©゙’doubtnut

India's Number 1 Education App

PHYSICS

NCERT - FULL MARKS PHYSICS(TAMIL)

MECHANICAL PROPERTIES OF SOLIDS

Examples

1. A structural steel rod has a radius of 10 mm
and a length of 1.0 m . A 100 kN force stretches
it along its length. Calculate (a) stress, (b)
elongation, and (c) strain on the rod. Young's modulus, of structural steel is $2.0 \times 10^{11} \mathrm{~N}$ m^{-2}.

D Watch Video Solution

2. A Copper wire of length 2.2 m and a steel
wire of length 1.6 m , both of diameter 3.0 mm
are connected end to end. When stretched by
a load, the net elongation is found to be 0.70
mm. Obtain the load applied . Young's
modulus of copper is $1.1 \times 10^{11} \mathrm{Nm}^{-2}$ and Young's modulus of steel is $2.0 \times 10^{11} \mathrm{Nm}^{-2}$.

D Watch Video Solution

3. In a human pyramid in a circus, the entire weight of the balanced group is supported by
the legs of a performer who is lying on his back (as shown in Fig. 9.5). The combined mass of all the persons performing the act, and the table, plaques etc. involved is 280 kg . The mass of the performer lying on his back at the
bottom of the pyramid is 60 kg . Each thighbone (femur) of this performer has a length of 50 cm and an effective radius of 2.0 cm . Determine the amount by ehich each thighbone gets compressed under the extra load.

D View Text Solution
4. A square lead slab of side 50 cm and
thickness 10 cm is subjected to a shearing
force (on its narrow face) of $9 \times 10^{4} N$. The lower edge is riveted to the floor. How much will the upper edge be displaced? (Shear modulus of lead $=5.6 \times 10^{9} \mathrm{Nm}^{-2}$)

D Watch Video Solution

5. The average depth of indian Ocean is about 3000 m . The fractional compression, $\frac{\triangle V}{V}$ of water at the bottom of the ocean is (Given

$$
\begin{aligned}
& \text { Bulk modulus of the water } \\
& =2.2 \times 10^{9} \mathrm{Nm}^{-2} \text { and } g=10 \mathrm{~ms}^{-2} \text {) }
\end{aligned}
$$

Watch Video Solution

Exercises

1. A steel wire of length 4.5 m and crosssectional area $3 \times 10^{-5} \mathrm{~m}^{2}$ stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of $1 x 10^{-5} m^{2}$ under a given load. The ratio of the Young's modulus of steel to that of copper is
2. Figure 9.11 shown the strain - stress curve
for a given material. What are (a) Young's
modulus and (b) approximate yield strength
for this material ?

D Watch Video Solution
3. The stress - strain graphs for materials A and B are shown in Fig .9.12.

The graphs are frawn to the same scale.
(a) Which of the materials has the greater Young's modulus ?
(b) Which of the two is the stronger material ?
4. Read each of the statement below carefully and state, with reasons, if it is true or false.
(a) The modulus of elasticity of rubber is greater than that of steel.
(b) the stretching of a coil is determined by its
shear modulus.

D Watch Video Solution

5. Two wires of diameter 0.25 cm , one made of steel and the other made of brass are loaded
as shown in Fig. 9.13. The unloaded length of
steel wire is 1.5 m and that of brass wire is 1.0
m. Compute the elongations of the steel and
the brass wires.
1.5 m

Steel
4.0 kg
1.0 m

- Watch Video Solution

6. The edges of an aluminum cube are 10 cm
long. One face of the cube is firmly fixed to a
vertical wall. A mass of 100 kg is then attached to the opposite face of the cube. Shear modulus of aluminum is $25 \times 10^{9} \mathrm{~Pa}$, the vertical deflection in the face to which mass is attached is

- Watch Video Solution

7. Four identical hollow cylindrical cloumns of steel support a big structure of mass 50.000 kg. the inner and outer radii of each column are 30 cm and 60 cm respectively. Assume the load distribution to be uniform, calculate the compressional strain of each column. the Young's modulus of steel is $2.0 \times 10^{11} \mathrm{~Pa}$.

- Watch Video Solution

8. A piece of copper having a rectangular cross
section of $15.2 \times 19.1 \mathrm{~mm}$ is pulled in tension
with $45,500 \mathrm{~N}$, force producing only elastic deformation. Calculate the resulting strain. Shear modulus of elasticity of copper is $42 \times 10^{9} \mathrm{Nm}^{-2}$.

- Watch Video Solution

9. A steel cable with a radius of 1.5 cm support
a chairlift at a ski area.if the maximum stress is not to exceed $10^{8} \mathrm{Nm}^{-2}$, what is the maximum load the cable can support?
10. A rigid bar of mass 15 kg is supported symmetrically by three wires each 2 m long.

Those at each end are of copper and middle one is of iron. Determine the ratio of their diameters if each is to have the same tension. Young's modulus of elasticity for copper and steel are $110 \times 10^{9} \mathrm{Nm}^{-2} \quad$ and $190 \times 10^{9} \mathrm{Nm}^{-2}$ respectively.
11. A 14.5 kg mass, fastened to the end of a steel wire of unstretched length 1 m , is whirled in a vertical circle with an angular velocity of
$2 r e v . / s$ at the bottom of the circle. The cross-sectional area of the wire is $0.065 \mathrm{~cm}^{2}$.

Calculate the elongaton of the wire when the mass is at the lowest point of its path $Y_{\text {steel }}=2 \times 10^{11} \mathrm{Nm}^{-2}$.

D Watch Video Solution

12. Compute the bulk modulus of water from
the following data : initial volume $=100.0$ litre,
pressure increase $=100.0$ atmosphere. Final
volume - 100.5 litre . (1 atmosphere =
$1.013 \times 10^{5} \mathrm{~Pa}$). Compare the bulk modulus
of water that of air (at constant temperature).
explain in simple terms why the ratio is so large.

- Watch Video Solution

13. What is the density of ocean water at a depth, where the pressure is 80.0 atm, given
that its density at the surface is
$1.03 \times 10^{3} \mathrm{kgm}^{-3}$? Compressibilty of water $=45.8 \times 10^{-11} \mathrm{~Pa}^{-1}$. Given 1 atm. $=$ $1.013 \times 10^{5} \mathrm{~Pa}$.

D Watch Video Solution

14. Compute the fractional change in volume of a glass slab, when subjected to a hydraulic
pressure of 10 atmosphere. Bulk modulus of elasticity of glass $=37 \times 10^{9} \mathrm{Nm}^{-2}$ and 1 atm
$=1.013 \times 10^{5} \mathrm{~Pa}$.

D Watch Video Solution

15. The volume change of a solid copper cube

20 cm on an edge, when subjected to a pressure of 14 MPa is
(Bulk modulus of copper 140 GPa)

D Watch Video Solution
16. How much pressure should be applied on a
litre of water if it is to be compressed by 0.1% ?
(Bulk modulus of water= 2100 MPa)

D Watch Video Solution

17. Anvils made of single crystals of diamond, with the shape as shown in Fig. 9.14, are used
to investigate behaviour of materials under very high pressures. Flat faces at the narrow end of the anvil have a diameter of 0.50 mm , and the wide ends are subjected to a
compressional force of $50,000 \mathrm{~N}$. What is the pressure at the tip of the anvil ?

- Watch Video Solution

18. A rod of length 1.05 m having negligible mass supported at its ends by two wires of
steel (wire A) and aluminium (wire B) of equal
lengths as shown in respectively. At what point along the rod should a mass m be suspended in order to produce (a) equal stresses and (b) equal strains in both steel and aluminium wires.

19. A mild steel wire of length 1.0 m and crosssectional are $0.5 \times 10^{-20} \mathrm{~cm}^{2}$ is streached,
well within its elastic limit, horizontally between two pillars. A mass of 100 g is suspended from the mid point of the wire, calculate the depression at the mid point.

$$
g=10 \mathrm{~ms}^{-2}, Y=2 \times 10^{11} \mathrm{Nm}^{-2}
$$

D Watch Video Solution

20. Two strips of metal are riveted together at their ends by four rivets, each of diameter

6 mm . What is the maximum tension that can
be exterted by the riveted strip if the shearing stress on the rivet is not to exceed $6.9 \times 10^{7} \mathrm{~Pa}$? Assume that each rivet is to carry one quarter of the load.

D Watch Video Solution

21. The marina Trench is located in the pacific ocean, and at one place it is nearly eleven km beneath the surface of water. The water pressure at the bottom of the Trench is about $1.1 \times 10^{8} \mathrm{~Pa}$. A steel ball of initial volume $0.32 m^{3}$ is dropped into the ocean and falls to the bottom of the Trench. what is the change in the volume of the ball when it reaches to the bottom? Bulk modulus for steel $=$ $1.6 \times 10^{11} \mathrm{Nm}^{-2}$.
