

CHEMISTRY

BOOKS - MAXIMUM PUBLICATION

CHEMICAL BONDING AND MOLECULAR STRUCTURE

Example

1. The octet rule is not valid for

A. CO_2

B. H_2O

 $\mathsf{C}.\,O_3$

D. CO

Answer: D

Watch Video Solution

2. The stability of an ionic crystal depends principally on

- A. High electron gain enthalpy of the anion forming species
- B. The lattice enthalpy of the crystal
- C. Low ionization enthalpy of the cation forming species
- D. Low heat of sublimation of cation forming solid

Answer: B

3. Which of the following molecules has highest dipole moment?

- A. H_2S
- B. CO_2
- $\mathsf{C}.\,CCL_4$
- D. BF_3

Answer: A

4. The d- orbital involved in sp^3d hybridization

Watch Video Solution

5. Which of the following is paramagnetic and has a bond order of 1/2?

A. O_2

B. N_2^+

 $\mathsf{C}.\,F_2$

D. H_2^+

Answer: D

Watch Video Solution

6. Dipole moment μ electric charge 'e' and bond length 'd' are related by the equation.

Watch Video Solution

7. In which of the following carbon atom is sp^2 hybridised?

A. CO_2

B. C_2H_6

 $\mathsf{C}.\,C_6H_6$

D. HCN

Answer: C

Watch Video Solution

8. AgF is ionic where as Agcl is covalent. This can be explained by

Watch Video Solution

9. The shape of covalent molecule CIF_3 is ____

10. The C-O bond order in CO_3^{2-} is

11. The order of repulsion of electron pairs as written by students is given below:

lone pair-lone pair repulsion> lone pair -bond
pair repulsion >bond pair -bond pair repulsion.
Name the theory behind this

Watch Video Solution

12. The order of repulsion of electron pairs as written by students is given below:

lone pair-lone pair repulsion> lone pair -bond
pair repulsion >bond pair -bond pair repulsion.

Name the theory behind this

13. During a small group discussion in the calss room a student argued that in acetylene both the carbon atoms are in sp_3 hybridised state.

What is your opinion?

Watch Video Solution

14.

What is the bond angle between carbon atoms in acetylene?

15. what is the hybridisation of CH_4

Watch Video Solution

16. Classify the following compounds according to their hybridisation BF_3

17. Classify the following compounds according to their hybridisation C_2H_4

Watch Video Solution

18. Explain the given compound according to its hybridisation BF_3

Watch Video Solution

19. what is the hybridisation of C_2H_2

20. A student arranged the halide ions in the increasing order of polarisabillity as: F It I It Cl It Br. Is this the correct order? If not write it in correct order

Watch Video Solution

21. A student arranged the halide ions in the increasing order of polarisabillity as: F lt I lt Cl

It Br. Justify

22. Give any two differences between sigma and pi bonds

23. Write the type of hybridisation of each carbon in the compound

$$CH_3 - CH = CH - CN$$

24. In ethane there are 6 covalent bonds. Five are strong σ bonds and the remaining one is a week π bond'

Watch Video Solution

Do you agree with this?

25. In ethene there are 6 covalent bonds. Five are strong σ bonds and the remaining one is a

week π bond.

How is σ bond different from π bond in the mode of formation?

Watch Video Solution

26. Choose the correct molecules from the given clues: H_2O, SF_6, BF_3 ,

a) Clue-1 The central atom is in sp^2 hybridised state and the molecule has trigonal planar in shape.

Clue-2 The bond angle is $120\,^\circ$

27. Choose the correct molecules from the given clues: H_2O , SF_6 , BF_3 ,

Clue-1 The number of electron pairs in this molecule is 6

Clue-2 It has octahedral geometry.

28. Choose the correct molecules from the given clues: H_2O , SF_6 , BF_3 ,

Clue-1 The bond angle is reduced from

Clue-2 It has a bent shape

109°28' to 104.5°

29. Give theoretical explanation for the following statements

a) H_2S is acidic while H_2O is neutral.

30. Give theoretical explanation for the following statement

Hydrogen chloride gas dissolves in water.

Watch Video Solution

- **31.** Ionisation enthalpy is one of the factors favoring the formation of ionic bonds.
- a) Will you agree with the statement?

32. Ionisation enthalpy is one of the factors favoring the formation of ionic bonds.

Explain how?

Watch Video Solution

33. Ionisation enthalpy is one of the factors favoring the formation of ionic bonds.

Write another factor favouring the formation of ionic bonds.

34. The dipole moment of BF_3 is zero eventhough the B-F bonds are polar, Justify.

Watch Video Solution

35. Give the hybridisation involved in the following compound NH_3

36. Give the hybridisation involved in the following compounds C_2H_4

Watch Video Solution

37. Give the hybridisation involved in the following compound SF_6

38. Give the hybridisation involved in the following compound PCI_5`

Watch Video Solution

39. o-nitro phenol has a lower boiling point than its para isomer. Why?

40. How many σ and π bonds are there in the following molecule. ethane

Watch Video Solution

41. How many σ and π bonds are there in the following molecule.acetylene?

42. BF_3 and NH_3 are tetra atomic molecules.

But the shape of BF_3 is different from that of NH_3 . Explain this using hybridisation.

Watch Video Solution

- **43.** Covalent bond is formed by the overlaping of atomic orbitals.
- a) What is meant by orbital overlaping?

44. Covalent bond is formed by the overlaping of atomic orbitals.

What are the 3 types of overlapping?

Watch Video Solution

45. Which among the following will exist He_2 or He_2^+ ? Explain.

46. H_2S is a gas at ordinary condition, while H_2O is liquid. Account for the above statement.

Watch Video Solution

47. State the hybridisation in the following molecule.

 PF_5

48. State the hybridisation in the following molecule.

 C_2H_6

Watch Video Solution

49. Bond order is a term commonly used in MO theory.

How is it calculated?

50. Bond order is a term commonly used in

MO theory.

How is it related to bond length and bond energy?

Watch Video Solution

51. Explain the hybridisation and geometry of ethyne.

52. What is the difference between bonding molecular orbital and antibonding molecular orbital?

Watch Video Solution

53. How the magnetic nature of a molecule is related to its electronic structure?

54. Molecular Orbital Theory (MOT) is an advanced theory of chemical bonding .

Write the salient features of MOT.

Watch Video Solution

55. Molecular Orbital Theory (MOT) is an advanced theory of chemical bonding .

What is meant by LCAO> Illustrate using hydrogen molecule.

56. Molecular Orbital Theory (MOT) is an advanced theory of chemical bonding .

What are the condition for the combination of atomic orbitals?

Watch Video Solution

57. Consider a reaction

$$PCl_5(g)
ightarrow PCl_3(g) + Cl_2(g)$$

What is the change in hybridisation state of phosphorus?

58. Consider a reaction

$$PCl_5(g)
ightarrow PCl_3(g) + Cl_2(g)$$

b) Explain why does PCl_5 decomposes easily?

Watch Video Solution

59. Write the number of bond pairs of electrons and lone pairs of electrons in electron dot structure of ammonia molecule.

- A. 3 bond pairs 1 lone pair
- B. 2 bond pairs 3 lone pair
- C. 3 bond pairs 3 lone pair
- D. 1 bond pair 3 lone pairs

Answer:

Watch Video Solution

60. The structure of o-nitrophenol and p-nitrophenol are shown in the figure. The former is a steam volatile liquid whereas the

letter is a solid. Justify your answer giving reason.

Watch Video Solution

61. Hydrogen bonding is present in NH_3 and

 H_2O

What is hydrogen bond?

62. Hydrogen bonding is present in NH_3 and

 H_2O

What are different types of hydrogen bonds?

Watch Video Solution

63. Hydrogen bonding is present in NH_3 and

 H_2O

Explain the effect of hydrogen bonding.

64. Classify the following compounds according to their shape

 Bef_2 , $BeCl_2$, CH_4 , BF_3 , PCl_5 , SF_6 , $SbCl_5$, NH_4 , SiF_4 , $AlCl_3$

Watch Video Solution

65. Benzene is an example of a compound exhibiting resonance .

What you mean by resonance?

66. Benzene is an example of a compound exhibiting resonance.

Explain the resonance of ozone.

Watch Video Solution

67. In the formation of methane, carbon undergoes sp^3 hybridisation.

a)What do you mean by sp^3 hybridisation?

68. In the formation of methane, carbon undergoes sp^3 hybridisation.

Give the % s- character and p- character of an sp^3 hybrid orbital.

Watch Video Solution

69. In the formation of methane, carbon undergoes sp^3 hybridisation.

What is the bond angle in methane?

70. In the formation of methane, carbon undergoes sp^3 hybridisation. What is the geometry of methane molecule?

Watch Video Solution

- **71.** Dipole moment is used to predict the shape of molecules.
- a) Justify the statement based on the shapes of CO_2 and H_2O .

72. Dipole moment is used to predict the shape of molecules.

b) Which is having high dipole moment ? NH_3 or NF_3 ? Why?

Watch Video Solution

73. Depending upon the type of overlapping, covalent bonds are of two types.

Name them and give any two difference between them.

74. Depending upon the type of overlapping, covalent bonds are of two types.

Find the total number of these two types of bonds in propane and 2-butene

Exercise

1. Explain the formation of a chemical bond

Watch Video Solution

2. Write the favourable conditions for the formation of ionic bond

Watch Video Solution

3. Although geometries of NH_3 and H_2O moluecules are distorted tetrahedral, bond

angle in water is less than that in ammonia.

Discuss.

Watch Video Solution

4. Is there any changes in the hybridisation of B and N atoms as a result of the following reaction

 $BF_3 + NH_3 \rightarrow F_3B. NH_3$

5. Define hydrogen bond. Is it weaker or stronger than the van der Waals' forces?

Watch Video Solution

6. What do you understand by bond pair electrons and lone pair electron

7. Explain the bond pair electron and lone pair electrons H_2O and NH_3 molecules with suitable drawings.

Watch Video Solution

8. The stability and magnetic properties of a molecule can be well explained using the molecular orbital theory developed by F. Hund and R.S. Mulliken

a) Define bond order according to the M.O. theory.

Watch Video Solution

9. The stability and magnetic properties of a molecule can be well explained using the molecular orbital theory developed by F. Hund and R.S. Mulliken

b) Draw the energy level diagram for the formation of the \mathcal{O}_2 molecule.

10. Calculate the bond order and predict the magnetic property of the \mathcal{O}_2 molecule.

Watch Video Solution

- **11.** VSEPR theory is used to predict the shape of covalent molecules .
- a) State the main postulates of VSEPR theory

12. VSEPR theory is used to predict the shape of covalent molecules.

b) Based on VSEPR theory predict the shape of H_2O and NH_3 .

Watch Video Solution

13. The attractive force which holds atoms together in a molecule is called a chemical bond

a) Explain the formation of a H_2 molecule on the basis of the valence bond theory (VBT)

14. The attractive force which hoids atoms together in a molecule is called a chemical bond

b) Using the molecular orbital theory (MOT), explain why a Ne_2 molecule does not exist.

15. The attractive force which hoids atoms together in a molecule is called a chemical

bond

c) Calculate the bond order of dinitrogen(N_2)

Watch Video Solution

16. Hydrogen bonding plays an important role in determining the physical properties of substances

Illustrate hydrogen bonding using an example

17. Hydrogen bonding plays an important role in determining the physical properties of substances

ii)Compare the boiling points of o-nitro phenol and p-Nitrophenol based on hydrogen bonding

Watch Video Solution

18. Describe the hybridization and structure of PCl_5 molecule.

Watch Video Solution

19. Valence Bond Theory (VBT) and MolecularOrbital Theory (MOT) are the two importanttheories of chemical bondinga) Out of the following ,which is the

 $(sp^2,sp^3,\!dsp^2,sp^3d)$

Watch Video Solution

hybridizatio of phosphorus in PCl_5 ?

20. Valence Bond Theory (VBT) and Molecular Orbital Theory (MOT) are the two important theories of chemical bonding
b) Explain the geometry of the PCl_5 molecule and account for its high reactivity

Watch Video Solution

21. Valence Bond Theory (VBT) and Molecular Orbital Theory (MOT) are the two important theories of chemical bonding

Write the molecular orbital electronic configuration of the C_2 molecule and calculate its bond order.

Watch Video Solution

22. The ionic bonds have partial covalent character and the covalent bonds also show some ionic character

Explain the covalent character of Lithium chloride using Fajan's rule

23. The ionic bonds have partial covalent character and the covalent bonds also show some ionic character ii) NF_3 and NH_3 show dipole moment. But the dipole moment of $NF_3is \leq ssthant\hat{o}f$ NH 3' Why?

Watch Video Solution

24. The covalent bond can be explained by Molecular Orbital Theory (MOT). Using

molecular orbital diagram explain the paramagnetic nature of oxygen molecule.

Watch Video Solution

25. The Valence Shell Electron Pair Repulsion (VSEPR) theory helps in predicting the shapes of covalent molecules

Arrange the bond pair electron and lone pair electron in the decreasing order of the repulsive interactions among them.

26. The Valence Shell Electron Pair Repulsion (VSEPR) theory helps in predicting the shapes of covalent molecules

b) A molecule of the type AB_3E_2 has three bond pairs and two lone pairs of electrons. Predict the most stable arrangement of

electron pairs in this molecule

27. The Valence Shell Electron Pair Repulsion (VSEPR) theory helps in predicting the shapes of covalent molecules

The bond order value is an important property of a molecule. How is bond order related to bond length?

Watch Video Solution

28. The Valence Shell Electron Pair Repulsion (VSEPR) theory helps in predicting the shapes

of covalent molecules

Write the electronic configuration of an oxygen molecule and justify its magnetic nature.

Watch Video Solution

29. Only valence electrons of atoms take part in chemical combination. Draw the Lewis representation of NF_3

30. Define dipole moment. The dipole moment of BF_3 is zero. Why?

Watch Video Solution

31. Based on bond order compare the relative stabillity of ${\cal O}_2$ and ${\cal O}_2^{2-}$

 ${f 32.}\ He_2$ cannot exist as stable molecule. Justify this statement on the basis of bond order

Watch Video Solution

33. State Fajan's rule regarding the partial covalent character of an Ionic bond.

34. Which has higher boilling point, on itrophenol or point of the reason

Watch Video Solution

35. Molecular orbitals are formed by the linear combination of atomic orbitals (LCAO). Give the salient features of the molecular orbital theory.

36. Explain sp^3d hybridization with a suitable example.

Watch Video Solution

37. The shapes of the molecules is based on the VSEPR theory. Give the salient features of this theory

38. Draw the potential energy curve for the formation of a hydrogen molecule on the basis of the internuclear distance of the hydrogen atoms.

- **39.** Molecular orbital theory was developed by
- F. Hund and R. S. Mulliken
- a) One- half of the difference between the

number of electrons in th bonding and antibonding molecular orbitals is called

Watch Video Solution

40. Molecular orbital theory was developed by

F. Hund and R. S. Mulliken

b) Predict stability and magnetic property of

 N_2 with reasons.

41. In order to explain the geometrical shapes of molecules, the concept of hybridization was introduced

a) The geometry of SF_6 molecule is ___

A. tetrahedral

B. planner

C. octahedral

D. triagonal bipyramidal

Answer:

Watch video Solution

42. Define the term, hybridization.

Watch Video Solution

43. Explain sp^3 hybridization taking methane (

 CH_4) as an example

44. The net dipole moment of a polyatomic molecule depends on the spatial arrangement of various bonds in the molecule.

The dipole moment of BF_3 is zero while that of NF_3 is not zero. Justify

Watch Video Solution

45. The type of hybridization indicates the geometry of a molecule.

In water molecule, the oxygen atom is sp^3

hybridized. But water molecule has no tetrahedral geometry. Explain .

Watch Video Solution

46. The formation of molecular orbitals can be described by the linear combination of atomic orbitals

a) Which one of the following correctly represents the formation of bonding molecular orbital from the atomic orbitals having wave functions ψ_A & ψ_B ?

A.
$$\psi_A imes \psi_B$$

B.
$$rac{\psi_A}{\psi_B}$$

C.
$$\psi_A + \psi_B$$

D.
$$\psi_A - \psi_B$$

Answer:

Watch Video Solution

47. The formation of molecular orbitals can be described by the linear combination of atomic orbitals

b) Write the electronic configuration of oxygen molecule on the basis of Molecular Orbital Theory. Justify the presence of double bond in it and account for its paramagnetic character.

Watch Video Solution

48. The electronic configuration of a molecule can give information about bond order.

i) Write the molecular orbital configuration of

 F_2 molecule.

49. The electronic configuration of a moleculecan give information about bond order.ii) Find its bond order

50. Give any two factors influencing the formation of an ionic bond.

51. Give the shape of the following species

i) $NH_4^{\,+}$

Watch Video Solution

52. Give the shape of the following species

ii) $HgCl_2$

53. VSEPR theory is used to predict the shape and bond angle of molecules.

a) Write the postulates of VSEPR theory.

Watch Video Solution

54. VSEPR theory is used to predict the shape and bound angle of molecules.

b) Explain the shape and bond angle of $NH_{\rm 3}$ molecule using VSEPR theory.

55. VSEPR theory is used to predict the shape and bound angle of molecules.

c) PCl_5 molecule is unsymmetric . Why?

Watch Video Solution

56. The geometry of the molecule is decided by type of hybridization.

a) Discuss the shape of PCl_5 molecule using hybridization.

57. The geometry of the molecule is decided by type of hybridization.

Give the reason for the high reactivity of PCl_5

Watch Video Solution

58. The geometry of the molecule is decided by type of hybridization.

Isoelectronic species have the same bond

order.

Among the following, choose the pair having same bond order.

$$C\overline{N}$$
 , \overline{O}_2 , NO^+ , CN^+

