differentiability and Graph of Function

Example

1. Draw the graph of the function $f(x)=x-\left|x-x^{2}\right|,-1 \leq x \leq 1$ and discuss the continuity or discontinuity of f in the interval $-1 \leq x \leq 1$

- Watch Video Solution

2. Let $f(x)=\lim _{n \rightarrow \infty} \frac{\log (2+x)-x^{2 n} \sin x}{1+x^{2 n}}$.then
3. Let $f(x+y)=f(x) f(y)$ and $f(x)=1+x g(x) G(x) \quad$ where $\lim _{x \rightarrow 0} g(x)=a$ and $\lim _{x \rightarrow o} G(x)=b$. Then $f^{\prime}(x)$ is

- Watch Video Solution

4. Let $f(x)=x^{3}-x^{2}-x+1$ and $g(x)=\{\max \{f(t) ; 0 \leq t \leq x\}, 0 \leq x \leq 1,3-x, 1 \leq x \leq 2$ Discuss the continuity and differentiability of the function $\mathrm{g}(\mathrm{x})$ in the interval (0 , 2).

- Watch Video Solution

Exercise

1. If $f(x)=\frac{e^{\frac{1}{x}}-1}{1+e^{\frac{1}{x}}}$ when $x \neq 0=0$, when $x=0$ show that $f(x)$ is discontinuous at $x=0$.
2. Determine the values of a, b, c for which the function $f(x)=\left\{\frac{\sin (a+1) x+\sin x}{x}, f\right.$ or $x<0 c, \quad f$ or $x=0 \frac{\sqrt{x+b x^{2}}}{b x^{3 / 2}}$, is continuous at $x=0$

- Watch Video Solution

3. If $g(x)=\frac{1-a^{x}+x a^{x} \log a}{x^{2} \cdot a^{x}}, x<0 \frac{(2 a)^{x}-x \log (2 a)-1}{x^{2}}, x>0$ (where $\mathrm{a}>0$) then find a and $g(0)$ so that $g(x)$ is continuous at $x=0$.

- Watch Video Solution

4. Let $f(x)= \begin{cases}\frac{x^{2}}{2}, & 0 \leq x<1 \\ 2 x^{2}-3 x+\frac{3}{2}, & 1 \leq x \leq 2\end{cases}$

Discuss the continuity of f, f^{\prime} and $f^{\prime \prime}$ on $[0,2]$.

- Watch Video Solution

5. Discuss the continuity of $f(x)=(\lim)_{n} \vec{\infty} \frac{x^{2 n}-1}{x^{2 n}+1}$

(Watch Video Solution

6. The function $\mathrm{f}(\mathrm{x})$. defined as $f(x)=\lim _{n \rightarrow \infty} \frac{f(x)+x^{2 n} g(x)}{1+x^{2 n}}$ shall be continuous every where, if

- Watch Video Solution

7. Consider the function f defines by $f(x)=x-[x]$, where[x$]$ denotes the greatest integral function. Show that the function is discontinous for integral values of x and continous for all other values.'

- Watch Video Solution

8. The values of a and b so that the function
$f(x)=\left\{\begin{array}{lll}x+a \sqrt{2} \sin x, & 0 \leq x<\pi / 4 \\ 2 x \cot x+b, & \pi / 4 \leq x \leq \pi / 2 \quad \text { is continuous } & \text { for } \\ a \cos 2 x-b \sin x, & \pi / 2<x \leq \pi\end{array}\right.$ $x \in[0, \pi]$, are

- Watch Video Solution

9. Let $f(x+y)=f(x)+f(y)$ for all xandy. If the function $f(x)$ is continuous at $x=0$, show that $f(x)$ is continuous for all x.

- Watch Video Solution

10. Leg $f(x+y)=f(x)+f(y) f$ or all $x, y \in R$,
$f(x)$ iscont \in uousatx $=0, \operatorname{showthat} f(x)$ is continuous at all x.

- Watch Video Solution

11. Let $f(x+y)=f(x) f(y) \forall x, y \in R, f(0) \neq 0$ If $f(x)$ is continous at $x=0$, then $f(x)$ is continuous at :

- Watch Video Solution

12. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function such that $f(f(x))=1 f$ or allx $\in[0,1]$ then:

- Watch Video Solution

13. The set of all points, where the function $f(x)=\frac{x}{1+|x|}$ is differentiable, is

- Watch Video Solution

14. The set of points where, $f(x)=x|x|$ is twice differentiable is
15. Let $f(x)$ be difined in the interval $[-2,2]$ such that
$f(x)= \begin{cases}-1, & -2 \leq x \leq 0 \\ x-1, & 0<x \leq 2\end{cases}$
and $g(x)=f(|x|)+|f(x)|$.
Test the differentiability of $\mathrm{g}(\mathrm{x})$ in $(-2,2)$.

- Watch Video Solution

16. Let $f(x)= \begin{cases}\frac{x^{2}}{2}, & 0 \leq x<1 \\ 2 x^{2}-3 x+\frac{3}{2}, & 1 \leq x \leq 2\end{cases}$

Discuss the continuity of f, f^{\prime} and $f^{\prime \prime}$ on $[0,2]$.

- Watch Video Solution

17. Draw the graph of the function and discuss the continuity and differentiability at $\mathrm{x}=1$ for, $f(x)= \begin{cases}3^{x}, & \text { when }-1 \leq x \leq 1 \\ 4-x, & \text { when } 1<x<4\end{cases}$

- Watch Video Solution

18. Given the function $f(x)=\frac{1}{1-x}$, The points of discontinuity of the composite function $\mathrm{f}[f\{\mathrm{f}(\mathrm{x})\}]$ are given by

- Watch Video Solution

19. If $f(x)=\left\{\begin{array}{l}a x^{2}-b \text {, for } 0 \leq x<1 \\ 2, \text { for } x=1 \\ x+1, \text { for } 1<x \leq 2\end{array}\right.$ is continuous at $x=1$, then the most suitable values of a, b are

- Watch Video Solution

20. If $f(x)= \begin{cases}\frac{\left(1-\sin ^{3} x\right)}{3 \cos ^{2} x}, & x<\frac{\pi}{2} \\ a, & x=\frac{\pi}{2} \\ \frac{b(1-\sin x)}{(\pi-2 x)^{2}}, & x>\frac{\pi}{2}\end{cases}$
is continuous at $x=\frac{\pi}{2}$, then the value of $\left(\frac{b}{a}\right)^{5 / 3}$ is

- Watch Video Solution

21. Let $f(x)=\frac{x^{2}+3 x-10}{x-2}, \mathrm{x}=!2$. The value $\mathrm{f}(2)=$ will make the function $\mathrm{f}(\mathrm{x})$ continous at $\mathrm{x}=2$.

- Watch Video Solution

22. If $\mathrm{f}(\mathrm{x})$ is continuous in $[0,1]$ and $f\left(\frac{1}{2}\right)=1$. prove that $\lim _{n \rightarrow \infty} f\left(\frac{\sqrt{n}}{2 \sqrt{n+1}}\right)=1$

- Watch Video Solution

23. If $f(x)=\frac{\sin \left(e^{x-2}-\right)}{\log (x-1)}$ then $\lim _{x \rightarrow 2} f(x)$ is given by

(Watch Video Solution

24. If $f(x)=\left\{\begin{array}{ll}\frac{\sqrt{1+p x}-\sqrt{1-p x}}{x}, & -1 \leq x<0 \\ \frac{2 x+1}{x-2}, & 0 \leq x \leq 1\end{array}\right.$ is continuous in $[-1,1]$ then p is equal to
25. The function $f(x)=\frac{\log (1+a x)-\log (1-b x)}{x}$ is not difined at $\mathrm{x}=$

0 . The value which should be assigned to f at $x=0$, so that it is continuous at $x=0$, is
A. $a-b$
B. $a+b=0$
C. $\log _{e}(a b)$
D. none of these

Answer:

- Watch Video Solution

26. The function $f(x)=\left\{\begin{array}{ll}|x-3|, & x \geq 1 \\ \left(\frac{x^{2}}{4}\right)-\left(\frac{3 x}{2}\right)+\frac{13}{4}, & x<1\end{array}\right.$ is
A. is continuous at $\mathrm{x}=1$
B. is continuous at $x=3$
C. is differentiable at $x=1$
D. $f^{\prime}(3)$ exists

Answer:

- Watch Video Solution

27. The range of the function $f(x)=\frac{\tan (\pi[x+1])}{x^{4}+1}$ (where, $[$.$] is the$ greatest integer function) is
A. is discontinuous at some x
B. $f^{\prime}(x)$ exists for all x
C. $f^{\prime}(x)$ xists for all but $f^{\prime \prime}(x)$ does not exist
D. is continuous for all x but $\mathrm{f}^{\prime \prime}(\mathrm{x})$ does not exist for some x

Answer:

28. The function $f(x)=1+|\sin x|$, is
A. is continuous nowhere
B. is continuous everywhere
C. is differentiable nowhere
D. $f^{\prime}(0)$ does not exist

Answer:

- Watch Video Solution

29. If $x+|y|=2 y$, then y as a function of x is
A. defined for all x
B. continuous at $\mathrm{x}=0$
C. differentiable for all x
D. such that $d y / d x=1 / 3$

Answer:

D Watch Video Solution

30. The graph of the function, $\cos x \cos (x+2)-\cos ^{2}(x+1)$ is
A. a straightl \in epas \sin gthrough $\left(0,-\sin ^{21}\right)$ withslope 2
B. A staight line passing through $(0,0)$
C. 'a straight line passing through the point (pi/2, $-\sin ^{\wedge} 21$)
D. aparabolawithvertex $\left(1,-\sin ^{21}\right)$

Answer:

- Watch Video Solution

31. यदि $f(x)=x[\sqrt{x}-\sqrt{(x+1)}]$ हो तो-
A. $s(x)$ is continous but not differerntiable ar $x=0$
B. $f^{\prime}(0)$ exists
C. $f(x)$ is non differentiable at $x=0$
D. none of these

Answer:

- Watch Video Solution

32. Let $f(x)=\lim _{n \rightarrow \infty} \frac{1-x^{n}}{1+x^{n}}$. Then

- Watch Video Solution

33. If both $f(x)$ and $g(x)$ are non-differentiable at $x=a$ then
$f(x)+g(x)$ may be differentiable at $x=a$
$f(x)=\left[2 x^{2}+3 f\right.$ or $x \leq 1$ and $3 x+2 f$ or $x<1 \quad$ is neither differentiable nor continuousat $x=1$.

- Watch Video Solution

35. If $(\lim)_{x \vec{a}}[f(x) g(x)]$ exists, then both $(\lim)_{x \vec{a}} f(x) \operatorname{and}(\lim)_{x \vec{a}} g(x)$ exist.

- Watch Video Solution

36. $\lim _{x \rightarrow 0} \frac{(1-\cos 2 x) \sin 5 x}{x^{2} \sin 3 x}$

- Watch Video Solution

37. Let $f(x)$ be a continuous function defined on [1,3]. If $f(x)$ takes only rational values for all x and $f(2)=10$, then $f(2.5)=$
38. If $f(x)=\left\{x^{2}\right.$ if x is rational and 0 , if x is irrational $\}$, then

- Watch Video Solution

