©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MAXIMUM PUBLICATION

WORK ENERGY AND POWER

Example

> 1. Find the dot product of
> $\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}$
> $\vec{B}=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}$
2. Prove conservation of energy for a freely falling body.

- Watch Video Solution

Exercise

1. Find the odd one out and find the relation
connecting the remaining quantities. Joule,

Calorie,Kilowatt, electron volt

D Watch Video Solution

2. What is the work done by the force of tension in the string of simple pendulum?

D Watch Video Solution

3. When is the exchange of energy is maximum during an elastic collision?

D Watch Video Solution

4. In atom, an electron is revolving around the nucleus. What is the work done?

- Watch Video Solution

5. What is the type of collision when macroscopic particles collide?

- Watch Video Solution

6. Name the parameter which is a measure of degree of elasticity of a body.

- Watch Video Solution

7. What is the source of kinetic energy for falling rain drops?

- Watch Video Solution

8. The law of conversation of energy States
that energy can neither be created nor be destroyed but can only change from one form into another. A bus and a car moving with the same kinetic energy are brought to rest by applying an equal ratardation force by the braking systems. Which one will come to rest at a shorter distance. Give the reason behind your answer.
9. A body constrained to move along the Z-axis of a co-ordinate system is subjected to a constant force $\vec{F}=(\hat{i}+2 \hat{j}+3 \hat{k}) N$. What is the work done by this force in moving the body over a distance of 4 m along z -axis ?

D Watch Video Solution

10. A car of mass 1000 kg moving with a speed $18 \mathrm{mk} / \mathrm{h}$ on a horizontal road collides with a horizontally mounted spring of spring
constant $6.25 \times 10^{3} \mathrm{~N} / \mathrm{m}$. What do you mean by Spring constant?

D Watch Video Solution

11. A car of mass 1000 kg moving with a speed $18 \mathrm{mk} / \mathrm{h}$ on a horizontal road collides with a horizontally mounted spring of spring constant $6.25 \times 10^{3} \mathrm{~N} / \mathrm{m}$. What is the maximum compression of the spring?

D Watch Video Solution

12. A man tries to lift a mass 200 kg with a
force 100N. Is he doing work ? Explain.

D Watch Video Solution
13. A man tries to lift a mass 200 kg with a force 100N. Is he doing work? Explain.
(Watch Video Solution
14. A man tries to lift a mass 200 kg with a force 100 N . If it is lifted to 2 m in 10 s find the power.

D Watch Video Solution

15. Two cricket balls are colliding each other.

Name the collision and explain?

- Watch Video Solution

16. Two cricket balls are colliding each other.

Name the collision and explain?

D Watch Video Solution

17. Choose the correct alternative: In an inelastic collision of two bodies, the quantities which do not change after the collision are the total kinetic energy/total linear momentum of the system of two bodies.
18. Two cars A and B travelling with speed
$20 \mathrm{~m} / \mathrm{s}$ and $10 \mathrm{~m} / \mathrm{s}$ respectively applied brakes,
so that A comes to rest in 15 second and B in
7.5 s . From the graph determine which of the
two cars travelled further after brakes were applied and by how much distance it travelled?

D Watch Video Solution

19. Two cars A and B travelling with speed
$20 \mathrm{~m} / \mathrm{s}$ and $10 \mathrm{~m} / \mathrm{s}$ respectively applied brakes,
so that A comes to rest in 15 second and B in
7.5 s . Draw the velocity time graph of A and B
in the same graph.

D Watch Video Solution

20. Two cars A and B travelling with speed
$20 \mathrm{~m} / \mathrm{s}$ and $10 \mathrm{~m} / \mathrm{s}$ respectively applied brakes,
so that A comes to rest in 15 second and B in
7.5 s. In the above process, the wear and tear of which the cars get affected more?

D Watch Video Solution
21. Define coefficient of restitution.

D Watch Video Solution

22. From the table given below Estimate the

Force	2 N	4 N	6 N	8 N	10 N
Displacement	1 m	2 m	3 m	4 m	5 m

D Watch Video Solution

23. From the table given below Estimate the
work done.

Force	2 N	4 N	6 N	8 N	10 N
Displacement	1 m	2 m	3 m	4 m	5 m

D Watch Video Solution

24. Raju increased the speed of moving mass
'50kg' from $2 \mathrm{~m} / \mathrm{s}$ to $4 \mathrm{~m} / \mathrm{s}$. How much force will be required, if velocity change takes place with in 0.2 sec ?

- Watch Video Solution

25. A car and a truck have the same kinetic energies at a certain instant while they are moving along two parallel roads . (Assume
that the truck is heavier than the car). Which one will have greater momentum?

D Watch Video Solution

26. Write the relationship between kinetic energy and linear momentum.

D Watch Video Solution

27. A car and a truck have the same kinetic energies at a certain instant while they are
moving along two parallel roads . (Assume that the truck is heavier than the car). If the mass of the truck is 100 times greater than that of the car, find the ratio between their velocities.

D Watch Video Solution

28. Raju dropped a rubber ball of mass m from
a height h to the ground. He observed that
the ball rebounds vertically and along the same line to a height h_{1} which is less than h.

Find the velocity with which it strikes the ground?

D Watch Video Solution

29. Raju dropped a rubber ball of mass m from
a height h to the ground. He observed that
the ball rebounds vertically and along the
same line to a height h_{1} which is less than h .

Find the velocity with which it strikes the ground?
30. Raju dropped a rubber ball of mass m from
a height h to the ground. He observed that the ball rebounds vertically and along the same line to a height h_{1} which is less than h. If the rubber ball is allowed to fall on a spring placed on the ground then what change will Raju note is in the height of rebound?

- Watch Video Solution

31. Raju dropped a rubber ball of mass m from
a height h to the ground. He observed that
the ball rebounds vertically and along the same line to a height h_{1} which is less than h. If the rubber ball is allowed to fall on a spring placed on the ground then what change will Raju note is in the height of rebound?

- Watch Video Solution

32. A man tries to lift a mass 200 kg with a force 100N. Is he doing work ? Explain.

D Watch Video Solution

33. A man tries to lift a mass 200 kg with a force 100 N . If it is lifted to 2 m in 10 s find the power.

D Watch Video Solution
34. Show that total mechanical energy is conserved for a freely falling body.

D Watch Video Solution

35. An elevator of total mass 1800 kg is moving
up with a constant speed of $2 \frac{m}{s}$. A frictional
force of 400 N acts on this motion. The direction of frictional force is ...
36. An elevator of total mass 1800 kg is moving
up with a constant speed of $2 \frac{m}{s}$. A frictional force of 4000 N acts on this motion. What is the power exerted by gravitational force ?

D Watch Video Solution

37. An elevator of total mass 1800 kg is moving
up with a constant speed of $2 \frac{m}{s}$. A frictional force of 4000 N acts on this motion.

Determine the minimum power delivered to
the elevator.
38. A stone of mass m is to be thrown to a height h. What is the acceleration of the stone?

- Watch Video Solution

39. A stone of mass m is to be thrown to a
height h. With what minimum velocity should
it be thrown?

Watch Video Solution

40. A stone of mass m is to be thrown to a height h. At what height does the KE and PE become equal?

D Watch Video Solution

41. A stone of mass m is to be thrown to a
height h. Find the velocity at that height when
$P E$ and $K E$ are equal.
42. A toy gun with a spring compressor 3 cm is used to project a stone of mass 50 gm to a height of 10 m . What is the potential energy of spring?

D Watch Video Solution

43. A toy gun with a spring compressor 3 cm is
used to project a stone of mass 50 gm to a
height of 10 m . How much it should be
compressed to throw the stone to a height 5 m ?

D Watch Video Solution

44. A toy gun with a spring compressor 3 cm is
used to project a stone of mass 50 gm to a
height of 10 m . Find out the physical constant associated with the spring.
45. Find the odd one out and find the relation connecting the remaining quantities. Joule,

Calorie,Kilowatt, electron volt

- Watch Video Solution

46. A graph paper is situated on a board. Near
the graph paper a spring is placed. A pencil is attached to the end of the spring. The pencil is
free to move on the graph paper. A stone of mass 50 g m is placed 1 m above the spring.
[Spring constant $k=98 \frac{N}{m}$]. the energy possessed by the stone due to its height is called \cdot.

D Watch Video Solution

47. A graph paper is situated on a board as
shown in figure. Near the graph paper a spring
is placed. A pencil attached to the end of the spring as shown in figure. The pencil is free to move on the graph paper. A stone of mass 50 g m is placed 1 m above the spring. [Spring
constant $\left.k=98 \frac{N}{m}\right]$. What will happen to the
length of mark if spring having smaller spring
constant is used? Justify.

-

Watch Video Solution
48. The sign of work done by a force on a body
is important to understand. State carefully if
the following quantities are positive or negative: work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket.

D Watch Video Solution

49. The sign of work done by a force on a body
is important to understand. State carefully if
the following quantities are positive or negative: work done by gravitational force in the above case.

D Watch Video Solution

50. The sign of work done by a force on a body
is important to understand. State carefully if
the following quantities are positive or negative: work done by friction on a body moving sliding down an inclined plane.
51. The sign of work done by a force on a body
is important to understand. State carefully if the following quantities are positive or negative: work done by an applied force on a body moving on a rough horizontal plane with uniform velocity.

- Watch Video Solution

52. The sign of work done by a force on a body
is important to understand. State carefully if
the following quantities are positive or negative: work done by the resistive force of air on vibrating pendulum in bringing it to rest.

- Watch Video Solution

53. Choose the correct alternative: When a
conservative force does positive work on a body, the potential energy of the body increases/decreases/remains inaltered.
54. Choose the correct alternative: Work done by a body against friction always results in a loss of its kinetic/potential energy.

D Watch Video Solution

55. Choose the correct alternative: The rate of change of total momentum of a many particle system is proportional to the external force/sum of the internal forces on the system.

- Watch Video Solution

56. Choose the correct alternative: In an inelastic collision of two bodies, the quantities which do not change after the collision are the total kinetic energy/total linear momentum of the system of two bodies.

- Watch Video Solution

57. State if each of the following statements is
true or false. In an elastic collision of two
bodies, the momentum and energy of each body is conserved.

- Watch Video Solution

58. State if each of the following statements is
true or false. Total energy of a system is always
conserved, no matter what internal and external forces on the body are present.
59. State if each of the following statements is
true or false. Work done in the motion of a body over a closed loop is zero for every force in nature.

D Watch Video Solution

60. State if each of the following statements is
true or false. In an inelastic collision, the final
kinetic energy is always less then the initial kinetic energy of the system.

D Watch Video Solution

61. A rain drop of radius 2 mm falls from a height of 500m above the ground. It falls with decreasing acceleration (due to viscous resistance of the air) until at half its original, height, it attains its maximum (terminal) speed, and moves with uniform speed thereafter. What is the work done by the
gravitational force on the drop in the first and
second half of its journey? What is the work done by the resistive force in the entire journey if its speed on reaching the ground is $10 \mathrm{~m} s^{-1}$?

D Watch Video Solution

62. A bullet of mass 0.012 kg and horizontal
speed $70 \mathrm{~m} s^{-1}$ strikes a block of wood of mass 0.4 kg and instantly comes to rest with respect to the block. The block is suspended
from the ceiling by means of thin wires.
Calculate the height to which the block rises.
Also, estimate the amount of heat produced in the block.

- Watch Video Solution

63. What is the quantity that remains conserved in all types of collisions?

- Watch Video Solution

64. Suppose an electron and a proton are projected with equal kinetic energy, what will be the ratio of their linear momentums if the proton is 1830 times heavier than an electron?

D Watch Video Solution

65. Collision between two particles need not be the physical contact of two particles as in the case of scattering of the alpha - particle by a nucleus.
C)The bob of the pendulum released from 30 degree to the vertical hits on another bob of equal mass at rest. How high does the first bob rise after the collision? (Assume that the collision is elastic and the size of the bobs are negligible.)

- Watch Video Solution

66. Work is related to force and displacement over which it acts. A man tries to pull a rigid
wall for long time but fails to displace it. What
is the external work done by him?

D Watch Video Solution

67. Work is related to force and displacement over which it acts. Suggest two conditions for the work done by a force to be zero.

D Watch Video Solution

68. Work is related to force and displacement over which it acts. A body of mass 1 kg travels in a straight line with a velocity $k x^{3 / 2}$ where k
= 5 SI units. (Calculate the work done by the net force to displace from $x=0$ to $x=2 m$.

- Watch Video Solution

69. A ball moves along a circle under the infulence of centripetal force. What is the work done by the centripetal force on the ball?
70. An arrow shot from a bow has kinetic energy. How does it get this kinetic energy?

- Watch Video Solution

71. Show that total mechanical energy is conserved for a freely falling body.
72. When brakes are applied on a moving vehicle, it stops after travelling a distance. The distance is called stopping distance.Write an expressionof stopping distance in terms of initial velocity (u) and retardation (a).

D Watch Video Solution

73. When brakes are applied on a moving vehicle, it stops after travelling a distance. The distance is called stopping distance. If the initial speed is doubled keeping the
retardation same, by how much will the stopping distance change?

D Watch Video Solution

74. Ramesh lifts a body of mass ' m ' to a height ' h ' near surface of the earth in a time 't'. Draw
the force-displacement graph. If ' A ' is the area of the graph, what quantity does $\left(\frac{A}{t}\right)$ indicate?

- Watch Video Solution

75. According to the work- energy theorem, work done by a force on a body is equal to change in its kinetic energy. Prove the theorem.

- Watch Video Solution

76. A lorry and a car moving with the same kinectic energy are stopped by applying brakes which provides the same retardation. Which of them will come to a rest in a shorter distance?

Explain.

- Watch Video Solution

77. A force is required to do work. The work done by a force is the product of displacement and the component of force in the direction of displacement. Prove this statement.

- Watch Video Solution

78. Consider a body falling freely through the atmosphere. Neglecting the air resistance
prove that the total mechanical energy of the body remains constant throughout the fall.

D Watch Video Solution

79. Say True or False : The total energy of a body is equal to the work it can do in being brought to rest.

D Watch Video Solution
80. Work is required to lift a body through a
height from the ground, Calculate the work done in lifting a body of mass 10 kg to a height of 10 m above the ground.

D Watch Video Solution

81. Work is required to lift a body through a
height from the ground. Prove the law of conservation of energy of a freely falling body
82. Work is required to lift a body through a height from the ground, Draw the variation of KE and PE with the height of the body.

- Watch Video Solution

83. State and prove the law of conservation of energy for a freely falling body.
84. State and explain the work done in the following situation : A person carrying a heavy load walks on a level road.

D Watch Video Solution

85. State and explain the work done in the following situation : A man spending his energy by pushing on a concrete wall.

D Watch Video Solution

86. A constant force of 200 N displaces a body
through $5 m$ in the direction of the force. Find
the work done on the body.

D Watch Video Solution

87. A car is moving with a constant speed on a
straight line. What is the net work done by the external force on the car?
88. State work energy theorem.

- Watch Video Solution

89. A bullet of mass 10 g and velocity $800 \frac{\mathrm{~m}}{\mathrm{~s}}$ is passed through a mud wall of thickness $1 m$. Its velocity reduces to $100 \frac{\mathrm{~m}}{\mathrm{~s}}$. Find the average resistance offered by the mud wall.

- Watch Video Solution

90. From the table given below: Draw the force-displacement graph.

D Watch Video Solution
91. From the table given below: Draw the forcedisplacement graph.
92. Consider two point masses, m_{1} and m_{2}, moving along a straight line in the same direction with speeds u_{1}, and u_{2}. Let them undergo one-dimensional collision and retrieve each other with velocities v_{1} and v_{2} .how that $\left(u_{1}-u_{2}\right)=-\left(v_{1}-v_{2}\right)$ i.e, after collision, their relative velocities are equal.

D Watch Video Solution

93. The scalar product of force and displacement gives work. It can be negative,
zero or positive. The work done in sliding a load is with respect to frictional force. (zero, positive, nega tive, infinity)

- Watch Video Solution

94. State and prove the work energy theorem
for constant force.

- Watch Video Solution

95. A pump on the ground floor of a building can pump water to fill a tank of volume $30 \mathrm{~m}^{3}$ in 15 min utes. If the tank is 40 m above the ground and the efficiency of the pump is 30% , how much electric power is consumed by the pump?

D Watch Video Solution

96. Several games such as billiards, marbles or carrom involve collisions. When two objects
collide, after collision they could move together, the collision is...... (elastic, completely elastic, inelastic, completely inelastic)

D Watch Video Solution

97. Show that in a perfectly elastic collision in one dimension, relative velocity after collision is equal to relative velocity before collision.

D Watch Video Solution

98. A ball at rest is dropped from a height of
$12 m$. It loses 25% of its kinetic energy on
striking the ground. Find the height to which it bounces.

- Watch Video Solution

99. The figure shows a body of mass m placed at a height $h . A, B$ and C are the three points on the trajectory of this body. Which is the type of energy possessed by this body at a

- Watch Video Solution

100. Name the energy possessed by the body at maximum height. Write an equation for it.

- Watch Video Solution

101. Force is required to lift a body from the ground to a height h and work is measured as
the product of force and magnitude of displacement. A man of mass 60 kg carries a stone of mass 20 kg to the top of a
multistoreyed building of height 50 m .

Calculate the total energy spent by him?
$\left(g=9.8 \frac{m}{s^{2}}\right)$

D Watch Video Solution
102. State work energy theorem.

- Watch Video Solution

103. Show that the potential energy of a body
is completely converted into kinetic energy
during its free fall under the gravity.

D Watch Video Solution

104. A man carefully brings down a glass sheet
from a height $2 m$ to the ground. The work done by him is...
A. negative
B. positive
C. zero
D. unpredictable

Answer: A

D Watch Video Solution

105. Energy of a body is defined as its capacity
of doing work. The energy possessed by a body by virtue of motion is known as....

- Watch Video Solution

106. Energy of a body is defined as its capacity
of doing work. A body of mass 5 kg initially at
rest is subjected to a horizontal force of 20 N .

What is the kinetic energy acquired by the body at the end of $10 s$?

D Watch Video Solution

107. Energy of a body is defined as its capacity
of doing work. State whether the following
statement is TRUE or FALSE. "The change in
kinetic energy of a particle is equal to the work done on it by the net force"
\square
