đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MAXIMUM PUBLICATION

SAY-2017 QUESTION PAPER

Exercise

1. The weakest force found in nature

(D)
2. The work done during an isochoric process is

D Watch Video Solution
3. Highway police detect over speeding vehicles by using
A. Magnus effect
B. Pascal's law
C. Doppler effect

D. Bernoulli's theorem

Answer: C

D Watch Video Solution

4. Two forces 3 N and 4 N are acting perpendicular to each other. The magnitude of the resultant force is
A. 7 N
B. 1 N
C. $\sqrt{49} N$
D. 5 N

Answer: D

D Watch Video Solution

5. Say true/false: "Trade winds are produced due to conduction"
(D) Watch Video Solution
6. The displacement(S) of a body in a time t is
given by $S=a t^{2}+b t$.Find the dimensions of a and b.

D Watch Video Solution

7. Give the magnitude and direction of net force on a stone of mass 0.1 kg just after it dropped from the window of a train accelerating at $1 m s^{-2}$.
8. Give the magnitude and direction of the net force on a stone of mass 0.1 kg , lying on the floor of train which is accelerating with $1 m s^{-2}$,the stone being at rest relative to the train.

- Watch Video Solution

9. A body is rolling on a horizontal surface.

Derive an equation for its kinetic energy.
10. "A heavy and light body have same kinetic energy." Which one has greater momentum? Why?

- Watch Video Solution

11. The side of a cube is measured as 3.405 cm .

How many significant figures are there in the mesurement.
12. The side of a cube is measured as 3.405 cm .

If the percentage error in the measurement of
the side of the cube is 3%, find the percentage error in its volume.

D Watch Video Solution

13. State and prove the law of conservation of energy for a freely falling body.
14. What will be the weight of a body at the centre of earth.

- Watch Video Solution

15. Acceleration due to gravity on earth changes with depth and height. Find the
height at which the acceleration due to gravity is $\frac{1}{4}$ th that at the surface of earth.
16. A metal sphere of density ρ and radius ' a ' is
failing through an infinite column of liquid of density σ and coefficient of viscosity η. Name any two forces acting on the sphere.

D Watch Video Solution

17. Derive an expression for the terminal velocity of a ball in terms of coefficient of viscosity of the medium.
18. Conduction is the mode of transfer of heat in solids. Write the unit of thermal conductivity.

D Watch Video Solution

19. Conduction is the mode of transfer of heat
in solids. "Burns produced by steam is severe
than that prduced by boiling water" Why?

D Watch Video Solution

20. A gas has ' f ' degrees of freedom. Calculate
its C_{p}, C_{v} and γ.

(Watch Video Solution

21. A gas has ' f ' degrees of freedom. Define mean free path.

D Watch Video Solution

22. The velocity of a satellite in its orbit is
called orbital velocity. find the relationship
between orbital velocity and escape velocity.

D Watch Video Solution

23. A saturn year is 29.5 times the earth year.

How far is the saturn from the sun if the earth
is $1.50 \times 10^{8} \mathrm{~km}$ away from the sun?

D Watch Video Solution
24. In simple harmonic motion, force is directly proportional to the displacement for the mean position. Give an example of harmonic oscillator.

- Watch Video Solution

25. In simple harmonic motion, force is directly proportional to the displacement for the mean position. Derive equations for the

Kinetic and potential energies of a harmonic oscillator.

- Watch Video Solution

26. In simple harmonic motion, force is directly proportional to the displacement for the mean position. Show graphically the variation of kinetic energy and potential energy of a harmonic oscillator.

- Watch Video Solution

27. A stretch string can be used as a musical instrument. What is the fundamental frequency of a stretched string?

D Watch Video Solution

28. A stretch string can be used as a musical
instrument. What is the fundamental
frequency of a stretched string?

D Watch Video Solution
29. A body having an initial velocity V_{0} has an acceleration a. Using velocity-time graph derive an equation for displacement of the above body.

D Watch Video Solution

30. A body having an initial velocity V_{0} has an
acceleration a. Using velocity-time graph derive an equation for displacement of the above body.
31. A javelin is thrown with an initial velocity v_{0} at an angle θ with the horizontal. What is the horizontal and vertical velocities of the body I) at the point of projection II) at maximum height

- Watch Video Solution

32. A javelin is thrown with an initial velocity v_{0} at an angle θ with the horizontal. Find the
angle of projection at which the maximum
height attained by the javelin is equal to the horizontal range.

D Watch Video Solution

33. What is meant by banking of roads?

- Watch Video Solution

34. What is the optimum speed of the car along the banked road?
35. What is the optimum speed of the car along the banked road?

- Watch Video Solution

36. The moment of intertidal of a thin rod of mass M and length I about an axis perpendicular to the rod at its midpoint is
M_{l}^{2}
$\frac{M_{l}}{12}$. what is the radius of gyration in the above case?

D Watch Video Solution

37. The moment of intertidal of a thin rod of mass M and length I about an axis perpendicular to the rod at its midpoint is $\frac{M_{l}^{2}}{12}$. A student has to find the moment of of inertia of the above rod about an axis(AB) perpendicular to the rod and passing through
one end of the rod. Name and state the law used for this case.

D Watch Video Solution

38. The moment of intertidal of a thin rod of mass M and length I about an axis perpendicular to the rod at its midpoint is $\frac{M_{l}^{2}}{12}$. Using the theorem, find the moment of the rod about $A B$.
39. Small drops of water assumes spherical shape due to surface tension. Define surface tension.

D Watch Video Solution

40. Obtain an expression for excess of pressure inside a drop of radius r and surface tension S .

D Watch Video Solution

41. Small drops of water assumes spherical shape due to surface tension. Why do farmers plough the fields before summer?

D Watch Video Solution

42. Camot engine is considered as an ideal heat engine. Draw the P-V graph of Camot's cycle.

D Watch Video Solution

43. Thermodynamics deals with the concept of
heat and the exchange of heat energy.

Obtain the expression for the work done during an adiabatic process.

D Watch Video Solution

44. Camot engine is considered as an ideal
heat engine. Calculate the efficiency of a heat engine working between ice point and stream point.
45. The branch of physics that was developed
to understand and improve the working heat engines is.
A. Optics
B. Thermodynamics
C. Electronics
D. Electrodynamics

- Watch Video Solution

46. State the parallel axes theorem on moment of inertia.

D Watch Video Solution

47. Select a TRUE statement from the following
A. Year and light year have the same dimensions.
B. Intensity of gravitational field has same dimensions as that of acceleration.
C. One angstrom is the mean distance
between sun and earth.
D. Parsec is a unit of time.

Answer: B

D Watch Video Solution

48. If the zero of potential energy is at infinity,
the total energy of an orbiting satellite is negative of its............... energy.

- Watch Video Solution

49. What is the time period of a second's pendulum?

- Watch Video Solution

50. A body having an initial velocity V_{0} has an acceleration a. Using velocity-time graph derive an equation for displacement of the above body.

(D) Watch Video Solution

51. A boy throws a ball of mass 200 g with a velocity $20 \mathrm{~ms}^{-1}$ at an angle of 40° with the horizontal. What is the kinetic energy of the ball at the highest point of the trajectory?
52. Write the work done in each of the following cases as zero positive or negative.
(a)Work done by centripetal force in circular motion. (b)Work done by friction. (c)Work done by gravitational force on a freely falling object. (d)Work done by the applied force in lifting an object.

D Watch Video Solution

53. Derive an expression for the escape velocity of an object from the surface of a planet.

D Watch Video Solution

54. The terminal velocity of a copper ball of radius 2 mm falling through a tank of oil at $20^{\circ} \mathrm{c}$ is $6.5 \mathrm{cms}^{-1}$. Calculate the viscosity of the oil at $20^{\circ} \mathrm{c}$. (Hints: Density of oil is is
$1.5 \times 103 \mathrm{kgm}^{-3} \quad$, density of copper is $\left.8.9 \times 10^{3} \mathrm{kgm}^{-3}\right)$

D Watch Video Solution

55. Free fall is a uniformly accelerated motion.

Draw the velocity time graph of free fall.

- Watch Video Solution

56. Define uniform acceleration.

D Watch Video Solution
57. When a shot is fired from a gun,the gun moves in the backward direction.

State the principle behind it.

D Watch Video Solution

58. A shell of mass 0.020 kg is fired by a gun of mass 100 kg . If the muzzle speed of the shell is $80 \mathrm{~ms}^{-1}$, what is therecoil speed of the gun?
59. Acceleration due to gravity decreases with depth Prove the above statement by deriving proper equation.

D Watch Video Solution

60. Acceleration due to gravity decreases with depth Using the equation, show that acceleration due to gravity is maximum at the surface and zero at the center of the eath.
61. A hydraulic lift is designed to lift a maximum, mass of 3000 kg and area of the piston carrying it is $425 \mathrm{~cm}^{2}$. What is the maximum pressure \that should be applied to the smaller piston?

- Watch Video Solution

62. When 0.15 kg of ice at $(\operatorname{deg} 0 C)$ is mixed with 0.30 kg of water at $(\operatorname{deg} 50 C)$ in a
container, the resuting temperature is
deg6.70CCalculate the latent heat of fusion of ice. Given specific heat capacity of water $4186 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$.

- Watch Video Solution

63. The accuracy in measurement depends on
the limit or the resolution of the measuring instrument.State whether the above statement is TRUE or FALSE.
64. The accuracy in measurement depends on
the limit or the resolution of the measuring instrument.A physical quantity P is related to four observables a, b, c and d as $P=\left(a^{3}\right) \frac{b^{2}}{(c d)^{\frac{1}{2}}}$. The percentage errors in measurements of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are $1 \%, 3 \%$,
2% and 3% respectively. What is the percetage errors in the measurement of P ?

- Watch Video Solution

65. A stone tied to the end of a string 80 cm
long is whirled in a horizontal circle with a constant speed.What is the angle between velocity and acceleration at any instant of motion?

D Watch Video Solution

66. A stone tied to the end of a string 80 cm
long is whirled in a horizontal circle with a constant speed.If the stone makes 14
revolutions in 25 s , what is the magnitude of acceleration of the stone?

D Watch Video Solution

67. If \bar{A} is perpendicular to \bar{B}, what is the value of $(\bar{A}) \cdot(\bar{B})$?

- Watch Video Solution

68. Find the angle between the force
$(\bar{F}=(3 \hat{i}+4 \hat{j}+5 \hat{k}) N$ and displacement
$(\bar{d})=(5 \hat{i}+4 \hat{j}+3 \hat{k}) m$

- Watch Video Solution

69. If in the case of a carnot's engine,

$$
T_{1}=100 C, T_{2}=0 C \text { and } Q_{1}=4200 \mathrm{~J}, \text { find }
$$

the value of Q_2.

- Watch Video Solution

70. Which one of the following relationships between the acceleration a a and
displacement x of a particle involve simple harmonic motion.

D Watch Video Solution

71. Which one of the following relationships between the acceleration a a and
displacement x of a particle involve simple
harmonic motion.

D Watch Video Solution
72. Which one of the following relationships between the acceleration a a and displacement x of a particle involve simple harmonic motion.

- Watch Video Solution

73. Which one of the following relationships between the acceleration a a and displacement x of a particle involve simple harmonic motion.
74. A simple harmonic motion is represented as $x=A$ cosomegat'. Obtain the expression for velocity and acceleration of the object and hence prove that acceleration is directly proportional to the displacement.

D Watch Video Solution

75. What is the condition for the equilibrium of concurrent forces?

- Watch Video Solution

76. A mass of 6 kg is supended by a rope of length $2 m$ from the ceiling. A force of $50 N$ in the horizontal direction is applied at the midpoint P of the rope a shown. What is the angle, the rope makes with the vertical in equilibrium? Take $g=10 \mathrm{~ms}^{-2}$. Neglect the mass of the rope.

- Watch Video Solution

77. Write the equation connecting torque with force.

D Watch Video Solution

78. A meter stick is balanced at its centre
(50 cm). When two ocoins each of mass $5 g$ are put on the top of the other at the 12 cm mark, it is found to be balanced at 45 cm . What is the mass of the stick?

79. Derive the mathematical relation between

angular momentum and torque.

- Watch Video Solution

80. Water rises up in a narow tube inspite of gravity. This phenomenon is called...

- Watch Video Solution

81. Derive an expression for the rise of the liquid in a capillary tube.

D Watch Video Solution

82. Water with detergent dissolved in it should have...angle of contact. (small/large)

D Watch Video Solution
83. The angle between $\vec{A}=\vec{i}+\vec{j}$ and $\vec{B}=\vec{i}-\vec{j}$ is
A. 45°
B. 90°
C. 60°
D. 180°

Answer: B

D Watch Video Solution
84. Three objects with a mass of 40 kg each are placed in a straight line 50 cm apart. What is the net gravitational force at the centre object due to the other two?

D Watch Video Solution

85. Which one of the following relationships between the acceleration a a and
displacement x of a particle involve simple
harmonic motion.
A. $a=5 x$
B. $a=-200 x^{2}$
C. $a=-5 x$
D. $a=100 x^{3}$

Answer: C

D Watch Video Solution
86. The stress required to double the length of
a wire of Young's modulus Y is
A. $\frac{Y}{2}$
B. $2 Y$
C. y
D. 4 Y

Answer: C

D Watch Video Solution

87. A car travelling at a speed of $54 \mathrm{~km} / \mathrm{hr}$ is brought to rest in 90 s . Find the distance travelled by the car before coming to rest.

- Watch Video Solution

88. A parallelogram law helps to find the magnitude and direction of the resultant of two forces. If the magnitude of two vectors and their resultant are the same, what is the angle between the two vectors?

D Watch Video Solution

89. Choose the correct alternative: When a conservative force does positive work on a body, the potential energy of the body increases/decreases/remains inaltered.
A. increases
B. decreases
C. remains unaltered
D.

Answer:

90. Work done by a body against friction

 always result in a loss of itsA. kinetic energy
B. potential energy
C.
D.

Answer: B

91. The rate of change of total momentum of a

system of many particle system is proportional
to the \cdots on the system
A. external force
B. sum of internal forces
C.
D.

Answer: A
92. Choose the correct alternative: In an inelastic collision of two bodies, the quantities which do not change after the collision are the total kinetic energy/total linear momentum of the system of two bodies.
A. total kinetic energy
B. total linear momentum
C.
D.

Answer: A

- Watch Video Solution

93. A steel wire of length 1.5 m and diameter
0.25 cm is loaded with force of 98 N . The increase in length of the wire $1.5 \times 10^{-4} \mathrm{~m}$.

Calculate the tensile stress and fractional change in length of the wire.

- Watch Video Solution

94. According to the kinetic theory of gases
gas molecules are always in random motion.

State the law of equipartition of energy.

D Watch Video Solution

95. According to the kinetic theory of gases
gas molecules are always in random motion.

Write the average value of energy of a molecule for each vibrational mode.
96. Two parallel rail tracks run north-south.

Train A moves north with the speed of $15 \frac{\mathrm{~m}}{\mathrm{~s}}$ and train B moves south with the speed of $25 \frac{\mathrm{~m}}{\mathrm{~s}}$. What is the velocity of B with respect to A?

D Watch Video Solution

97. Two parallel rail tracks run north-south.

Train A moves north with the speed of $15 \frac{\mathrm{~m}}{\mathrm{~s}}$ and train B moves south with the speed of
$25 \frac{\mathrm{~m}}{\mathrm{~s}}$. What is the velocity of ground with respect to B ?

D Watch Video Solution

98. Two parallel rail tracks run north-south.

Train A moves north with the speed of $15 \frac{\mathrm{~m}}{\mathrm{~s}}$ and train B moves south with the speed of $25 \frac{\mathrm{~m}}{\mathrm{~s}}$. What is the velocity of a monkey running on the roof of the train A against its motion (with a velocity of $5 \frac{\mathrm{~m}}{\mathrm{~s}}$ with respect to
the training A)as observed by a man standing on the ground?

D Watch Video Solution

99. An insect trapped in a circular groove of radius 12 cm moves along the growth steadily and completes 7 revolutions in 100s. What is the linear speed of the motion?

- Watch Video Solution

100. An insect trapped in a circular groove of
radius 12 cm moves along the growth steadily
and completes 7 revolutions in 100s. Is the acceleration vector a constant vector ? What is
its magnitude?

D Watch Video Solution

101. A car and a truck have the same kinetic energies at a certain instant while they are moving along two parallel roads . (Assume
that the truck is heavier than the car). Which one will have greater momentum?

D Watch Video Solution

102. A car and a truck have the same kinetic energies at a certain instant while they are moving along two parallel roads . (Assume that the truck is heavier than the car). If the mass of the truck is 100 times greater than
that of the car, find the ratio between their velocities.

Watch Video Solution

103. A girl rotates on a swivel chair. What happens to her angular speed when she stretches her arms?

D Watch Video Solution

104. A solid sphere of mass m and radius R starts from rest and rolls down along an inclined plane of height h without slipping.

Calculate the kinetic energy of the sphere when it reaches the ground.

D Watch Video Solution

105. A solid sphere of mass m and radius R starts from rest and rolls down along an inclined plane of height h without slipping.

Find the velocity when it reaches the base.

D Watch Video Solution

106. A man jumping out of a slow bus falls forward. Ths is due to

D Watch Video Solution
107. A man jumping out of a slow bus falls
forward. Which Newton's law gives the above concept? State the law.

D Watch Video Solution

108. What are the balanced forces acting on a book at rest on a table?

D Watch Video Solution
109. What is meant by banking of roads?

D Watch Video Solution

110. Banking of road helps to increase the centripetal force and thereby increases the
limit of maximum speed of vehicle with it can take the curve.

Sketch the schematic diagram of a vehicle on a banked road and mark the various force acting on it.

D Watch Video Solution

111. Banking of road helps to increase the centripetal force and thereby increases the limit of maximum speed of vehicle with it can take the curve.

Give the expression for the maximum allowed speed of a vehicle on a banked road with friction.

D Watch Video Solution

112. Obtain an expression for excess of pressure inside a drop of radius r and surface tension S .
113. For a liquid-gas interface, the convex side has a high pressure than the concave side.

Which is better, washing of cloth in cool soap water or warm soap water? Why?

- Watch Video Solution

114. Linear expansion is change in length of an
object with temperature. Write the eqation for coefficient of linear expansion.
115. Linear expansion is change in length of an object with temperature. Show that the coefficient of volume expansion is thrice its coefficient of linear expansion.

D Watch Video Solution

116. Linear expansion is change in length of an object with temperature. The abosolute zero is
A. $273.15 \circ C$

$$
\text { B. }-273.15 K
$$

C. $-273.15 \circ F$
D. $0 \circ C$

Answer: A

D Watch Video Solution

117. Deduce an expression for the period of oscillation of a simple pendulum.
118. The simplest example of simple harmonic motion is the oscillations of a simple pendulum. In a simple pendulum made of a metallic wire, what will happen to the period when temperature increases? Give a reason.

D Watch Video Solution

119. The centripetal force depends on mass of the body, velocity and radius of circular path.

Find the expression for the centripetal force acting on the body using the principle of dimensional analysis. (Take constant $k=1$)

D Watch Video Solution

120. When the planet Jupiter is at a distance of 824.7 million kilometers from the Earth, its angular diameter is measured to be 35.72 of arc. Calculate the diameter of the Jupiter.
121. Satellites are objects which revolve around
the earth. The direction of revolution of geosynchronous satellite is from
A. east to west
B. west to east
C. north to south
D. south to north

Answer: B
122. Satellites are objects which revolve around the earth. Derive an expression for total energy of an orbiting satellite.

D Watch Video Solution

123. Satellites are objects which revolve around the earth. What is the magnitude of
the angular velocity for a geosynchronous satellite?
124. A steam engine delivers $5.4 \times 10^{8} \mathrm{~J}$ of work per minute and services $3.6 \times 10^{9} \mathrm{~J}$ of heat per minute from its boiler.What is the efficiency of the engine?How much heat is wasted per minute?

- Watch Video Solution

125. A transverse harmonic wave on a string is
$y(x, t)=3.0 \sin \left(36 t+0.018 x+\frac{\pi}{4}\right)$ where
' x ' and ' y ' are in cm and ' t ' is in s. The positive direction of ' x ' is from left to right. Is this a travelling wave or a stationary wave? If it is travelling, what are the speed and direction of its propagation?

D Watch Video Solution

126. A transverse harmonic wave on a string is described
$y(x, t)=3.0 \sin \left(36 t+0.018 x+\frac{\pi}{4}\right)$ where
' x ' and ' y ' are in cm and ' t ' is in s . The positive
direction of ' x ' is from left to right. What are is amplitude and frequency?

D Watch Video Solution

127. A transverse harmonic wave on a string is described
$y(x, t)=3.0 \sin \left(36 t+0.018 x+\frac{\pi}{4}\right)$ where
' x ' and ' y ' are in cm and ' t ' is in s. The positive direction of ' x ' is from left to right. What is the
least distance between two successive crests in the wave?

Watch Video Solution

128. 'the weak nuclear force is stronger than gravitational force" state whether this statement is true or false.

- Watch Video Solution

129. write any two properties of conservative force.
130. Thermodynamics deals with energy changes of macroscopic system.
a) Consider a chemical reaction taking place in
a closed insulated vessel. To which type of thermodynamic system does it belong?
b) State the first law of thermodynamics.
c) 3 mol of an ideal gas at 1.5 atm and $25^{\circ} \mathrm{C}$
expands isothermally in a reversible manner to
twice its original volume against an external pressure of 1 atm. Calculate the work done.
$\left[R=8.314 J K^{-1} \mathrm{~mol}^{-1}\right]$
131. draw a graph showing the variation of volume of a given mass of water with temperature from $0^{\circ} \mathrm{C}$. In the graph mark the temperature at which water has maximum density.

D Watch Video Solution

132. what is sublimation? write an example of a material.

Watch Video Solution

133. the lengths of two bodies measured by a metre scale are $I_{1}=(20 \pm 0.5) \mathrm{cm}$ and $I_{2}=(15 \pm 0.2) \mathrm{cm}$. Calculate: some of these lengths

D Watch Video Solution

134. the lengths of two bodies measured by a metre scale are $I_{1}=(20 \pm 0.5) \mathrm{cm}$ and
$I_{2}=(15 \pm 0.2) \mathrm{cm} . \quad$ Calculate: difference between the lengths

D Watch Video Solution

135. Match the following. A\{a.torque $(\bar{\tau})$, b.

Angular momentum (\bar{L}), c. rotational equilibrium, d. Linear velocity $(\bar{b})\} . \quad \mathrm{B}\{(\mathrm{i})$ perpendicular to $\bar{r} \& \bar{P}$, (ii) $\sum \bar{F}=0$, (iii) $\bar{\omega} \times \bar{r}$, (iv) $\bar{r} \times \bar{F}$,(v) $\sum \bar{\tau}$

- Watch Video Solution

136. Derive an expression for the escape velocity of an object from the surface of a planet.

D Watch Video Solution

137. A wave travelling along a string is described by,
$y(x, t)=0.005 \sin (80.0 x-3.0 t)$ in which the numerical constant are in SI units. Calculate the wavelength and frequency of the wave.
138. Draw a diagram showing the first and third harmonics produced in a closed pipe.

D Watch Video Solution

139. write the equation for the fundamental
frequency in terms of length of the pipe
140. "Velocity cannot be added to temperature". this is in accordance with which law of physics?

D Watch Video Solution

141. "Velocity cannot be added to temperature"
check the dimensional correctness of the
equation $P V=F x$ where P is the pressure V is the volume F is force and x is displacement
142. Find the magnitude and direction of the resultant of two vectors \vec{A} and \vec{B} in terms of their magnitudes and angle between them.

D Watch Video Solution

143. An object moving uniformly in acircular path of radius 12 cm completes 7 revolutions in 100 s . What is the angular speed, and the linear speed of the motion?

- Watch Video Solution

144. A light bullet is fired from a heavy gun.

Choose the CORRECT.
A. Speed of the gun and the bullet are equal.
B. Momenta of the bullet and gun are equal in magnitude and oppusit e in direction.
C. Momenta of the gun and bullet are equal in magnitude and are in the same direction.

D. Velocity of gun and bullet are equal.

Answer:

145. A light bullet is fired from a heavy gun.

Choose the CORRECT.

- Watch Video Solution

146. By using the law of equipartition of energy, derive the value of ratio of specific heats of a mono atomic gas.
147. Young's modulus of Aluminium is
$70 \times 10^{9} \mathrm{Nm}^{-2}$ and that of copper is
$120 \times 10^{9} \mathrm{Nm}^{-2}$. Same strain is to be produced on an aluminium wire and a copper wire of equal cross section. Which wire requires more force?

D Watch Video Solution

148. Free fall is a uniformly accelerated motion.

Draw the velocity time graph of free fall.
149. Free fall is a uniformly accelerated motion.

A ball is thrown vertically upwards with a velocity of $20 \mathrm{~ms}^{-1}$ from the top of a building.

The height of the point from where the ball is thrown is 25.0 m from the ground. How high will the ball rise?

D Watch Video Solution

150. Free fall is a uniformly accelerated motion.

A ball is thrown vertically upwards with a velocity of $20 \mathrm{~ms}^{-1}$ from the top of a building.

The height of the point from where the ball is
thrown is 25.0 m from the ground. How long will it be before the ball hits the ground?

D Watch Video Solution

151. Power is the rate at which work is done.

Express power in terms of force and velocity.
152. An elevator of total mass 1800 kg is moving up with a constant speed of $2 \frac{m}{s}$. A frictional force of 4000 N acts on this motion.

Determine the minimum power delivered to the elevator.

D Watch Video Solution

153. Power is the rate at which work is done.

Express power in terms of force and velocity.

- Watch Video Solution

154. a) Find the moment of inertia of a sphere about a tangent to the sphere, given the moment of inertia of the sphere about any of its diameters to be $\frac{2 M R^{2}}{5}$, where M is the mass of the sphere and R is the radius of the sphere.
b) Given the moment of inertia of a disc of mass M and radius R about any of its diameters to be $M \frac{R^{2}}{4}$, find its moment of
inertia about an axis normal to the disc and passing through a point on its edge.

D Watch Video Solution

155. A solid sphere of mass m and radius R starts from rest and rolls down along an inclined plane of height h without slipping.

Find the velocity when it reaches the base.

D Watch Video Solution

156. Earth satellites are objects which revolve around the earth.

Time period of a geostationary satellite is

- Watch Video Solution

157. Earth satellites are object which revolve around the earth. consider a satellite at a height ' h ' from the surface of the earth. obtain an equation for the period of above satellite.
158. Water does not wet the feathers of ducks.

A physical quantity called angle of contact determines whether a liquid will spread on the surface of a solid or it will form droplets on it.

Define angle of contact.

D Watch Video Solution

159. Water proofing agents are added to create a ____ (large/small) angle of contact
between the water and fibres.

D Watch Video Solution

160. Calculate the excess of pressure inside an air bubble of radius 1 mm formed just below the free surface of water.Given surface tension of water $72 \times 10^{-3} \mathrm{Nm}^{-1}$

- Watch Video Solution

161. Write the equation for the coefficient of performance of a refrigerator.

D Watch Video Solution

162. In case of a heat engine, $T_{1}=900 K$,

$$
T_{2}=300 K^{`} Q_{-} 1=6400 J \text { Find } Q_{-} 2
$$

(Watch Video Solution
163. Static friction opposes impending motion.

Write the mathematical equation connecting
the limiting value of static friction with normal reaction.

D Watch Video Solution

164. Static friction opposes impending motion.

Choose the CORRECT statement:
(i)Both kinetic friction and static friction are independent of the area of contact.
(ii)Kinectic friction depends on area of contact but static friction do not.
(iii)Static friction depends on area of contact but kinetic friction do not.
(iv)Both kinetic friction and static friction depend on the area of contact.

D Watch Video Solution

165. Show that the coefficient of the friction is
equal to the tan of the angle between the resultant and normal reactions.

Watch Video Solution

166. Bernoulli's equation for steady non viscous incompressible flow expresses the

- Watch Video Solution

167. Deduce an expression for the period of oscillation of a simple pendulum.
168. What is the length of a simple pendulum,which ticks seconds?

D Watch Video Solution
169. The rotational analogue of mass is

- Watch Video Solution

170. Which among the following possesses the
highest specific heat capacity?
A. Metals
B. Ice
C. Water
D. Glass

Answer: B

D View Text Solution

171. "A heavy and light body have same kinetic energy." Which one has greater momentum?
172. Select the strongest force from the follwing list:
(Electromagnetic force,Gravitational force,Weak nuclear force).

- Watch Video Solution

173. The moment of intertidal of a thin rod of mass M and length I about an axis
perpendicular to the rod at its midpoint is M_{l}^{2}
$\frac{l_{l}}{12}$. Using the theorem, find the moment of the rod about AB.

- Watch Video Solution

174. The acceleration due to gravity (g) on the surface of the earth is $9.8 \frac{\mathrm{~m}}{s^{2}}$. Derive an expression an expression for the variation of g with height (h) above the surface of the earth.
175. For an ideal gas, ' $C_{-} p$ ' and ' $C_{-} v$ ' are related as

- Watch Video Solution

176. What do you mean by Mean free path?

Give an equation for Mean free path.

- Watch Video Solution

177. A particle executes SHM of amplitude A.At what distance from the mean position is its kinetic energy equal to its potential energy?

D Watch Video Solution

178. A large force acting for a short inerval of time is called impulsive force.

What is the SI unit of impulse?
179. A large force acting for a short inerval of time is called impulsive force.

Two billiard balls each of mass 0.05 kg moving in opposite direction with speed $6 \frac{\mathrm{~m}}{\mathrm{~s}}$ collide and rebound with the same speed. What is the impulse imparted to each ball due to the other?

D Watch Video Solution

180. A body cools from $80^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in

5 min utes,Calculate the time it taken to cool
from $60^{\circ} C$ to $30^{\circ} C$.The temperature of the surrounding is $20^{\circ} \mathrm{C}$.

D Watch Video Solution

181. Derive an expression for period of oscillation of a loaded spring.

D Watch Video Solution

182. Stress - Strain graph of two materials is
shown below: State the law which relates

D Watch Video Solution

183. A solid cylinder of mass 20 kg rotates about its axis with angular speed $100 \mathrm{rads}^{-1}$.

The radius of the cylinder is 0.25 m . What is
the kinetic energy associated with the rotation of the cylinder? What is the magnitude of the angular momentum of the cylinder about its axis?

D Watch Video Solution

184. Can a Carnot engine work if its sink and source are interchanged? Explain.

D Watch Video Solution

185. a)Obtain expression for Time of flight for a projectile motion.
b)What is the angle of projection for maximum horizontal range?
c) The ceiling of a long hall is $25 m$ high.What is
the maximum horizontal distance that the ball
thrown with a speed of $40 \frac{\mathrm{~m}}{\mathrm{~s}}$ can go without hitting the ceiling of the hall?

D Watch Video Solution

186. Several games such as billiards,marbles or carrom involve collision.

What is meant by completely inelastic collison?

D Watch Video Solution

187. Show that in a perfectly elastic collision in
one dimension, relative velocity after collision is equal to relative velocity before collision.
188. Kepler formulated three laws of planetory motion.

State the Keplee's law of periods.

- Watch Video Solution

189. A saturn year is 29.5 times the earth year.

How far is the saturn from the sun if the earth
is $1.50 \times 10^{8} \mathrm{~km}$ away from the sun?

- Watch Video Solution

190. A small metal sphere is falling through
castor oil. Write down the expression for terminal velocity in terms of coefficient of viscosity.

D Watch Video Solution

191. The terminal velocity of a copper ball of
radius 2 mm falling through a tank of oil at $20^{\circ} \mathrm{c}$ is $6.5 \mathrm{cms}^{-1}$. Calculate the viscosity of the oil at $20^{\circ} c$. (Hints: Density of oil is is
$1.5 \times 103 \mathrm{kgm}^{-3} \quad$, density of copper is $\left.8.9 \times 10^{3} \mathrm{kgm}^{-3}\right)$

D Watch Video Solution

192. When a metallic sphere falls through
castor oil,its velocity becomes uniform,called terminal velocity.

Rain drops falling under gravity do not acquire very high velocity.Why?

D Watch Video Solution

193. The correctness of equations can be checked using the principle of homogeneity. State the principle of homogeneity.

D Watch Video Solution

194. The correctness of an equation can be checked using the principle of homogenity in dimensions.

Using this principle check whether the equation, $f=2 \pi \sqrt{\frac{l}{g}} \quad$ is dimensionally
acceleration due to gravity.

- Watch Video Solution

195. The correctness of an equation can be checked using the principle of homogenity in dimensions.

The velocity V of a particle depends on time t as $V=A t^{2}+B t$.Find the dimensions and units of A and B.
196. The static friction comes into play at the moment the force is applied.

Write the relation with static friction and normal reaction.

D Watch Video Solution

197. The static friction comes into play at the moment the force is applied.

Determine the maximum acceleration of the train in which a box lying on its floor will
remain stationary,given that the coefficient of static friction between the box and the train's floor is 0.15 .

D Watch Video Solution

198. The static friction comes into play at the moment the force is applied.

State the laws of limiting friction.

D Watch Video Solution
199. While conducting a resonance column experiment in the laboratory you can hear the maximum sound at a certain height.

Which phenomenon is responsible for this?

- Watch Video Solution

200. While conducting a resonance column experiment in the laboratory you can hear the maximum sound at a certain height.

Is resonance column apparatus an open pipe or a closed pipe?

- Watch Video Solution

201. Find the ratio of frequencies of the first
three harmonics in the resonance column apparatus.

D Watch Video Solution
202. Differentiate between streamline flow and turbulent flow.

D Watch Video Solution

203. Which one of the following fundamental
forces in nature binds protons and neutrons
in a nucleus?
A. Gravitational force
B. electromagnetic force

C. strong nuclear force

D. weak nuclear force

Answer: C

D Watch Video Solution

204. four pairs of initial and final positions of a body along an x-axis are given. which pair gives a positive displacement of the body?

$$
\text { A. }-10 m,+15 m
$$

$$
\text { B. }-5 m,-12 m
$$

C. $2 m,-5 m$
D. $2 m, 1 m$

Answer: A

D Watch Video Solution
205. Newton's first law of motion describe the
A. energy
B. work

C. Inertia

D. Momentum

Answer: C

D Watch Video Solution

206. The rotational analogue of force is

A. Energy
B. Work
C. Inertia

D. Torque

Answer: D

D Watch Video Solution

207. the young's modulus of rubber is
A. Greater than that of steel
B. Less than that of steel
C. Equal to that of steel
D.

Answer: B

- Watch Video Solution

208. The centripetal force on a body in circular
motion is given by $F=\frac{m v^{2}}{r}$.
Write the dimension of force.

- Watch Video Solution

209. The centripetal force on a body in circular
motion is given by $F=\frac{m v^{2}}{r}$.
Using the above formula, write an equation to
find $\%$ error in centripetal force.

D Watch Video Solution

210. State the law of conservation of linear momentum and prove it on the basis of second law of motion.
211. The sign of work done by a force on a body
is important to understand. State carefully if the following quantities are positive or negative: work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket.

D Watch Video Solution

212. The sign of work done by a force on a body is important to understand. State
carefully if the following quantities are positive or negative: work done by friction on a body moving sliding down an inclined plane.

D Watch Video Solution

213. find out the sign of work done in the following cases: work done by an applied force on a moving on a rough horizontal plane.

D Watch Video Solution

214. The sign of work done by a force on a body is important to understand. State carefully if the following quantities are positive or negative: work done by the resistive force of air on vibrating pendulum in bringing it to rest.

- Watch Video Solution

215. A cord of negligible mass in wound round
the rim of flywheel of mass 20 kg and radius

20 cm mounted on a horizontal axis Calculate
the angular acceleration of the wheel if a steady pull of $25 N$ is applied on the cord. Moment of inertia of flywheel about its axis= $M \frac{R^{2}}{2}$

D Watch Video Solution
216. The escape speed for an object from the earth is $11.2 k \frac{m}{s}$. What is meant by escape speed?
217. The escape speed for an object from the earth is $11.2 k \frac{m}{s}$. Arrive at an expression for the escape speed. Does it depend on the mass of the object or not?

D Watch Video Solution

218. In a hydraulic lift the radius of small piston is 5.0 cm and that of larger piston is 15 cm . Calculate the force F, if the mass of the car to be lifted is $1350 \mathrm{~kg}\left(g=9.8 m s^{-2}\right)$
219. What do you mean by capillary rise? What
is the phenomenon responsible for it?

- Watch Video Solution

220. Show that the function of $(\sin \omega t-\cos \omega t$
) represents simple harmonic motion.

- Watch Video Solution

221. A steel wire has a length of 12.0 m and a mass of 2.10 kg . What is the tension in the wire if speed of a transverse wave on the wire is $343 m s^{-1}$?

D Watch Video Solution

222. A company manufacturing PVC pipes
claims in an advertisement that the volume of water flowing out through the pipe in a given
time is as per the equation $V=K A^{2} u t$ where A is the area of cross section of the
pipe, u is the speed of flow, t is the time and K is a dimensionless constant.

Name the principle that can be used to check the dimensional correctness of this equation.

D Watch Video Solution

223. A company manufacturing PVC pipes
claims in an advertisement that the volume of water flowing out through the pipe in a given
time is as per the equation $V=K A^{2} u t$ where A is the area of cross section of the
pipe, u is the speed of flow, t is the time and K is a dimensionless constant.

Check the equation and state whether the claimis correct.

- Watch Video Solution

224. For two vectors \vec{A} and \vec{B} are acting at a
point with an angle α between them, find the magnitude and direction of the resultant vector.
225. Write the 4 steps of operation in the Carnot cycle.

D Watch Video Solution

226. A refrigerator is to maintain eatables kept inside at $9^{\circ} \mathrm{C}$.If room temperature is $36^{\circ} \mathrm{C}$,calculate the coefficient of performance.
227. Prove that the average kinetic energy of a molecule is proportional to the absolute temperature of the gas.

- Watch Video Solution

228. A transverse harmonic wave on a string is
described by
$y(x, t)=3.0 \sin \left(36 t+0.018 x+\frac{\pi}{4}\right)$ where
' x ' and ' y ' are in cm and ' t ' is in s . The positive direction of ' x ' is from left to right. Is this a travelling wave or a stationary wave? If it is
travelling, what are the speed and direction of
its propagation?

D Watch Video Solution

229. A transverse harmonic wave on a string is described
$y(x, t)=3.0 \sin \left(36 t+0.018 x+\frac{\pi}{4}\right)$ where
' x ' and ' y ' are in cm and ' t ' is in s. The positive direction of ' x ' is from left to right. What are is amplitude and frequency?
230. A transverse harmonic wave on a string is described by
$y(x, t)=3.0 \sin \left(36 t+0.018 x+\frac{\pi}{4}\right)$ where
x and y are in cm and t in s . What is the initial phase at the origin?

D Watch Video Solution

231. A transverse harmonic wave on a string is

described

by
$y(x, t)=3.0 \sin \left(36 t+0.018 x+\frac{\pi}{4}\right)$ where
' x ' and ' y ' are in cm and ' t ' is in s. The positive direction of ' x ' is from left to right. What is the least distance between two successive crests in the wave?

D Watch Video Solution

232. Consider moment of inertia of a uniform
thin circular disc about a diametrical axis of the disc. There is a theorem which helps to find the moment of inertia of the disc about
another axis parallel to this axis. Give the statement of this theorem.

D Watch Video Solution

233. Temperature is the degree of hotness' of
the body. Temperature of normal human body
is deg98.6F What is the coresponding temperature shown in the Celcius scale?
234. Temperature is the degree of hotness of body.

Define latent heat.

D Watch Video Solution

235. A brass tumbler feels much colder than a
wooden tray on a chilly day. Why?

- Watch Video Solution

236. With the help of a free body diagram represent various forces acting on a vehicle moving on a banked road. Neglecting frictional force obtain the expression for the maximum safe speed of the vehicle on the banked road.

- Watch Video Solution

237. The static friction comes into play at the moment the force is applied.

State the laws of limiting friction.

D Watch Video Solution

238. Choose the correct alternative:
i)Acceleration due to gravity
increases/decreases with increasing altitude.
ii)Acceleration
due
to
gravity
increases/decreases with increasing depth.
iii)The total energy of an orbiting satellite is negative of its kinetic/potential energy.
iv)The polar satellite go around the earth in a north-south direction/east-west direction.

D Watch Video Solution
239. State Kepler's law of time periods.

D Watch Video Solution

240. Consider a fluid moving in a pipe of
varying cross-sectional area where a_{1}, a_{2} are
cross-sectional areas of pipe and v_{1}, v_{2} are the
velocities of fluid.

State Bernoulli's Principle.

- Watch Video Solution

241. Write the equation of Stoke's law.
(Watch Video Solution
