©゙’doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MAXIMUM PUBLICATION

THERMODYNAMICS

Example

1. Hot coffee in a thermosflask is an example of system.
2. Which of the following statement is incorrect about internal energy? a) The absolute value of internal energy cannot be determined b) The internal
energy of one mole of a substance is same at any temperature or pressure c) The measurement of heat
change during a reaction by bomb calorimeter is
equal to the internal energy change d) Internal
energy is an extensive property
A. The absolute value of internal energy cannot be
determined
B. The internal energy of one mole of a substance is same at any temperature or pressure
C. The measurement of heat change during a reaction by bomb calorimeter is equal to the internal energy change
D. Internal energy is an extensive property

Answer: B

- Watch Video Solution

3. For which of the following the standard enthalpy is not zero?
A. C (Diamond)

B. C (Graphite)

C. Liquid mercury
D. Rhombic sulphur

Answer: A

- Watch Video Solution

4. Say TRUE or FALSE?

Any spontaneous process must lead to a net increase in entropy of the universe.
5. The ΔH for a reaction is-30kJ. On the basis of this
fact, we can conclude that the reaction
A. Gives off thermal energy
B. Is fast
C. Is slow
D. Is spontaneous

Answer: A

D Watch Video Solution

6. Write the type of system in each of the following:
a) Hot water taken in an open vessel
b) Hot water taken in a closed metallic vessel
c) Hot water taken in a thermos flask

- Watch Video Solution

7. In a reversible process the total change in entropy is ΔS (universe) is

D Watch Video Solution

8. For the reaction $\mathrm{Ag}_{2} \mathrm{O} \rightarrow 2 \mathrm{Ag}+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Delta S$ and Δ

H are $\quad 6.66 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ and $30.56 \mathrm{kJmol}^{-1}$
respectively. The reaction will not be spontaneous at what temperature
A. 4579 K
B. 4589 K
C. 3589 K
D. 4599 K

Answer:

D Watch Video Solution

9. One mole of methane undergoes combustion to form CO_{2} and water at $25^{\circ} \mathrm{C}$. The difference between
$\Delta U \& \Delta H$ will be
10. A gas expands from 11 to 61 against a constant pressure of 1 atm and it absorbs 500 J of heat ΔU is

Watch Video Solution

11. Born Haber cycle is to find out

D Watch Video Solution
12. a) Explain enthalpy of fusion.
b) Give illustration of fusion of ice.
13. a) What do you meant by enthalpy of vapourisation?
b) Explain enthalpy of sublimation.

- Watch Video Solution

14. One equivalent of an acid reacts completely with one equivalent of a base in dilute solution.
a) Which type reaction is this?
b) $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

On the basis of above equation, explain enthalpy of neutralisation.

- Watch Video Solution

15. a) What is the different between system and surroundings?
b) There are different types of systems. What are they? Explain.
c) Give example for different types of systems.

D Watch Video Solution

16. a) What is meant by enthalpy?
b) Derive an equation for enthalpy change.
c) What is enthalpy change?
17. a) Find the enthalpy of the reaction,

C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
Given,
i)

C(graphite)
$+\frac{1}{2} O_{2}(g) \rightarrow C O(g), \Delta H=-110.5 \mathrm{kJmol}^{-1}$
ii)

CO(g)
$+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-283.0 \mathrm{kJmol}^{-1}$
b) Melting of ice is a spontaneousnprocess. What are the criteria for spontaneity of a process?
18. Explain the following:
i) Enthalpy of atomization
ii) Enthalpy of solution at infinite dilution

D Watch Video Solution

19. The enthalpy change for the reaction,
$N_{2}(g)+3 H_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$ Is -92.38 kJ at 298 K.
What is ΔU at 298 K ?

D Watch Video Solution

20. What are the two types of heat capacities? How they are related?

D Watch Video Solution

21. Enthalpy and Entropy changes of two reactions are given below: Find out whether they are spontaneous or not at $27^{\circ} C$. Justify.
a) $\Delta H=26 \mathrm{~kJ} / \mathrm{mole}, \Delta S=8.3 \mathrm{~J} / \mathrm{K} / \mathrm{mole}$
b) $\Delta H=-393.4 \mathrm{~kJ} / \mathrm{mole}, \Delta S=6 \mathrm{~J} / \mathrm{K} / \mathrm{mole}$

D Watch Video Solution

22. a) What is enthalpy of solution?
b) What is enthalpy of dilution?
23. What is the significance of the second law of thermodynamics in the spontaneity of exothermic and endothermic reactions?

D Watch Video Solution
24. Explain the importance of third law of thermodynamics.

D Watch Video Solution
25. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+120_{2} \rightarrow 12 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O}$

Consider this equation and answer the following questions.
a) Thermodnamically, which type reaction is this?
b) What is enthalpy of combustion?
c) Give another example.

D Watch Video Solution

26. Bond dissociation energies of hydrogen and nitrogen are 430 kJ and 941.8 kJ respectively and the enthalpy of formation of NH_{3} is -46 kJ . What is the bond energy of $\mathrm{N}-\mathrm{H}$ bond?

- Watch Video Solution

27. In 1840, G.H.Hess (a Russian chemist) proposed an important generalisation of thermochemistry which is known after his name as Hess's law.
a) State Hess's law.
b) Give illustration of Hess's law.

D Watch Video Solution
28. $\Delta U=q-p \Delta V$. If the process is carried out at constant volume, then $\Delta V=0$. Answer the following questions.
a) Give the equation for ΔU.
b) 1000 J was supplied to a system at constant volume.

It resulted in the increase of temperature of the system from $45^{\circ} C$ to $50^{\circ} \mathrm{C}$. Calculate the change in internal energy.

- Watch Video Solution

29. Thermodynamics deals with macroscopic properties.
a) What is the difference between extensive and intensive properties?
b) Classify the following properties into extensive and intensive.

Pressure, Mass, Volume, Temperature, Density, Heat
capacity, Viscosity, Surface tension, Internal energy,
Molar heat capacity, Refractive index, Enthalpy, Specific heat capacity.

- Watch Video Solution

30. a) What is meant by state of the system and state
variables?
b) Give any four examples for state variables/state functions.
31. a) Explain the Zeroth law of thermodynamics.
b) What are the important modes of transference of energy. Explain.

(D) Watch Video Solution

32. a) Explain the symbols and sign conventions of heat and work.
b) Explain internal energy.
33. Fill in the blanks.
a) If heat is released, ' q ' is
b) For exothermic process ' ΔH^{\prime} ' is
c) If work is done on the system, 'w' is
d) For endothermic process ' ΔH ' is
e) If work is done by the system, 'w' is

Watch Video Solution

34.a) What is meant by enthalpy of formation?
b) What is the value of standard enthalpy of formation $\left(\Delta_{f} H^{o}\right)$ of an element?
35. First Law of thermodynamics is the law of conservation of energy.
a) Give the mathematical form of the first law.
b) Write the Gibb's equation.
c) What is the sign for ΔG for a spontaneous process?

- Watch Video Solution

36. a) Predict the sign of ΔS for the reaction,
$\mathrm{NH}_{3}(g)+\mathrm{HCI}(g) \rightarrow \mathrm{NH}_{4} \mathrm{CI}(s)$
b) The reaction between gaseous hydrogen and
chlorine is
$\mathrm{H}_{2}(g)+\mathrm{CI}_{2}(g) \rightarrow 2 \mathrm{HCI}(g), \Delta_{r} H=-1840 \mathrm{~kJ}$
i) What is the enthalpy of formation of HCl ?
ii) How much heat will be liberated at 298 K and 1 atm for the formation of 365 g of HCl ?

- Watch Video Solution

37. Derive the Meyer's relationship.

D Watch Video Solution

38. a) In a process 701 J of heat is absorbed by a
system and 394 J of work is done by the system. What
is the change in internal energy for the process?
b) What is free expansion? What is the work done during free expansion of an ideal gas?

D Watch Video Solution

39. a) Name the instrument used for measuring the
ΔU of a process.
b) What is the value of ΔG for a reaction at equilibrium?
c) ΔH and ΔS of a reaction are 30.56 and 0.666 $\mathrm{kJ} / \mathrm{mol}$ respectively at 1 atm pressure. Calculate the temperature at which the reaction is in equilibrium.
40. Thermodynamic process differ based on the manner in which it is carried out.
a) Distinguish between reversible and irreversible processes.
b) Calculate the amount of work done when 2 moles of a gas expands from a volume of 2 L to 6 L isothermally and irreversibly against a constant external pressure of 1 atm.
41. a) What are thermochemical equations?
b) Give an example for a thermochemical equation.

- Watch Video Solution

42. a) Define lattice enthalpy of an ionic compound.
b) What is Born-Haber cycle?

D Watch Video Solution
43. Predict what happens to entropy in the following
changes:
a) Metal is converted into alloy.
b) Solute crystallizes from solution.
c) Hydrogen molecule dissociates.

- Watch Video Solution

44. a) Give the relation between change in enthalpy and change in free energy.
b) Name the above relation.
c) What is the significance of the above relation?

D Watch Video Solution

45. a) Predict in each of the following whether entropy increses or decreases.
i) Sublimation of camphor
ii) $4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~g})$
b) The equilibrium constant for a reaction at $30^{\circ} \mathrm{C}$ is
2.5×10^{-29}. What will be the value of $\Delta G^{\circ} ?$

D Watch Video Solution

46. a) Explain the effect of temperature on the spontaneity of a process based on Gibbs equation.
b) For a reaction $2 A(g)+B(g) \rightarrow 2 D(g)$, enthalpy and entropy changes are $-20.5 \mathrm{kJmol}^{-1}$ and
$-50.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. Predict whether the reaction occurs at $25^{\circ} \mathrm{C}$.
47. a) Explain the first, second and third laws of thermodynamics.
b) What do you meant by entropy?
c) Explain the spontaneous process.

- Watch Video Solution

48. $U_{1}, \mathrm{q}, \mathrm{w}, U_{2}$ are given. U_{1} is internal energy, q is absorbed heat, w is work done and U_{2} is final energy.
a) Derive an equation for ΔU.
b) Give the equation for w.
c) Calculate the change in internal energy of a system
which absorbs 200 J of heat and 315 J of work is done by the system.

- Watch Video Solution

49. a) Predict whether entropy increases or decreases in the following changes:
i) $l_{2}(S) \rightarrow l_{2}(g)$
ii) Temperature of a crystalline solid is raised from 0 K and 115 K .
iii) Freezing of water
b) Calculate the enthalpy of combustion of methane.

Given that standard enthalpies of formation of
$\mathrm{CH}_{4}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ are $-75.2,-394$ and -285.6 $\mathrm{kJ} / \mathrm{mol}$ respectively.

D Watch Video Solution

50. In a process, 701 J of heat is absorbed by a system and 394 J of work is done by the system. What is the change in internal energy for the process?

- Watch Video Solution

51. The reaction of cyanamide, $\mathrm{NH}_{2} \mathrm{CN}(s)$ with oxygen was carried out in a bomb calorimeter and ΔU was found to be $-742.7 \mathrm{kJmol}^{-1}$ at 298 K .

Calculate the enthalpy change for the reaction at 298
K.

- Watch Video Solution

52. Calculate the number of kJ of heat necessary to
raise the temperature of 60 g of aluminium from $35^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. Molar heat capacity of Al is 24 J $\mathrm{mol}^{-1} K^{-1}$.

D Watch Video Solution

53. The enthalpy of formation of $\mathrm{CO}(\mathrm{g})$,
$\mathrm{CO}_{2}(g), \mathrm{N}_{2} \mathrm{O}(g), \mathrm{N}_{2} \mathrm{O}_{4}(g)$ are -110, -393, 81 and 9.7 kJ
mol^{-1} respectively. $\mathrm{N}_{2} \mathrm{O}_{4}+3 \mathrm{CO}(\mathrm{g}) \quad \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{CO}_{2}$
(g). Find the value of $\Delta r H$ for the reaction:
A. $666.6 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$
B. $-777.7 \mathrm{kjmol}^{-1}$
C. $777.7 \mathrm{kjmol}^{-1}$
D. $-666.6 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$

Answer:

D Watch Video Solution

54. The equilibrium constant for the reaction is 10 .

Calculate the value of ΔG^{o}, Given $\mathrm{R}=8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
, $\mathrm{T}=300 \mathrm{~K}$.

D Watch Video Solution

55. Calculate the entropy change in surrounding when 1.0 mol of $\mathrm{H}_{2} \mathrm{O}(l)$ is formed under standard conditions. Given $\Delta_{f} H^{o}=-286 \mathrm{kJmol}^{-1}$.

D Watch Video Solution

56. Comment on the thermodynamic stability of
$\mathrm{NO}(\mathrm{g})$ and $\mathrm{NO}_{2}(g)$ given :

$$
\begin{aligned}
& \frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow N O(g), \Delta_{f} H^{o}=90 \mathrm{kJmol}^{-1} \\
& N O(g)+\frac{1}{2} O_{2}(g) \rightarrow N O_{2}(g), \Delta_{f} H^{o}=-74 \mathrm{kJmol}^{-1}
\end{aligned}
$$

57. a) State Hess's Law of constant heat summation.
b) The equilibrium constant for a reaction is 5 . What will be tha value of ΔG^{0}.

Given that $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{~T}=300 \mathrm{~K}$.
$\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$T=300 K$

Watch Video Solution

58. A system in thermodynamics refers to that part of the universe in which observation are made.
a) What do you mean by an isolated system? Given an example.
b) Distinguish between intensive and extensive properties. Give two examples for each.

- Watch Video Solution

59. Lattice enthalpy of an ionic salt is a factor that determine its stability.
a) Define the lattice enthalpy.
b) Draw the Born-Haber cycle for the calculation of lattice enthalpy of the ionic crystal NaCl .
60. The spontaneity of a process is expressed in terms
of a change in Gibbs energy.
a) What is meant by a change in Gibbs energy of a system?
b) How is it related to the enthalpy and entropy of a system?
c) How is it useful in predicting the feasibility of a process?

D Watch Video Solution

61. A spontaneous process is an irreversible process
and may only by reserved by some external agency.
a) Decrese in enthalpy is the only criterion for spontaneity. Do you agree? Why?
b) Calculate the work done for the reversible isothermal expansion of 1 mole of an ideal gas at $27^{\circ} \mathrm{C}$, from a volume of 10 dm to a volume of 20 $d m^{3}$.

- Watch Video Solution

62. Thermodynamics deals with energy changes of macroscopic system.
a) Consider a chemical reaction taking place in a closed insulated vessel. To which type of thermodynamic system does it belong?
b) State the first law of thermodynamics.
c) 3 mol of an ideal gas at 1.5 atm and $25^{\circ} \mathrm{C}$ expands isothermally in a reversible manner to twice its original volume against an external pressure of 1 atm.

Calculate the work done.
$\left[R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$

- Watch Video Solution

63. Enthalpy and entropy changes of a reaction are $40.63 \mathrm{~kJ} / \mathrm{mol}$ and $108.8 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}$. Predict the feasibility of the reaction $\operatorname{atr} 27^{\circ} C$.
64. Most of the naturally occurring processes are spontaneous.
a) Give the criteria for spontaneity of a process in terms of free energy change (ΔG)
b) Exothermic reactions associated with a decrease in entropy are sponaneous at lower temperatures.

Justify on the basis of Gibbs equation.
c) Find the temperature above which the reactin
$M g O_{(s)}+C_{(s)} \rightarrow$
$M g_{(s)}+C O_{(g)}$ becomes spontaneous.
(Given
$\left.\Delta_{r} H^{\theta}=490 \mathrm{kJmol}^{-1} \& \Delta_{r} S^{\theta}=198 \mathrm{JKmol}^{-1}\right)$
65. a) The enthalpy of combustion of
$C H_{4(g)}, C_{\text {gradte }}$ and $H_{2(g)}$ at 298 K are -890.3 kJ mol^{-1}, $-393.5 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ and $-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Calculate the enthalpy of formation of $\mathrm{CH}_{4(\mathrm{~g})}$.
b) Match the following:

$$
\begin{array}{ll}
W=-\Delta u & - \text { Enthaly change } \\
\Delta u=0 & - \text { Universal gas constant } \\
C_{p}-C_{v} & - \text { Adiabatic process } \\
q_{p} & - \text { Isothermal process } \\
& - \text { Cyclic process }
\end{array}
$$

- Watch Video Solution

66. a) For the oxidation of iron 4
$F e_{(s)}+3 O_{2(g)} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$, entropy change is
$-549.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ at 298 K . Inspite of the negative
entropy change of this reaction, why is the reaction
spontaneous?
(ΔH_{r}^{0} for the reaction is $-1648 \times 10^{3} \mathrm{Jmol}^{-1}$).
b) Write the difference between extensive and intensive properties. Give one example of each.

D Watch Video Solution

67. a) ΔG gives a criteria for spontaneity of reactions
at a constant pressure and temperature. How is ΔG
helpful in precting the spontaneity of the reaction?
b) State and explain Hess's law of constant heat summation.

D Watch Video Solution

68. a) Classify the following into intensive and extensive properties.
i) Inernal energy ii) Density
iii) Heat Capacity iv) Temperature
b) Calculate the standard free energy change $\left(\Delta G^{\theta}\right)$
for the conversion of oxygen to ozone $\frac{3}{2} O_{3(g)} \rightarrow O_{3(g)}$ at 298 K if the equilibrium
constant for the conversion is 2.47×10^{-29}.
(Given $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)

- Watch Video Solution

69. The enthalpy change for the reaction.
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$ is -91.8 kJ at 298
K.what is ΔU at 298 K ?

$$
\left(R=8.314 J K^{-1} \mathrm{~mol}^{-1}\right)
$$

D Watch Video Solution

70. The enthalpy change in a process is the same, whether the process is carried out in a single step or
inseveral steps.
a) Identify tha law stated here.
b) Calculate the enthalpy of formation of CH_{4} from the following data :
i) $C_{(s)}+O_{2(g)} \rightarrow \mathrm{CO}_{2(g)}$
$\Delta H=-393.7 \mathrm{~kJ} / \mathrm{mol}$
ii) $\mathrm{H}_{2(g)}+\frac{1}{2} \mathrm{O}_{2(g)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}$
$\Delta H=-285.8 \mathrm{~kJ} / \mathrm{mol}$
iii) $\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}$
$\Delta H=-890.4 \mathrm{~kJ} / \mathrm{mol}$
