đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MAXIMUM PUBLICATION

LAWS OF MOTION

Exercise

1. Derive $F=m a$ from Newton's law.

-
 Watch Video Solution

2. When we jump to hard soil there is greater discomfort than when we jump to loose soil. Why?

- Watch Video Solution

3. A cricketer draws his hand while catching a cricket ball. Why?

- Watch Video Solution

4. Newton formulated the famous laws of motion.

Action and reaction are equal and opposite,yet they do not cancel each other.Why?

D Watch Video Solution

5. Why surface of the road is kept inclined to the horizontal?

6. Which one of the following is not a force?

A. Impulse

B. Tension

C. Thrust
D. Weight

Answer: A
(Watch Video Solution
7. A man jumping out of a slow bus falls forward. Ths is due to
A. Inertia of motion
B. Second law of motion
C. Third law of motion
D. Inertia of rest

Answer: A

D Watch Video Solution
8. Which one of the following is not a contact force?
A. Viscous force
B. Magnetic force
C. Friction
D. Buoyant force

Answer: B

D Watch Video Solution
9. A jet engine works on the principle of
A. Conservation of linear momentum
B. Conservation of mass
C. Conservation os energy
D. Conservation of angular momentum

Answer: A
10. Newton's second and third laws of motion
lead to the conservation of
A. linear momentum
B. angular momentum
C. potential energy
D. kinetic energy

Answer: A
(Watch Video Solution
11. A large force is acting on a body for a short
time. The impulse imparted is equal to the change in
A. acceleration
B. momentum
C. energy
D. velocity

Answer: B
12. When a shell explodes, the fragments fly apart though no external force is acting on it.

Does this violate Newton's first law of motion?

D Watch Video Solution

13. In taking a catch, a cricket player moves his
hands backward on holding the ball. Why?

D Watch Video Solution

14. Name the factor on which inertia depends.

- Watch Video Solution

15. Why does a swimmer push the water backwards?

D Watch Video Solution

16. Rocket works on the principle of conservation of

- Watch Video Solution

17. A man experience a backward jerk, while firing bullet from gun. Which law is applicable here?

D Watch Video Solution

18. If you jerk a piece of paper under a book quick enough, the book will not move. Why?
19. Why it is difficult to walk on a slippery road?

- Watch Video Solution

20. A stone, when thrown on a glass window, smashes the window pan to pieces. But a bullet fired from the gun passes through it making a hole why?
21. Why an athlete runs some distance before taking a jump?

D Watch Video Solution
22. Why a horse can not pull a cart and run in empty space?
(D) Watch Video Solution
23. Why parachute descends slowly?

D Watch Video Solution

24. Sand is thrown on tracks with snow. Why?

- Watch Video Solution

25. It is difficult to move a cycle along a road with its brakes on. Explain.

- Watch Video Solution

26. What is inertia?

- Watch Video Solution

27. Two masses are in the ratio $1: 5$. What is the ratio of inertia of this case?

D Watch Video Solution

28. More force is required to push a body than
pull to get same speed on a ground with same
friction. Why?

D Watch Video Solution

29. A lift in a multistoried building is moving
from ground floor to third floor. What will
happen to weight of a person sitting inside of
the lift when starts to move up from ground
floor.

D Watch Video Solution

30. A lift in a multistoried building is moving
from ground floor to third floor. What will
happen to weight of a person sitting inside of the lift when the lift moves with constant speed.

D Watch Video Solution

31. Why it is advisable to hold a gun tight to one's shoulder when it is being fired?
32. Why shockers are used in vehicles?

- Watch Video Solution

33. Give the magnitude and direction of net
force on a drop of rain falling down with a constant velocity.

- Watch Video Solution

34. Give the magnitude and direction of net force on a stone of mass 0.1 kg just after it dropped from the window of a train accelerating at $1 \mathrm{~ms}^{-2}$.

- Watch Video Solution

35. An external force is always required to break the inertia of a body which is either in the state of rest or state of uniform motion. Which law governs this statement?
36. An external force is always required to brake the inertia of a body which is either in the state of rest or state of uniform motion.

Can all forces produce acceleration? Why?

D Watch Video Solution

37. An external force is always required to brake the inertia of a body which is either in the state of rest or state of uniform motion. A
boy holding a spring balance in his hand suspend a mass $2 k g$ from it. If the balance
slips from his hand and falls down, find the reading of the balance while it is in the air.

- Watch Video Solution

38. A man weighs 70 kg . He stands on a weighing scale in a lift which is moving upward with a uniform speed of $10 \frac{\mathrm{~m}}{\mathrm{~s}}$. (Take $\left.\mathrm{g}=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)$. Find weight.
39. A man weighs 70 kg . He stands on a weighing scale in a lift which is moving downward with an uniform acceleration of $5 \frac{m}{s^{2}}$. (Take $g=10 \frac{m}{s^{2}}$). What would be the reading of the scale?

D Watch Video Solution

40. A man weighs 70 kg . He stands on a weighing scale in a lift which is moving
upward with an uniform acceleration of $5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
(Take $g=10 \frac{m}{s^{2}}$). Find weight.

D Watch Video Solution

41. A body of mass ' m ' is placed on a rough inclined plane having coefficient of friction μ_{s}.

The inclination of plane is given as ' θ '. Which component of weight brings the body towards
the
bottom along the
plane.

- Watch Video Solution

42. A body of mass ' m ' is placed on a rough
inclined plane having coefficient of friction μ_{s}.
The inclination of plane is given as ' θ '. Find how much force is required to pull the body

- Watch Video Solution

43. What do you mean by impulsive force?

- Watch Video Solution

44. Prove impulse-momentum theorem.

D Watch Video Solution

45. A circular track of radius 300 m is kept with
outside of track raised to make 5 degree with
the horizontal.

Name the process in which outside of the road
is raised little above the inner.

D Watch Video Solution
46. A circular track of radius 300 m is kept with outside of track raised to make 5 degree with the horizontal.

Obtain an expression for the optimum speed to avoid skidding (considering to friction).

D Watch Video Solution

47. A circular track of radius 400 m is kept with
outer side of track raised to make 5° with the
horizontal.(coefficient of friction 0.2).

Name such track. What is the (i) optimum
speed of the race car to aviod wear and tear on its tyres.
(ii) maximum permissible speed to aviod slipping ?

D Watch Video Solution

48. A circular track of radius 400 m is kept with
outer side of track raised to make 5° with the horizontal.(coefficient of friction 0.2).

What is optimum speed to avoid wear and tear of tire? (take $g=10 \mathrm{~m} / \mathrm{s}^{\wedge} 2$)
49. A circular track of radius 400 m is kept with outer side of track raised to make 5° with the horizontal.(coefficient of friction 0.2).

What is the maximum permissible speed to avoid skidding?

- Watch Video Solution

50. A horse pulls a cart with constant force so that the cart moves with a constant speed.

Does it violate Newtons second law of motion?

D Watch Video Solution

51. A horse pulls a cart with constant force so that the cart moves with a constant speed.

How will you account for the non-acceleration of the cart?

D Watch Video Solution
52. A horse pulls a cart with constant force so
that the cart moves with a constant speed.

Will the speed of the cart increase,decrease or remain the same if the horse applied more force?

D Watch Video Solution

53. A body of mass $5 k g$ is acted upon by two perpendicular forces $8 N$ and $6 N$.Give the
magnitude and direction of the acceleration of the body.

D Watch Video Solution

54. Friction is the force which opposes the relative motion between two surfaces in contact with each other.

What is a limiting static friction?State the laws related to this.
55. Show that the coefficient of the friction is equal to the tan of the angle between the resultant and normal reactions.

- Watch Video Solution

56. For a body of mass 5 kg on a plane at a limiting static friction of 30 degrees.

What is the force of friction?

- Watch Video Solution

57. The rate of change of linear momentum of
a body is directly proportional to the external
force applied on it,and takes place always in the direction of force applied.

Name this law.

D Watch Video Solution

58. The rate of change of linear momentum of a body is directly proportional to the external force applied on it,and takes place always in
the direction of force applied.

Using the law obtain the expression for force.

D Watch Video Solution

59. The rate of change of linear momentum of a body is directly proportional to the external force applied on it,and takes place always in the direction of force applied.

The motion of a particle of mass m is described by $y=u t+1 / 2 g t^{\wedge} 2$. Find the force acting on it.

Watch Video Solution

60. Recoil of a gun is based on the principle of conservation of momentum.

State the principle of conservation of momentum.

- Watch Video Solution

61. Recoil of a gun is based on the principle of conservation of momentum.

Explain the recoil velocity of the gun.

- Watch Video Solution

62. Recoil of a gun is based on the principle of conservation of momentum.

A bullet of mass 100 g is fired from a rifle of mass 200 kg with a speed of $50 \mathrm{~m} / \mathrm{s}$. Calculate the recoil velocity of the rifle.

- Watch Video Solution

63. While firing a bullet,the gun must be held
tight to the shoulder.
Which conservation law helps you to explain this.

- Watch Video Solution

64. While firing a bullet,the gun must be held tight to the shoulder.
"In the firing process the speed of the gun is
very low compared to the speed of the bullet."

Substantiate the above statement using mathematical expressions.

D Watch Video Solution

65. A shell of 20 kg moving at $50 \frac{\mathrm{~m}}{\mathrm{~s}}$ bursts into two parts of masses 15 kg and 5 kg .If the larger part continues to move in the same direction at $70 \frac{\mathrm{~m}}{\mathrm{~s}}$. What is the velocity and direction of motion of the other piece.

D Watch Video Solution

66. While firing the bullet,the gun must be held tight to the shoulder.

This is a consequence of

- Watch Video Solution

67. While firing the bullet,the gun must be held tight to the shoulder.

Show that recoil velocity is opposite to the muzzle velocity of the bullet.
68. While firing the bullet,the gun must be held tight to the shoulder.

A gun of mass 5 kg fire a bullet of mass $5 g$ vertically upwards to a height of 100 m .Calculate the recoil velocity of gun.

D Watch Video Solution

69. A standing passenger falls backwards when
the bus starts suddenly.

Explain why this happens.
70. A standing passenger falls backwards when
the bus starts suddenly.

Which Newtons law gives the above concept.State the law.

- Watch Video Solution

71. Obtain an expression for force using

Newtons law.
72. Impulse has the unit similar to that of which of the following
(i)Momentum
(ii)force
(iii)time
(iv)energy.

- Watch Video Solution

73. According to Newton's law of motion rate of change of momentum is directly proportional to applied force.

A man falling from certain height receives more injuries when he falls on a marble floor than when he falls on a heap of sand.Explain.Why?.

- Watch Video Solution

74. Give the magnitude and direction of the net force acting on
a rain drop of falling down with a constant speed.

- Watch Video Solution

75. Give the magnitude and direction of the net force acting on
a cork of mass 10 g floting on water
76. Give the magnitude and direction of the net force acting on
a kite skillfully held stationary in the sky

- Watch Video Solution

77. Give the magnitude and direction of the net force acting on
a high - speed electorn in space far from all material objects, and magnetic fields.
78. A constant retarding force of 50 N is applied to a body of mass 20 kg moving initially with a speed of $15 \mathrm{~ms}^{-1}$. How long does the body take to stop?

- Watch Video Solution

79. A bob of mass 0.1 kg hung from the ceiling of a room by a string $2 m$ long is set into oscilation. The speed of the bob at its mean
position is $1 m s^{-1}$. What is the trajectory of the bob if the string is cut when the bob is
(a) at one of its extreme positions,
(b) at its mean position.

D Watch Video Solution

80. A man of mass 70 kg stands on a weighing
scale in a lift which is moving
upwards with a uniform acceleration of
$10 \mathrm{~ms}^{-2}$. What would be the reading of the scale during their upward movement?

Watch Video Solution

81. A man of mass 70 kg stands on a weighing scale in a lift which is moving downwards with acceleration of $5 \mathrm{~ms}^{-2}$

D Watch Video Solution

82. A man of mass 70 kg stands on a weighing scale in a lift which is moving
upwards with a uniform acceleration of
$5 m s^{-2}$

What would be the reading on the scale?

D Watch Video Solution

83. A man of mass 70 kg stands on a weighing
scale in a lift which is moving
what would be the reading if the lift mechanism failed and it hurtled down freely under gravity?

- Watch Video Solution

84. A nucleus is at rest in the laboratory frame
of reference. Show that if it distintegrates into
two smaller nuclei, the products must move in opposite directions.

D Watch Video Solution

85. A shell of mass 0.020 kg is fired by a gun of mass 100 kg . If the muzzle speed of the shell is $80 \mathrm{~ms}^{-1}$, what is therecoil speed of the gun?
86. A passenger of mass 30 kg is standing in a
lift which is moving vertically downwards with
an acceleration of $1.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
Will the passenger experience a decrease or an increase in his weight?Explain.

D Watch Video Solution

87. A passenger of mass 30 kg is standing in a
lift which is moving vertically downwards with
an acceleration of $1.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

What will be the effect if the cable is cut and the lift falls freely?

D Watch Video Solution

88. There are different type of forces in nature.We learnt their effects and applications.Give the exact reasons for the following.

Why does a satellite revolve around the earth
in a circular path?

D Watch Video Solution
89. There are different type of forces in nature.We learnt their effects and applications.Give the exact reasons for the following.

Why can't a horse pull a cart in empty space?

- Watch Video Solution

90. There are different type of forces in nature.We learnt their effects and applications.Give the exact reasons for the
following.

Why are passengers thrown forward when a speeding bus stops suddenly?

D Watch Video Solution

91. There are different type of forces in nature.We learnt their effects and applications.Give the exact reason for the following.

Why is it easy to lift a heavy stone in water?

D Watch Video Solution

92. A man is standing at the centre of a large
flat slab of ice.He can get himself to the edge of slab by spitting or blowing air in the forward direction.(assuming the ice to be frictionless)

Name the principle/law involved in this.

- Watch Video Solution

93. A horse cannot pull a cart and run in empty space.Why?
94. With the help of a free body diagram represent various forces acting on a vehicle moving on a banked road. Neglecting frictional force obtain the expression for the maximum safe speed of the vehicle on the banked road.

- Watch Video Solution

95. Raising the outer edge of a curved raod a
little above the inner edge is called banking of
curves.

Derive an expression for the safe speed with
which a car can negotiate a banked road by taking into account the friction between the tyres and road.

D Watch Video Solution

96. A machine gun fires bullets of mass $40 g$
each with a speed $1200 \mathrm{~ms}^{-1}$. The person can
hold the gun with a maximum force of $144 N$

What is the maximum number of bullets that
can be fired per second from the gun?

D Watch Video Solution

97. A thief jumps from the top of a house with
a box of weight 25 kg wt . on his head. What will
be the weight of the box experienced by the
thief during his downward fall? Justify your answer.

D Watch Video Solution

98. When a shot is fired from a gun,the gun moves in the backward direction.

State the principle behind it.

D Watch Video Solution
99. When a shot is fired from a gun,the gun moves in the backward direction.

Prove the principle using Newton's law of motion.

D Watch Video Solution

100. Friction is a force acting between two
surfaces in contact,when there is a relative motion between them.Consider a car moving over a horizontal road.What will be the
direction of frictional force acting between the

road and tyre?

D Watch Video Solution

101. A stone, when thrown on a glass window, smashes the window pan to pieces. But a bullet fired from the gun passes through it making a hole why?
102. Banking of road helps to increase the centripetal force and thereby increases the
limit of maximum speed of vehicle with it can take the curve.

Sketch the schematic diagram of a vehicle on a banked road and mark the various force acting on it.

D Watch Video Solution

103. Banking of road helps to increase the centripetal force and thereby increases the
limit of maximum speed of vehicle with it can take the curve.

Give the expression for the maximum allowed speed of a vehicle on a banked road with friction.
104. According to Newton's law of motion,the force depends on the rate of change of momentum.

State whether the force is external or internal?

Justify your answer.

D Watch Video Solution

105. According to Newton's law of motion,the
force depends on the rate of change of momentum.

What happens to the linear momentum when the force is absent?

- Watch Video Solution

106. According to Newton's law of motion,the
force depends on the rate of change of momentum.

The motion of particle of mass m is described

$$
\text { by } y=u t+\frac{1}{2}\left(g t^{2}\right)
$$

Find the force acting on the particle.
107. According to Newton's law of motion,the force depends on the rate of change of momentum.

Why is it more difficult to rotate a stone by tying it to a longer string then a shorter string?

D Watch Video Solution

108. Write the reason for the following:

Action and reaction are equal and opposite.Yet
they do not cancel each other.

- Watch Video Solution

109. Write the reason for the following:

A cricketer moves his hands backwards while holding a catch.

D Watch Video Solution

110. According to Newton's law of motion, the
force depends on the rate of change of
momentum.

Name the law that helps to measure force.

D Watch Video Solution

111. According to Newton's law of motion,the
force depends on the rate of change of momentum.

Using the law,deduce an expression for force.

D Watch Video Solution

112. According to Newton's law of motion, the force depends on the rate of change of momentum.

A man jumping out of a moving bus with his head forward.What should he do in order to land safely?

D Watch Video Solution

113. The outer side of a circular track of radius

200 m is raised to make an angle of 15° with
the horizontal.

Which force provides the necessary centripetal
force for a car taking the circular track?

D Watch Video Solution

114. The outer side of a circular track of radius

200 m is raised to make an angle of 15° with
the horizontal.

Name the process by which the outer side of a curved track is raised a little above the innerside.

Watch Video Solution

115. The outer side of a circular track of radius

200 m is raised to make an angle of 15° with
the horizontal.

Using the data provided in this case,determine
the maximum permissible speed to avoid skidding.(Given $\mu_{s}=0.25$).

D Watch Video Solution

116. A circular track of radius 400 m is kept with outer edge raised to make 5degree with the horizontal.

What do you call this type of construction of tracks?

- Watch Video Solution

117. A circular track of radius 400 m is kept with outer edge raised to make 5degree with the horizontal.

Obtain an expression for the maximum permissible speed considering the force of friction.

D Watch Video Solution

118. A circular track of radius 400 m is kept with outer edge raised to make 5 degree with the horizontal.

Calculate the maximum permissible speed of the car if the coefficient of the friction is 0.2 .
119. We are familiar with Newton's laws of motion.

State Newton's second law of motion.

D Watch Video Solution

120. We are familiar with Newton's laws of motion.

Using the Newton's second law,explain:
(i)impulse momentum principle.
(ii)Law of conservation of linear momentum.

- Watch Video Solution

121. We are familiar with Newton's laws of motion.

A circular race track of radius 300 m is banked
at an angle of 15°. The coefficient of friction between the wheels of a race car and the road is 0.2 ,find :
(i)The optimum speed of the race car to avoid wear and tear on its tyres.
(ii)Maximum permissible speed to avoid slipping.
122. Newton formulated the famous laws of motion.

Give the significance of Newton's first law.

D Watch Video Solution

123. Newton formulated the famous laws of motion.

Action and reaction are equal and opposite,yet they do not cancel each other.Why?

D Watch Video Solution

124. Friction is defined as the force which opposes the relative motion between two surfaces in contact.

Friction is a necessary evil,explain.
125. Friction is defined as the force which opposes the relative motion between two surfaces in contact.

What is meant by banking of roads?

D Watch Video Solution

126. Friction is defined as the force which
opposes the relative motion between two
surfaces in contact.

Obtain an expression for maximum speed on a banked road without considering friction.

D Watch Video Solution

127. State whether the following statements
true or false. Correct the statement if it is
false.

A spring balance gives the mass of a body while a common balance gives its weight.
128. State Newton's second law and arrive at the equation of force.

D Watch Video Solution

129. A motorcycle and a bus are moving with
same momentum. Which of them has greater kinetic energy? Justify.
130. A person drives a car along a circular track on a level ground.

Derive an expression for the maximum safe speed of the car.

D Watch Video Solution

131. A person drives a car along a circular track on a level ground.

Why do we give banking to curved roads?
132. When a horse suddenly starts moving, the rider falls backward.

Name and state the law used to explain the above situation.

- Watch Video Solution

133. State the law of conservation of linear momentum and prove it on the basis of second law of motion.
134. State true or false. An iron ball and a wodden ball of the same radius are released
from a height in vaccum, the iron ball will reach the ground first.

D Watch Video Solution

135. The schematic diagram of the circular motion of a car on a banked road is shown in the figure.

If the centripetal force is provided by the horizontal components of ' N ' and ' f ' arrived at expression for maximum safe speed.

D Watch Video Solution

136. The schematic diagram of the circular motion of a car on a banked road is shown in
the figure.

The optimum speed of a car on a banked road to avoid wear and tear on its tyres is given by
i) $\sqrt{R g \tan \theta}$
ii) $\sqrt{R g \cot \theta}$
iii) $\sqrt{R g \sin \theta}$
iv)
$\sqrt{R g \cos \theta}$
里 $\theta / R=\sec \theta$

