đ゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MAXIMUM PUBLICATION

SYSTEM OF PARTICLE AND

ROTATIONAL MOTION

Exercise

1. If $\vec{a}=\left(a_{x}(\hat{i})\right)+\left(a_{y}(\hat{j})\right)+\left(a_{z}(\hat{k})\right)$
and $\quad \vec{b}=\left(b_{x}(\hat{i})\right)+\left(b_{y}(\hat{j})\right)+\left(b_{z}(\hat{k})\right)$
,obtain $\vec{a} X \vec{b}$ in terms of rectangular components.

D Watch Video Solution

2. What is the analogue of force in the case of rotational motion.

D Watch Video Solution

3. The door is a rigid body which can rotate about a fixed axis passing through the hinges.

What makes the door rotate?

- Watch Video Solution

4. When you fix a handle in a door where do
you fix it?

D Watch Video Solution

5. What is the significance of the concept of radius of gyration?

D Watch Video Solution
6. In a fly wheel,most of the mass is concentrated at the rim?Explain why?

- Watch Video Solution

7. A thin circular ring is rotating about an axis
passing through its center and perpendicular to its plane. Find the moment of inertia of the ring about its diameter.
8. If the polar ice cap melts what will happen to the length of the day?

D Watch Video Solution

9. If the earth losses the atmosphere what will
happen to the length of the day?
10. A girl is standing on a turn table. What
happens to the rotation speed if she stretches
her hand?

D Watch Video Solution

11. How does a diver take advantage of conservation of angular momentum?

D Watch Video Solution
12. The dimension of angular momentum is
A. $M^{0} L^{1} T^{-1}$
B. $M^{1} L^{2} T^{-2}$
C. $M^{1} L^{2} T^{-1}$
D. $M^{2} L^{1} T^{-2}$

Answer: C
13. Why spokes are provided in a bicycle wheel?

- Watch Video Solution

14. A ballet dancer, an acrobat and an ice skater make use of an important principle in physics. Which is that principle?

- Watch Video Solution

15. A cat is able to land on her feet after a fall.

Which principle of physics is being used by her?

- Watch Video Solution

16. A body is rotating in steady rate. What is torque acting on the body?

- Watch Video Solution

17. A flyweel is revolving with constant angular velocity. A chip of its rim breaks and flies away. What will be the effect on the angular velocuty?

- Watch Video Solution

18. Is radius of gyration of a body constant quantity?

- Watch Video Solution

19. What is another name for angular momentum?

D Watch Video Solution
20. Match
the
following:

(Watch Video Solution
21. Give the law of conservation of a angular momentum.

D Watch Video Solution
22. A cat is able to find on its feet after a fall,
taking the advantage of principle of conservation of angular momentum. Explain
how cat is able to do so
23. If the polar ice cap melts what will happen to the length of the day?

D Watch Video Solution

24. A girl has to lean towards right when
carrying a bag in her left hand.why?

- Watch Video Solution

25. If the earth losses the atmosphere what will happen to the length of the day?

D Watch Video Solution

26. A girl is standing on a turn table. What happens to the rotation speed if she stretches
her hand?

D Watch Video Solution

27. How does a diver take advantage of conservation of angular momentum?

D Watch Video Solution

28. A rigid body consists of n particles of mass
$m 1, m 2, m 3, \ldots \ldots$. . The body rotates about an
axis with an angular velocity ω

Starting from kinetic the energy of a single particle,arrive at an equation of kinetic energy of rotation.
29. Moment of inertia is also called rotational inertia.Why?

D Watch Video Solution

30. The handle of a door is always found at one edge of the door which is located at a maximum possible distance away from hinges.

Give reason for it.
31. The handle of a door is always found at one edge of the door which is located at a maximum possible distance away from hinges.

In which direction will the torque act while the door opens inside the room?

D Watch Video Solution

32. The handle of a door is always found at one edge of the door which is located at a
maximum possible distance away from hinges.
If the door handle is fixed at the middle of the door,what difference do you feel in the applied force to open the door.

- Watch Video Solution

33. What are moment of inertia and radius of gyration?

D Watch Video Solution

34. How will you distinguish a hard boiled egg and a raw egg by spinning each on a table top?

D Watch Video Solution

35. Show that the total angular momentum of
a rotating system remains constant if no
torque acts on the system.
36. A rigid body can rotate an axis with a constant angular velocity and angular momentum L.

What is its moment of inertia about the axis?

D Watch Video Solution

37. A rigid body can rotate an axis with a constant angular velocity and angular momentum L.

Obtain a mathematical expression for rotational kinetic energy.

- Watch Video Solution

38. A platform diver holds his hands and legs
straight and makes loops in air before entering into water.

State the principle behind this.

- Watch Video Solution

39. A platform diver holds his hands and legs
straight and makes loops in air before
entering into water.

What happens when he tries to land in the pool by stretching his arms and legs?

D Watch Video Solution

40. A platform diver holds his hands and legs
straight and makes loops in air before entering into water.

In the above situation, rotational kinetic energy is not conserved.Explain.
41. Moment of inertia of a thin ring of Radius
R about an axis passing through any diameter is $\left(\frac{1}{2} M R^{2}\right)$.

What is the radius of gyration of the ring about an axis passing through any diameter?

- Watch Video Solution

42. A thin metal ring of radius 0.25 m and mass

2 kg starts from rest and roll down an inclined plane.If the linear velocity on reaching the foot
of the plane is $2 \frac{m}{s}$,Calculate its rotational kinetic energy at that instant.

D Watch Video Solution

43. State the principle used by a ballet dancer to increase his/her angular speed.

D Watch Video Solution

44. State the principle used by a ballet dancer to increase his/her angular speed.
45. What is the radius of gyration of the ring about an axis passing through its centre mass and perpendicular to its plane?

- Watch Video Solution

46. The moment of inertia of a thin ring of Radius R about an axis passing through any diameter is $\left(\frac{1}{2} M R^{2}\right)$

A thin metal ring has a diameter 0.20 cm and mass 1 kg .Calculate its moment of inertia about an axis passing through any tangent.

- Watch Video Solution

47. The earth revolves around the sun in an elliptical orbit. The closest approach of the earth with the sun is called perihelion. When the earth approaches the perihelion, its speed increases. Explain this principle.
48. As the earth approaches near the sun in its path,it moves faster. State whether this statement is correct or wrong. Why?

D Watch Video Solution

49. A solid sphere of mass $3 k g$ rolls on a
horizontal surface with a linear speed of $30 \frac{\mathrm{~m}}{\mathrm{~s}}$

Find the total kinetic energy of the sphere.
50. A ring,disc and a sphere all of the same mass and radius roll down an inclined plane from the same height. Which of the three reaches the bottom at first and last.Explain.Why?

D Watch Video Solution

51. A grindstone has moment of inertia
$0.5 \mathrm{kgm}^{2}$. What constant torque should be
applied so that it attains an angular velocity of

120rpm in 8 sec .

D Watch Video Solution

52. A grindstone has moment of inertia $0.5 \mathrm{kgm}^{2}$. What constant torque should be applied so that it attains an angular velocity of

120rpm in 8 sec .

In the above case what is the rate at which work is done at the end of 8 sec .
53. In the HCl molecule, the Separation between the nuclei of the two atoms is about $1.27 A\left(1 A=10^{-10} m\right)$ Find the approximate location of the centre of mass ofthe molecule

Given : chlorine atom is about 35.5 times as massive as a hydrogen atom and nearly all the mass of an atom is concentrated in its nucleus

D Watch Video Solution

54. A child sits stationary at one end of a long trolley moving uniformly with speed v on a smooth horizontal floor. If the child gets up and runs about on the trolley in any manner, what is the effect on the speed of the centre of mass of the (trolley + child) system?

D Watch Video Solution

55. a) Find the moment of inertia of a sphere about a tangent to the sphere, given the
moment of inertia of the sphere about any of
its diameters to be $\frac{2 M R^{2}}{5}$, where M is the mass of the sphere and R is the radius of the sphere.
b) Given the moment of inertia of a disc of mass M and radius R about any of its diameters to be $M \frac{R^{2}}{4}$, find its moment of inertia about an axis normal to the disc and passing through a point on its edge.

D Watch Video Solution

56. A solid cylinder of mass 20 kg rotates about
its axis with angular speed $100 \mathrm{rads}^{-1}$. The radius of the cylinder is 0.25 m . What is the kinetic energy associated with the rotation of the cylinder? What is the magnitude of the angular momentum of the cylinder about its axis?
57. A rope of negligible mass is wound round a hollow cylinder of mass 3 kg and radius 40 cm .

What is the angular acceleration of the cylinder if the rope is pulled with a force of $30 N$? What is the linear acceleration of the rope ? Assume that there is no slipping.

D Watch Video Solution

58. In a hammer throw event, a solid sphere of mass 16 kg is tied to a light 50 cm long chain. A
sportsman gives to ita constant moment of $30 N-m$ for 10 seconds and then throws the sphere. Consider the sphere as a point mass.

Find the moment of inertia about the axis of rotation.

D Watch Video Solution

59. If L is the angular momentum and τ is the torque then prove that ($\tau=\mathrm{dL} / \mathrm{dt})^{\text { }}$

D Watch Video Solution

60. Write an example for the motion in which
angular momentum remains constant.

- Watch Video Solution

61. Remya stands at the centre of a turn-table
with her two arms outstretched. The table is
set rotating with an angular speed of 40
revolutions per minute'. Write the expression
for the rotational kinetic energy of the system
and explain the terms
62. Consider moment of inertia of a uniform
thin circular disc about a diametrical axis of
the disc. There is a theorem which helps to
find the moment of inertia of the disc about another axis parallel to this axis. Give the statement of this theorem.

- Watch Video Solution

63. A circular disc of mass 0.15 kg and radius
$0.1 m$ makes 120 revolutions in one minute about its own axis. Calculate its angular momentum.

- Watch Video Solution

64. The earth revolves around the sun in an elliptical orbit. The closest approach of the earth with the sun is called perihelion. When
the earth approaches the perihelion, its speed increases. Explain this principle.

- Watch Video Solution

65. A body rolls over a horizontal, smooth surface without slipping with a translational
kinetic energy E. Show that the total kinetic energy of the body is $E\left(1+\left(\frac{k^{2}}{R^{2}}\right)\right)$ where k
is the radius of gyration and R is the radius of
the body. Using the above relation. Find the total kinetic energy of a circular disc.

- Watch Video Solution

66. A wheel of mass 1000 kg and radius 1 mis rotating at the rate of $420 r$. p. m. What is the constant torque required to stop the wheel in 14rotations, assuming the mass to be concentrated at the rim of the wheel ?

- Watch Video Solution

67. State the parallel axes theorem on moment of inertia.
68. Write the relation between moment of inertia and angular momentum.

- Watch Video Solution

69. Moment of inertia plays the same roll in rotational motion as mass in linear motion.

The moment of inertia of a body changes when the axis of rotation changes.If the
moment of inertia of a disc about an axis passing through its centre and perpendicular to its plane is $\left.\frac{M R^{2}}{2}\right)(M$ is the mass of the disc and R its radius). Determine its moment of inertia about a diameter and about a tangent.

D Watch Video Solution

70. State whether True or False: The location of centre of mass of a system is independent of the frame of reference used to locate it.

- Watch Video Solution

71. Moment of inertia is also called rotational inertia.Why?

D Watch Video Solution

72. How will you distinguish a hard boiled egg and a raw egg by spinning each on a table top?
73. A solid cylinder of mass 20 kg rotates about
its axis with angular speed $100 \mathrm{rads}^{-1}$. The radius of the cylinder is 0.25 m . What is the kinetic energy associated with the rotation of the cylinder? What is the magnitude of the angular momentum of the cylinder about its axis?

- Watch Video Solution

74. A thin circular ring is rotating about an axis perpendicular to its plane. State the theorem which will help you to find the moment of inertia about its diameter.

- Watch Video Solution

75. A thin circular ring is rotating about an axis passing through its center and perpendicular to its plane. Find the moment of inertia of the ring about its diameter.
76. A ring rolls down the inclined plane without slipping. Find the velocity of the ring when it reaches the ground.

- Watch Video Solution

77. Moment of inertia is the analogue of mass in rotational motion. But unlike mass, it is not
a fixed quantity.Moment of inertia can be
regarded as a measure of rotational inertia.

Why?

D Watch Video Solution

78. State any two factors on which the moment of inertia of a rigid body depends.

- Watch Video Solution

79. Moment of inertia is the analogue of mass
in rotational motion. But unlike mass, it is not
a fixed quantity. The moments of inertia of two
rotating bodies A and B are I_{A} and I_{B} If
$\left(I_{A}>I_{B}\right)$ and their angular momentum are equal. Which one has a greater kinetic energy?

Explain.

D Watch Video Solution

80. State the perpendicular axis theorem.

D Watch Video Solution

81. Moment of inertia of a ring about an axis passing through the center is $M R^{2}$. The moment of inertia about a diameter can be found using the perpendicular axis theorem.Obtain the expression for the moment of inertia of a ring about its diameter.

- Watch Video Solution

82. What is the equation of the moment of inertia of a disc about an axis passing through
its center and measured perpendicular to its plane?

D Watch Video Solution
83. State the parallel axes theorem on moment of inertia.

- Watch Video Solution

84. A coin is rolling on a plane surface. What
fraction of its total kinetic energy is

- Watch Video Solution

85. What do you mean by the center of mass of a rigid body?

D Watch Video Solution

86. State the perpendicular axis theorem.
(Watch Video Solution
87. Two identical concentric rings each of mass

Mand radius R are placed perpendicular to
each other. What is the moment of inertia about an axis passing through the center of this system and perpendicular to the plane of one of the rings?
A. $\left(\left(\frac{3}{2}\right) M R^{2}\right)$
B. $\left(2 M R^{2}\right)$
C. $\left(3 M R^{2}\right)$
D. $\left(\left(\frac{1}{4}\right) M R^{2}\right)$

Answer: A

- Watch Video Solution

88. Derive the mathematical relation between
angular momentum and torque.

D Watch Video Solution
89. A solid sphere is rotating about a diameter at an angular velocity ω If it cools so that its
radius reduces to of $\frac{1}{n}$ th of its original value, its angular velocity becomes..

$$
\begin{aligned}
& \text { A. } \frac{\omega}{n} \\
& \text { B. } \frac{\omega}{n^{2}} \\
& \text { C. } n \omega \\
& \text { D. }\left(n^{2}\right) \omega
\end{aligned}
$$

Answer: D

D Watch Video Solution

90. The rotational analogue of force is moment of force, also called torque. The turning effect of force is maximum when the angle between r and F is.

- Watch Video Solution

91. The rotational analogue of force is moment
of force, also called torque.A wheel starting
form rest acquires an angular velocity of $10 \mathrm{ra} \frac{d}{s}$ in two seconds. The moment of inertia
of the wheel is $0.4 \mathrm{kgm}^{2}$. Calculate the torque acting on it.

D Watch Video Solution

92. The rotational analogue of force is moment of force, also called torque.The possibility of falling backward with the ladder is more when you are high upon the ladder than when you just begin a climb. Explain why.

- Watch Video Solution

93. Classical dancers bring their hands closer to their body to rotate faster. Name the principle employed by them.

- Watch Video Solution

94. A wheel rolls along a straight line. Derive an expression for its total kinetic energy.

95. The rotational analogue of force is

- Watch Video Solution

96. Moment of inertia about a diameter of a
ring is $\left(I_{O}=\frac{M R^{2}}{2}\right)$ Draw a diagram and find
the moment of inertia about a tangent, parallel to the diameter of the ring.

D Watch Video Solution

97. Moment of inertia about a diameter of a ring is $\left(I_{O}=\frac{M R^{2}}{2}\right)$ Draw a diagram and find
the moment of inertia about a tangent, parallel to the diameter of the ring.

D Watch Video Solution

98. The rotational analogue of mass is.

- Watch Video Solution

99. The angular momentum of a particle is the rotational analogue of its linear momentum. The equation connecting angular momentum and inear momentum is..

$$
\begin{aligned}
& \text { A. }((\vec{l})=(\vec{p}) X(\vec{r})) \\
& \text { B. }((\vec{l})=(\vec{r}) X(\vec{p})) \\
& \text { C. }((\vec{l})=(\vec{p}) \cdot(\vec{r})) \\
& \text { D. }\left((\vec{l})=\left(\frac{1}{2}\right)(\vec{r}) X(\vec{p})\right)
\end{aligned}
$$

Answer: B

100. Starting from the equation connecting angular momentum and linear momentum, deduce the relation between torque and angular momentum

D Watch Video Solution

101. Moment of inertia in rotational motion is
analogus to mass in linear motion.The moment of inertia of a circular disc about an
axis perpendicular to the plane, at the centre
is given by.

$$
\begin{aligned}
& \text { A. } \frac{M R^{2}}{4} \\
& \text { B. } \frac{M R^{2}}{6} \\
& \text { C. } \frac{3 M R^{2}}{2} \\
& \text { D. } \frac{M R^{2}}{2}
\end{aligned}
$$

Answer: D
102. What is the moment of inertia of a disc about one of its diameter?

- Watch Video Solution

