đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MAXIMUM PUBLICATION

MOTION IN ONE DIMENSION

Exercise

1. Which of the following curves does not
represent motion in one dimension?
A.
B.
C.
D.

Answer: B

D View Text Solution

2. Free fall of an object(in vaccum) is a case of

A. Uniform velocity
B. Uniform acceleration
C. Variable acceleration
D. Uniform speed

Answer: B

D Watch Video Solution

3. The area under velocity-time graph for a particle in a given interval of time represents
A. Velocity
B. Acceleration
C. Work done
D. Displacement

Answer: D

D Watch Video Solution

4. A car travels half the distance with constant velocity of 40 kmph and the remaining half
with a constant velocity 60 kmph . The average velocity of the car in $k m p h$ is
A. 40
B. 45
C. 48
D. 50

Answer: C
(Watch Video Solution
5. The acceleration of a moving object is equal to the
A. Gradient of a displacement-time graph
B. Gradient of a velocity-time graph
C. Area below a speed-time graph
D. Area below a displacement-time graph

Answer: B

D Watch Video Solution

6. A ball is thrown vertically upwards and comes back.Which of the following graph represents the velocity-time graph of the ball during its flight?
A.
B.
c.
D.

Answer: C
7. The magnitude of average velocity is equal to average speed.In which case this condition is staisfied?

- Watch Video Solution

8. Can a body be said to be at rest as well as in motion at the same time?
9. What conclusion can you draw if the average velocity is equal to instanteneous velocity?

- Watch Video Solution

10. Why the speed of the object can never be negative?

D Watch Video Solution
11. Is it possible that the velocity of an object be in a direction other than the direction of acceleration?If yes,give an example.

- Watch Video Solution

12. Is it possible to have the rate of change of
velocity constant while the velocity itself changes both in magnitude and direction.If yes,give an example.
13. If the acceleration of the particle is constant in magnitude but not in direction,what type of path does the body follow?

- Watch Video Solution

14. Two stones of different sizes are dropped simultaneously from the top of a building.Which stone would reach earlier? Why?

- Watch Video Solution

15. A piece of paper and iron piece are dropped simultaneously from the same point in vaccum. Which one will reach at ground earlier?

- Watch Video Solution

16. Is it possible that your cycle has a southward velocity but northward
acceleration?If yes,give an example.

D Watch Video Solution

17. An ant is moving through a graph paper along x-axis.A boy observes that the ant covers

1 mm in every second. What type of motion is this?

- Watch Video Solution

18. Some examples of motion are given below.State in each case if the motion is one,two,or three dimension
a)A kite flying on a windy day.
b)A speeding car on a long straight highway.
c) A carrom coin rebounding from the side of
the board.
d)A planet revolving around its star.

D Watch Video Solution

19. Two bodies start moving in the same straight line at the same instant of time from
the same origin.The first body moves with a constant velocity of $40 \frac{\mathrm{~m}}{\mathrm{~s}}$ and the second starts from rest with a constant acceleration
of $4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
a)What is uniform speed?
b)Find the time that elapses before the second catches the first body.
20. Displacement is a vector quantity while distance is a scalar quantity.Distinguish between scalar and vector quantities.

D Watch Video Solution

21. "The aerial distance between two towers is

4 km .But speedometer of car shows 5.6 km when travel from one tower to another." By reading this statement explain the concept of distance and displacement.
22. A stone is thrown upwards from the ground with a velocity,u.
a)What is the maximum height attained by the stone?
b)Check the correctness of the equation obtained in,(a)using the method of dimensional analysis.
c) Draw the position-time graph of the stone during its return journey
23. Gopal dropped an apple from the top his
flat at a height of 10 m .He told his sister Seetha on the ground below that it will reach the ground in 2 sec after he drops it. Can she catch it after 2 sec?

- Watch Video Solution

24. A tow rope used to pull the car of mass

700 kg will break if the tension exceeds 1500 N .
a)Calculate the maximum acceleration with
which the car can be pulled through a level road.
b)Calculate the minimum time required to bring the car to work station 500 m away from the break point.

D Watch Video Solution

25. The relative velocity of a body A with respect to a body B is the time rate at which body A changes its position with respect to body B.
a)If V_{A} and V_{B} are the velocities of A and B
moving in opposite directions, what is the relative velocity of A with respect to B ?
b)Two trains along the same straight rails are moving with constant velocity of $60 k \frac{m}{h}$ and $30 k \frac{m}{h}$ towards each other.If at time $t=0$,the distance between them is 90 km , find the time when they collide.
c) The velocity time graph of two bodies A and
B make angles of 30° and 60° with the time axis,what is the ratio of their acceleration?
26. A balloon is ascending at the rate of $14 m s^{-1}$ and at a height of $98 m$ above the ground, a stone is dropped from it.
a)State whether the motion of the balloon is accelerated or retarded?
b)After how much time does the stone reach the ground?
c) Determine the velocity with which the stone strikes the ground.
27. A particle is moving along x-axis with a uniform positive acceleration.Draw the position time graph for its motion.

D Watch Video Solution

28. State the difference between speed and velocity.Can a body move with uniform speed
but with variable velocity?Explain with the help of an example.

D Watch Video Solution

29. A sprinter starts from rest and pickup a speed of $12 \frac{\mathrm{~m}}{\mathrm{~s}}$ in 3 sec onds.
a)Name the type of motion.
b)Derive a relation to find distance travelled during t second for this type of motion.
c)A car manufacturer advertises that the brakes are so perfect that the car stops instantly.Do you agree?Explain.

D Watch Video Solution

30. a)Acceleration due to gravity is $9.8 \frac{m}{s^{2}}$ What is meant by the value of 9.8 ?
b)Obtain a relation between velocity-position of a uniformly accelerated body.
c)A particle moving with a certain velocity is
subjected to a retardation of $4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ if it returns to the starting point in $12 s$.Calculate the initial velocity.

Watch Video Solution

31. In which of the following examples of motion, can the body be considered approximately a point object:
A. a railiway cariage moving without jerks between two stations.
B. a monkey siting on top of a man cycling smoothly on a circular track.
C. a spinning cricket ball that tums sharply on hitting the ground.

D. a tumbling beaker that has slipped off

 the edge of a table.
Answer:

D Watch Video Solution

32. A car moving along a straight highway with
speed of $126 \mathrm{~km} \mathrm{~h} h^{-1}$ is brought to a stop within a distance of 200 m . What is the retardation of the car (assumed uniform), and how long does it take for the car to stop?

- Watch Video Solution

33. On a two lane road, car A is travelling with
a speed of $36 \mathrm{~km} \mathrm{~h}-1$. two cars B and C approach car A in opposite directions with a speed of $54 \mathrm{~km} \mathrm{~h}-1$ each. At a certain instant, when the distance $A B$ is equal to $A C$, both being 1 km , B decides to overtake A before C does. What minimum acceleration of car B is required to avoid an accident?
34. Read each statement below carefully and
state with reasons and examples, if it is true or
false, A particle in one-dimensional motion:
a) with zero speed at an instant may have non-
zero acceleration at that instant,
b) with zero speed may have non-zero velocity,
c) with constant speed must have zero acceleration,
d) with positive value of acceleration must be speed-ing up.
35. A man walks on a straight road from his
home to a market 2.5 km away with a speed of
$5 k m h^{-1}$. Finding the market closed, he instantly turns and walks back home with a speed of $7.5 k m h^{-1}$.
a) What is the magnitude of average velocity, and
b) average speed of the man over the following intervals of time:
i) $0 \rightarrow 30 \mathrm{~min}$, ii) $0 \rightarrow 50 \mathrm{~min}$, iii) $0 \rightarrow 40 \mathrm{~min}$?
36. Look at the graphs (a) to (d) in the following figure carefully and state, with reasons, which of these cannot possibly represent one-dimensional motion of the particle.

- Watch Video Solution

37. If ' v ' is the velocity and ' a ' is the acceleration, give an example of a physical situation for each of the following cases.
(a) $v \neq 0, a=0$
(b) $v=0, a \neq 0$
(c) $v>0, a<0$
(d) $v<0, a\rangle 0$

- Watch Video Solution

38. (a) The figure shows the position time graph of a body moving along a straight line.

i) Draw the velocity - time graph of the body.

D Watch Video Solution

39. The figure shows the position time graph of a body moving along a straight line.

ii) From the graph, find the displacement in 20 seconds.

D Watch Video Solution

40. From the velocity-time graph of a body moving with uniform acceleration, deduce the
velocity-time relation and the velocitydisplacement relation.
41. A physical quantity having both magnitude and direction is a vector and if it has only magnitude it is a scalar. Categorize the following physical quantities into scalars and vectors.
(a) Force
(b) Angular momentum
(c) Time
(d) Work

D Watch Video Solution
42. Acceleration is the time rate of change of velocity.

Give an example of a body possessing zero velocity and still accelerating.

D Watch Video Solution

43. Graph representing the motion of a body is
shown below. State with reason whether it can
represent one dimensional motion.

(D) Watch Video Solution

44. Graph representing the motion of a body
is shown below. State with reason whether it
can represent one dimensional motion.

D Watch Video Solution

45. Acceleration -time graph of a body starts
from rest as shown below :

What is the use of the acceleration - time graph?

- Watch Video Solution

46. Acceleration -time graph of a body starts
from rest as shown below :

Draw the velocity-time graph using the above graph

D Watch Video Solution
47. Acceleration -time graph of a body starts
from rest as shown below :

Find the displacement in the given interval of time form 0 to 3 seconds.

- Watch Video Solution

48. State in the following cases whether the motion is one,two or three dimensions.
(i) A butterfly flying around a flower.
(ii) A bus moving along a long and straight road.

D Watch Video Solution

49. Derive the equations of motion for nonuniform motion in one dimension.

D Watch Video Solution
50. Acceleration is defined as the rate of change of velocity.

Is it possible for a body to have acceleration without velocity?Explain.

D Watch Video Solution

51. Acceleration is defined as the rate of change of velocity.

Draw the velocity-time graph of a body moving
with uniform acceleration a and initial velocity
v_{0}.

D Watch Video Solution
52. Acceleration is defined as the rate of change of velocity. Obtain the equation for displacement in time t.

D Watch Video Solution
53. Velocity is defined as the rate of change of displacement.

Distinguish between average velocity and instantaneous velocity.

- Watch Video Solution

54. Velocity is defined as the rate of change of displacement.

When does the average velocity become equal to the instantaneous velocity?
55. Velocity is defined as the rate of change of displacement.

A car travels from A to B at $60 k \frac{m}{h} r$ and returns to A at $90 k \frac{m}{h} r$.What is its average velocity and average speed?

- Watch Video Solution

56. The ratio of velocity,to speed of an object is
(i)one
(ii)greater than one
(iii)less than one
(iv)either less than one or equal to one.

- Watch Video Solution

57. A stone is dropped from height h. Arrive at an expression for the time taken to reach the ground.
58. An object released near the surface of the earth is said to be in free fall.(Neglect the air resistance).

Choose the correct alternative from the clues given at the end of the statement.
"Free fall is an example of accelerated motion."(uniformly/nonuniformly).

- Watch Video Solution

59. Area under velocity-time graph gives

Watch Video Solution

