©゙’doubtnut

India's Number 1 Education App

PHYSICS

NCERT - FULL MARKS PHYSICS(TAMIL)

MECHANICAL PROPERTIES OF FLUIDS

Example

1. The two thigh bones (femur bones) each of
cross-sectional area $10 \mathrm{~cm}^{2}$ support the upper
part of a human body of mass 40 kg . Estimate
the average pressure sustained by the femurs.

$$
g=10 \mathrm{~m} / \mathrm{s}^{2}
$$

D Watch Video Solution

2. What is the pressure on a swimmer 10 m below the surface of a lake?

D Watch Video Solution

3. The density of the atmosphere at sea level is
$1.29 \mathrm{~kg} / \mathrm{m}^{3}$. Assume that it does not change
with altitude. Then how high would the atmosphere extend $\quad ? \quad g=9.8 m s^{-2}$. Atmospheric pressure $=1.013 \times 10^{5} \mathrm{~Pa}$.

D Watch Video Solution

4. At a depth of 1000 m in an ocean (a) what is
the absolute pressure? (b) what is the gauge pressure? (c) Find the force acting on the window of area $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ of a submarine at this depth, the interior of which is maintained at sea-level atmospheric pressure.

The density of sea water is $1.03 \times 10^{3} \mathrm{kgm}^{-3}$, $g=10 m s^{-2}$. Atmospheric pressure $=$ $1.01 \times 10^{5} \mathrm{~Pa}$.

D Watch Video Solution

5. Two syringes of different cross-sections
(without needles) filled with water are
connected with a tightly fitted rubber tube
filled with water. Diameters of the smaller piston and larger piston are 1.0 cm and 3.0 cm respectively.
(a) Find the force on the larger piston when a force of 10 N is applied to the smaller piston.
(b) The smaller piston is paused in through 6.0 cm , much does the larger piston move out?

- Watch Video Solution

6. In a car lift, compressed air exerts a force F_{1} on a small piston having a radius of 0.5 cm .

This pressure is transmitted to a second piston of radius 10.0 cm . If the mass of the car
to be lifted is 1350 kg . calculate F_{1}. What is the pressure necessary to accomplish this task?

D Watch Video Solution

7. The flow of blood in a large artery of an anesthetised dog is diverted through a venturimeter. The wider part of the meter has
a cross-sectional area equal to that of the artery, $A=16 \mathrm{~mm}^{2}$. The narrower part has an area $a=9 \mathrm{~mm}^{2}$. The pressure drop in the
artery is 24 Pa . What is the speed of the blood in the artery?

D Watch Video Solution

8. A fully loaded Boeing aircraft has a mass of
$3.3 \times 10^{5} \mathrm{~kg}$. Its total wing area is $500 \mathrm{~m}^{2}$. It is
in level flight with a speed of $960 \mathrm{~km} / \mathrm{h}$.
(a) Estimate the pressure difference between
the lower and upper surfaces of the wings
(b) Estimate the fractional increases in the speed of the air on the upper surfaces of the
wing relative to the lower surface. The density of air is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$.

D Watch Video Solution

9. A metal plate of area $0.10 m^{2}$ is connected to a 0.01 kg mass via a string that passes over an ideal pulley (considered to be friction-less),
as shown in the figure. A liquid with a film
thickness of 3.0 mm is placed between the
plate and the table. When released the plate moves to the right with a constant speed of
$0.085 \mathrm{~ms}^{-1}$. Find the coefficient of viscosity of the liquid.

- Watch Video Solution

10. The terminal velocity of a copper ball of radius 2 mm falling through a tank of oil at $20^{\circ} \mathrm{C}$ is $6.5 \mathrm{~cm} / \mathrm{s}$. Find the viscosity of the oil at $20^{\circ} \mathrm{C}$. Density of oil is $1.5 \times 10^{3} \mathrm{Kg} / \mathrm{m}^{3}$, density of copper is $8.9 \times 10^{3} \mathrm{Kg} / \mathrm{m}^{3}$.
11. The lower end of a capillary tube of diameter 2.0 mm is dipped 8.00 cm below the surface of water in a beaker. What is the pressure required in the tube in order to blow a hemispherical bubble at its end in water?

The surface tension of water at temperature of the experiments is $7.30 \times 10^{-2} \mathrm{Nm}^{-1} .1$ atmospheric pressure $=1.01 \times 10^{5} \mathrm{~Pa}$, density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}, g=9.80 \mathrm{~ms}^{-2}$. also calculate the excess pressure.

Exercise

1. Why the blood pressure in humans is greater at the feet than at the brain?

D Watch Video Solution

2. Explain why (a) the blood pressure is
humans is greater at the feet than at the brain.
(b) Atmospheric pressure at a height of about 6 km decreases to nearly half its value at the sea level through the 'height' of the atmospheric is more than 100 km .
(c) Hydrostatic pressure is a scalar quantity even though pressure is force divided by area , and force is a vector.

- Watch Video Solution

3. Explain why (a) the blood pressure is humans is greater at the feet than at the
brain.
(b) Atmospheric pressure at a height of about

6 km decreases to nearly half its value at the sea level through the 'height' of the atmospheric is more than 100 km .
(c) Hydrostatic pressure is a scalar quantity even though pressure is force divided by area, and force is a vector.

D Watch Video Solution

4. Explain why
(a). The angle of contact of mercury with galss
is obtuse, while that of water with glass is acute.
(b). Water on a clean glass surface tends to
spread out while mercury on the same surface tends to form drops. (Put differently, water wets glass while mercury does not).
(c). Surface tension of a liquid is independent of the area of the surface
(d). Water with detergent disolved in it should have small angles of contact.
(e). A drop of liquid under no external forces is always spherical in shape.

- Watch Video Solution

5. Explain why

(a). The angle of contact of mercury with galss
is obtuse, while that of water with glass is acute.
(b). Water on a clean glass surface tends to spread out while mercury on the same surface tends to form drops. (Put differently, water
wets glass while mercury does not).
(c). Surface tension of a liquid is independent of the area of the surface
(d). Water with detergent disolved in it should have small angles of contact.
(e). A drop of liquid under no external forces is always spherical in shape.

- Watch Video Solution

6. Explain why

Surface tension of a liquid is independent of
the area of the surface.

D Watch Video Solution

7. Explain why
(a). The angle of contact of mercury with galss is obtuse, while that of water with glass is acute.
(b). Water on a clean glass surface tends to spread out while mercury on the same surface tends to form drops. (Put differently, water wets glass while mercury does not).
(c). Surface tension of a liquid is independent of the area of the surface
(d). Water with detergent disolved in it should have small angles of contact.
(e). A drop of liquid under no external forces is
always spherical in shape.

- Watch Video Solution

8. Explain why
(a). The angle of contact of mercury with galss
is obtuse, while that of water with glass is
acute.
(b). Water on a clean glass surface tends to spread out while mercury on the same surface tends to form drops. (Put differently, water wets glass while mercury does not).
(c). Surface tension of a liquid is independent of the area of the surface
(d). Water with detergent disolved in it should
have small angles of contact.
(e). A drop of liquid under no external forces is
always spherical in shape.
9. Find in the blanks using the word (s) from
the test appended with each statement.
(a) Surface tension of liquid generallywith temperatures (increase//decreases).
(b) Viscosity of gases With temperature, whereas viscosity of liquidswith temperature. (increases//decreases)/
(c) For solids with elastic modulus of rigidity,
the shearing force is proportional towhile
for fluids it is proportional to(shear strain//rate of shear strain).
(d) For a fluid in a steady flow, from
(conservation of mass// Bernoulli's principle)
(e) For the model of a plane in a wind tunnel, turbulence oc curs at a speed for turbulence for an actual plane (greater//smaller)/

D Watch Video Solution

10. Find in the blanks using the word (s) from
the test appended with each statement.
(a) Surface tension of liquid generallywith
temperatures (increase//decreases).
(b) Viscosity of gases With temperature, whereas viscosity of liquidswith
temperature. (increases//decreases)/
(c) For solids with elastic modulus of rigidity,
the shearing force is proportional towhile
for fluids it is proportional to(shear
strain//rate of shear strain).
(d) For a fluid in a steady flow, from
(conservation of mass// Bernoulli's principle)
(e) For the model of a plane in a wind tunnel, turbulence oc curs at a speed for turbulence for an actual plane (greater//smaller)/

- Watch Video Solution

11. Find in the blanks using the word (s) from the test appended with each statement.
(a) Surface tension of liquid generallywith
temperatures (increase//decreases).
(b) Viscosity of gases With temperature, whereas viscosity of liquids
......with
temperature. (increases//decreases)/
(c) For solids with elastic modulus of rigidity, the shearing force is proportional towhile for fluids it is proportional to(shear
strain//rate of shear strain).
(d) For a fluid in a steady flow, from (conservation of mass// Bernoulli's principle)
(e) For the model of a plane in a wind tunnel, turbulence oc curs at a speed for turbulence for an actual plane (greater//smaller)/

D Watch Video Solution

12. Find in the blanks using the word (s) from the test appended with each statement.
(a) Surface tension of liquid generallywith temperatures (increase//decreases).
(b) Viscosity of gases With temperature, whereas viscosity of liquidswith temperature. (increases//decreases)/
(c) For solids with elastic modulus of rigidity,
the shearing force is proportional towhile
for fluids it is proportional to(shear strain $/ /$ rate of shear strain).
(d) For a fluid in a steady flow, from (conservation of mass// Bernoulli's principle)
(e) For the model of a plane in a wind tunnel,
turbulence oc curs at a speed for
turbulence for an actual plane (greater//smaller)/

D Watch Video Solution

13. Find in the blanks using the word (s) from
the test appended with each statement.
(a) Surface tension of liquid generallywith
temperatures (increase//decreases).
(b) Viscosity of gases With temperature,
whereas viscosity of liquids
......with
temperature. (increases//decreases)/
(c) For solids with elastic modulus of rigidity, the shearing force is proportional towhile for fluids it is proportional to(shear strain//rate of shear strain).
(d) For a fluid in a steady flow, from (conservation of mass// Bernoulli's principle)
(e) For the model of a plane in a wind tunnel, turbulence oc curs at a speed for turbulence for an actual plane (greater//smaller)/
14. Explain why
(a). To keep a piece of paper horizontal, you
should blow over, not under, it
(b). When w try to close a water tap with our fingers, fast jets of water gush through the openings between our fingers
(c). The size of the needle of a syringe controls
flow rate better than the thumb pressure exerted by a doctor while administering an injection
(d). A fluid flowing out of a small hole in a
vessel results in a backward thrust on the vessel
(e). A spinning cricket ball in air does not follow a parabolic trajectory.

D Watch Video Solution

15. Explain why
(a). To keep a piece of paper horizontal, you should blow over, not under, it
(b). When w try to close a water tap with our fingers, fast jets of water gush through the openings between our fingers
(c). The size of the needle of a syringe controls
flow rate better than the thumb pressure exerted by a doctor while administering an injection
(d). A fluid flowing out of a small hole in a vessel results in a backward thrust on the
vessel
(e). A spinning cricket ball in air does not follow a parabolic trajectory.
16. Explain why
(a). To keep a piece of paper horizontal, you
should blow over, not under, it
(b). When w try to close a water tap with our fingers, fast jets of water gush through the openings between our fingers
(c). The size of the needle of a syringe controls
flow rate better than the thumb pressure exerted by a doctor while administering an injection
(d). A fluid flowing out of a small hole in a
vessel results in a backward thrust on the
vessel
(e). A spinning cricket ball in air does not
follow a parabolic trajectory.

D Watch Video Solution

17. Explain why
(a). To keep a piece of paper horizontal, you
should blow over, not under, it
(b). When w try to close a water tap with our fingers, fast jets of water gush through the openings between our fingers
(c). The size of the needle of a syringe controls flow rate better than the thumb pressure exerted by a doctor while administering an injection
(d). A fluid flowing out of a small hole in a
vessel results in a backward thrust on the vessel
(e). A spinning cricket ball in air does not
follow a parabolic trajectory.

- Watch Video Solution

18. Explain why

(a). To keep a piece of paper horizontal, you
should blow over, not under, it
(b). When w try to close a water tap with our fingers, fast jets of water gush through the openings between our fingers
(c). The size of the needle of a syringe controls
flow rate better than the thumb pressure exerted by a doctor while administering an injection
(d). A fluid flowing out of a small hole in a
vessel results in a backward thrust on the
vessel
(e). A spinning cricket ball in air does not
follow a parabolic trajectory.

D Watch Video Solution

19. A 50 kg . girl wearing high heel shoes
balance on a single heel. The heel is circular with a diameter 1 cm . what is the pressure exerted by the heel on the horizontal floor?

D Watch Video Solution

20. Torricelli's barometer used mercury. Pascal duplicated it using French wine of density $984 \mathrm{kgm}^{-3}$. Determine the height of the wine column for normal atmospheric pressure.

- Watch Video Solution

21. A vertical off-shore structure is built to
withstand a a maximum stress of $10^{9} \mathrm{~Pa}$. Is the
structure suitabel for putting upon top of an
oil well in bombay high? Take the depth of the
sea to be roughly 3 km , and ignore oceam

currents.

D Watch Video Solution

22. A hydraulic automobile lift is designed to
lift cars with a maximum mass of 3000 Kg . The area of cross section of the piston carrying the
load is $425 \mathrm{~cm}^{2}$. What maximum pressures would the smaller piston have to bear?

D Watch Video Solution

23. A U tube contains water and methylated spirts separated by mercury columns in the two arms are in level with 10.0 cm of water in one arm and 12.5 cm of spirit in the other. What is the relative density of spirit?

- Watch Video Solution

24. in previous question, if 15 cm of water and spirit each are further poured into the respective arms of the tube. Difference in the
level of mercury in the two arms is (Take, relvative density of mercury $=13.6$)

- Watch Video Solution

25. Can Bernoulli's equation be used to describe the flow of water through a rapid in a river? Explain.

D Watch Video Solution
26. Does it matter if one uses gauge instead of absolute pressures in applying Bernoulli's equation. Explain.

D Watch Video Solution

27. Glycerine flows steadily through a
horizontal tube of length 1.5 m and radius 1.0
cm . if the amount of glycerine collected per second at one end is $4.0 \times 10^{-3} \mathrm{kgs}^{-1}$, what is the pressuer difference between the two
ends of the tube? (density of glycerine = $1.3 \times 10^{3} \mathrm{kgm}^{-3}$ and viscosity of glycerine $=$ $0.83 N_{s m^{-2}}$).

D Watch Video Solution

28. In a test experiment on a model aeroplane
in a wind tunnel, the flow speeds on the upper and lower surface of the wing are $70 \mathrm{~ms}^{-1}$ and $63 m s^{-1}$ respectivley. What is the lift on the wing if its area is $2.5 m^{2}$? Take the density of air is $1.3 \mathrm{kgm}^{-3}$.

Watch Video Solution

29. The steady flow of (non-viscous) liquid.

Which of the two figure is incorrect?why?

- Watch Video Solution

30. The cylinderical tube of a spray pump has a cross-section of $8.0 \mathrm{~cm}^{2}$ one end of which has

40 fine holes each of diameter 1.0 mm . If the
liquid flow inside the tube is 1.5 m per minute,
what is the speed of ejection of the liquid through the holes?

D Watch Video Solution

31. A U-shaped wire is dipped in a soap solution, and removed. A thin soap film formed between the wire and a light slider supports a weight of $1.5 \times 10^{-2} N$ (which includes the small weigh of the slider). The length of the slider is 30 cm . What is the surface tension of the film?

Watch Video Solution

32. Fig, shown a thin film supporting a small weight $=4.5 \times 10^{-2} N$. What is the weight supported by a film of the same liquid at the same temperature in fig. explain your answer physically.

33. What is the pressure inside a drop of mercury of radius 3.0 mm at room temperature? Surface tension of mercury at that temperature $\left(20^{\circ} \mathrm{C}\right)$ is
$4.65 \times 10^{-1} \mathrm{Nm}^{-1}$. The atmospheric pressure is $1.01 \times 10^{5} \mathrm{~Pa}$. Also give the excess pressure inside the drop.
34. What is the excess pressure inside a bubble of soap solution of radius 5.00 mm , given that the surface tension of soap solution at the temperature $\left(20^{\circ} \mathrm{C}\right)$ is
$2.50 \times 10^{-2} \mathrm{Nm}^{-1}$? If an air bubble of the
same dimension were formed at a depth of
40.0 cm inside a container containing the soap solution (of relative density 1.20), what would be the pressure inside the bubble?
(1atm. is $1.01 \times 10^{5} \mathrm{~Pa}$).
35. A tank with a square base of area $1.0 m^{2}$ is
divided by a vertical parition in the middle. The bottom of the partition has a small hinged door of area $20 \mathrm{~cm}^{2}$. The tank is filled with water and an acid (of relative density 1.7) in the other, both to a height of 4.0 m . Compute to force necessary the force nec cessary to keep the door closed.

Watch Video Solution

36. A manometer reads the pressure of a gas
in a enclosure as shown in figure(a) When some of the gas is removed by a pump, the manometer reads as in (b). The liquid used in
the manometers is mercury and the atmospheric pressure is 76 cm of mercury.

(i) Give the absolute and gauge pressure of the gas in the enclosure for cases (a) and
in units of cm of mercury .
(ii) How would the level change in case (b) if 13.6 cm of water are poured into the right limb of the manometer?

D Watch Video Solution

37. Two vessels have the same base area but
differnent shapes. The first vessel takes twice
the vloume of water that the second vessel
requires to fill up to a paricular common
height. Is the force exerted by water on the
base of the vessel the same in the two case? If so, why do the vessels filled with water to that same height give different reading on a weighting scale?

- Watch Video Solution

38. During blood transfusion the needle is inserted in a vein where the gauge pressure is

2000 Pa. At what height must the blood container be placed so that blood may just
enter the vein? [Use the density of whole blood from table 10.0]

D Watch Video Solution

39. In deriving Bernoulli's equation, we equated the workdone on the fluid in the tube
to its change in the potential and kinetic energy (a) How does the pressure change as
the fluid moves along the tube if dissipative
forces are present ? (b) Do the dissipative
forces becomes more important as the fluid velocity increase? Discuss qualitatively.

D Watch Video Solution

40. (a) What is the largest average velocity of blood flow in an artery of radius $2 \times 10^{-3} m$ if the flow must remian laminar?
(b) What is the corresponding flow rate? Take viscosity of blood to be $2.084 \times 10^{-3} \mathrm{~Pa}-s$.

Density of blood is $1.06 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.
41. A plane is in level flight at constant speed and each of its two wings has an area of $20 \mathrm{~m}^{2}$. If the speed of rthe air is $180 \mathrm{~km} / \mathrm{h}$ over the lower wing and $216 \mathrm{~km} / \mathrm{h}$ over the upper wing surface, determine the plane's mass.
(Take
air density to be
$1 \mathrm{kgm}^{-3}$ and $\left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.

D Watch Video Solution

42. In Millikan's oil drop experiment, what is
the terminal speed of a speed of a drop of radius $2.0 \times 10^{5} \mathrm{~m}$ and density $1.2 \times 10^{3} \mathrm{~m}^{-3}$
? Take the viscosity of air at the temperature of the experimental to be $1.8 \times 10^{-5} \mathrm{Nsm}^{2}$.

How much is the viscous force on the drop at that speed? Neglect buoyancy of the drop due to air.

- Watch Video Solution

43. Mercury has an angle of contact equal to
140° with soda lime galss. A narrow tube of
radius 1.00 mm made of this glass is dipped in
a through containing mercury. By what amount does the mercury dip down in the tube relative to the mercury surface outside?

Surface tension of mercury at the temperature of the experiment is $0.465 \mathrm{Nm}^{-1}$. Density of mercury $=13.6 \times 10^{3} \mathrm{kgm}^{-3}$.

D Watch Video Solution

44. Two narrow bores of diameters 3.0 mm and
6.0 mm are joined together to form a U shaped tube open at both ends. If th U-tube contains water, what is the difference in its levels in the two limbs of the tube? Surface tension of water at the temperature of the experiment is $7.3 \times 10^{-2} \mathrm{Nm}^{-1}$. Take the angle of contact to be zero. and density of water to be $1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.
$\left(g=9.8 m s^{-2}\right)$
45. (a). It is known that density ρ of air decreases with height y as
$\rho=\rho_{0} e^{-y / y\left({ }_{-} o\right)}$
Itb
rgt
where
$p_{o}=1.25 \mathrm{kgm}^{-3}$ is the density at sea level,
and y_{o} is a constant. This density variation is
called the law of atmospheres. Obtain this law
assuming that the temperature of atmosphere remains a constant (isothermal conditions).

Also assume that the value of g remains constant
(b). A large He balloon of volume $1425 \mathrm{~m}^{3}$ is used to lift a payload of 400 kg . Assume that
the balloon maintains constant radius as it rises. How high does it rise?
[take $y_{o}=8000 \mathrm{~m}$ and $\rho_{H e}=0.18 \mathrm{kgm}^{-3}$]

D Watch Video Solution

