©゙’doubtnut

India's Number 1 Education App

PHYSICS

NCERT - FULL MARKS PHYSICS(TAMIL)

OSCILLATIONS

Examples

1. On an average, a human heart is found to
beat 75 times in a minute. Calculate its
frequency and period.
2. Which of the following functions of time represent periodic and non-periodic motion?
(a) $\sin \omega t+\cos \omega t$ (b) $e-\omega t$

- Watch Video Solution

3. Which of the following functions of time represent (a) simple harmonic motion and (b) periodic but not simple harmonic? Give the
period for each case.
(1) $\sin \omega t-\cos \omega t$
(2) $\sin ^{2} \omega t$

D Watch Video Solution

4. The figure given below depicts two circular motions. The radius of the circle, the period of revolution, the initial position and the sense of revolution are indicated in the figures.

Obtain the simple harmonic motions of the x projection of the radius vector of the rotating
particle P in each case.

D Watch Video Solution

5. A body oscillates with SHM according to the equation (in SI units),
$x=5 \cos [2 \pi t+\pi / 4]$.
At $\mathrm{t}=1.5 \mathrm{~s}$, calculate the (a) displacement, (b)
speed and (c) acceleration of the body.

- Watch Video Solution

6. Two identical springs of spring constant k are attached to a block of mass m and to fixed supports as shown in Fig. 14.14. Show that when the mass is displaced from its equilibrium position on either side, it executes
a simple harmonic motion. Find the period of oscillations.

- Watch Video Solution

7. A block whose mass is 1 kg is fastened to a spring. The spring has a spring constant of $50 \mathrm{Nm}^{-1}$. The block is pulled to a distance $\mathrm{x}=$ 10 cm from its equilibrium position at $\mathrm{x}=0$ on a frictionless surface from rest at $\mathrm{t}=0$.

Calculate the kinetic, potential and total energies of the block when it is 5 cm away from the mean position.
8. A 5 kg collar is attached to a spring of spring constant $500 \mathrm{~N} \mathrm{~m}^{-1}$. It slides without
friction over a horizontal rod. The collar is displaced from its equilibrium position by 10.0 cm and released. Calculate
(a) the period of oscillation,
(b) the maximum speed and
(c) maximum acceleration of the collar.

D Watch Video Solution

9. What is the length of a simple pendulum, which ticks seconds ?

- Watch Video Solution

10. For the damped oscillator shown in Fig.
14.19, the mass m of the block is $200 \mathrm{~g}, \mathrm{k}=90 \mathrm{~N}$ m^{-1} and the damping constant b is $40 \mathrm{~g} \mathrm{~s}^{-1}$.

Calculate (a) the period of oscillation, (b) time taken for its amplitude of vibrations to drop to half of its initial value, and (c) the time
taken for its mechanical energy to drop to half its initial value.

D Watch Video Solution

Exercises

1. Which of the following examples represent periodic motion?
A. A swimmer completing one (return) trip
from one bank of a river to the other
and back.
B. A freely suspended bar magnet
displaced from its N-S direction and released.
C. A hydrogen molecule rotating about its
centre of mass.
D. An arrow released from a bow.

Answer:

2. Which of the following examples represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?
A. a) the rotation of earth about its axis.
B.b) motion of an oscillating mercury column in a U-tube.
C.c) motion of a ball bearing inside a
smooth curved bowl, when released
from a point slightly above the lower most point.

D.d) general vibrations of a polyatomic molecule about its equilibrium position.

Answer:

D Watch Video Solution
3. Fig. 14.23 depicts four x-t plots for linear motion of a particle. Which of the plots
represent periodic motion? What is the period of motion (in case of periodic motion) ?
A.
B.
c.
D.

Answer:

- View Text Solution

4. Which of the following functions of time represent (a) simple harmonic, (b) periodic but not simple harmonic, and (c) non-periodic motion? Give period for each case of periodic motion (ω is any positive constant):
(a) $\sin \omega t-\cos \omega t$
(b) $\sin ^{3} \omega t$
(c) $3 \cos (\pi / 4-2 \omega t)$
(d) $\cos \omega t+\cos 3 \omega t+\cos 5 \omega t$
(e) $\exp \left(-\omega^{2} t^{2}\right)$
(f) $1+\omega t+\omega^{2} t^{2}$

Watch Video Solution

5. A particle is in linear simple harmonic motion between two points, A and $\mathrm{B}, 10 \mathrm{~cm}$ apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is
at the end A .

- Watch Video Solution

6. A particle is in linear simple harmonic motion between two points, A and $B, 10 \mathrm{~cm}$ apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is at the end B.

D Watch Video Solution

7. A particle is in linear simple harmonic motion between two points, A and $\mathrm{B}, 10 \mathrm{~cm}$ apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is
at the mid-point of $A B$ going towards A.

- Watch Video Solution

8. A particle is in linear simple harmonic motion between two points, A and $B, 10 \mathrm{~cm}$ apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is
at 2 cm away from B going towards A.

D Watch Video Solution

9. A particle is in linear simple harmonic motion between two points, A and $B, 10 \mathrm{~cm}$ apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is
at 3 cm away from A going towards B.

D Watch Video Solution

10. A particle is in linear simple harmonic motion between two points, A and $\mathrm{B}, 10 \mathrm{~cm}$ apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is
at 4 cm away from B going towards A .

- Watch Video Solution

11. Which of the following relationship between the acceleration a and the displacement x of a particle involve simple harmonic motion ?

$$
\begin{aligned}
& \text { A. } a=0.7 x \\
& \text { B. } a=-200 x^{2} \\
& \text { C. } a=-10 x^{2} \\
& \text { D. } a=100 x^{3}
\end{aligned}
$$

Answer:

12. The motion of a particle executing simple harmonic motion is described by the displacement function,
$x(t)=A \cos (\omega t+\phi)$.

If the initial $(t=0)$ position of the particle is 1 cm and its initial velocity is $\omega \mathrm{cm} / \mathrm{s}$, what are its amplitude and initial phase angle ? The angular frequency of the particle is πs^{-1}. If instead of the cosine function, we choose the sine function to describe the SHM : $x=B \sin (\omega t+\alpha)$, what are the amplitude
and initial phase of the particle with the above initial conditions.

D Watch Video Solution

13. A spring balance has a scale that reads from 0 to 50 kg the length of the scale is 20 cm
. A body suspended from this balance, when displaced and released, oscillates with a period of 0.6 s . Then the weight of the body will be
14. A spring having with a spring constant $1200 \mathrm{Nm}^{-1}$ is mounted on a horizontal table as shown in Fig. 14.24. A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released.

[^0]maximum acceleration of the mass, and (iii)
the maximum speed of the mass.

D Watch Video Solution

15. Let us take the position of mass when the spring is unstreched as $x=0$, and the direction
from left to right as the positive direction of x axis. Give x as a function of time t for the oscillating mass if at the moment we start the stopwatch ($t=0$), the mass of the object is 3 kg , spring constant is $1200 \mathrm{~N} / \mathrm{m}$ and the
amplitude is 2 cm .
(a) at the mean position,
(b) at the maximum stretched position, and
(c) at the maximum compressed position.

In what way do these functions for SHM differ
from each other, in frequency, in amplitude or the initial phase?

- Watch Video Solution

16. Figures 14.25 correspond to two circular motions. The radius of the circle, the period of
revolution, the initial position, and the sense of revolution (i.e. clockwise or anti-clockwise) are indicated on each figure.

Obtain the corresponding simple harmonic motions of the x-projection of the radius vector of the revolving particle P, in each case.

D View Text Solution

17. Plot the corresponding reference circle for each of the following simple harmonic
motions. Indicate the initial $(t=0)$ position of the particle, the radius of the circle, and the angular speed of the rotating particle. For simplicity, the sense of rotation may be fixed to be anticlockwise in every case: (x is in cm and t is in s).

$$
\begin{aligned}
& \text { A. a) } x=-2 \sin (3 t+\pi / 3) \\
& \text { B. b) } x=\cos (\pi / 6-t) \\
& \text { C. c) } x=3 \sin (2 \pi t+\pi / 4) \\
& \text { D. d) } x=2 \cos \pi t
\end{aligned}
$$

- Watch Video Solution

18. Figure 14.26 (a) shows a spring of force constant k clamped rigidly at one end and a mass m attached to its free end. A force F applied at the free end stretches the spring.

Figure 14.26 (b) shows the same spring with both ends free and attached to a mass m at either end. Each end of the spring in Fig.
$14.26(b)$ is stretched by the same force F.

(a)

(b)

What is the maximum extension of the spring in the two cases ?

D Watch Video Solution

19. Figure 14.26 (a) shows a spring of force
constant k clamped rigidly at one end and a mass m attached to its free end. A force F applied at the free end stretches the spring.

Figure 14.26 (b) shows the same spring with
both ends free and attached to a mass m at either end. Each end of the spring in Fig. $14.26(b)$ is stretched by the same force F.

(a)

(b)

If the mass in Fig. (a) and the two masses in

Fig. (b) are released, what is the period of oscillation in each case?

D Watch Video Solution

20. The piston in the cylinder head of a locomotive has a stroke (twice the amplitude) of 1.0 m . If the piston moves with simple harmonic motion with an angular frequency of $200 \mathrm{rad} / \mathrm{min}$, what is its maximum speed ?

D Watch Video Solution

21. The acceleration dula to gravity on the surface of moon is $1.7 \mathrm{~ms}^{-2}$. What is the time period of a simple pendulum on the surface of
moon if its time period on the surface of earth
is 3.5 s ?

D Watch Video Solution

22. Answer the following question :

Time period of a particle in SHM depends on
the force constant k and mass m of the particle:
$T=2 \pi \sqrt{\frac{m}{k}}$. A simple pendulum executes
SHM approximately. Why then is the time
period of a pendulum independent of the mass of the pendulum?

D Watch Video Solution

23. Answer the following question :

The motion of a simple pendulum is approximately simple harmonic for small angle oscillations. For larger angles of oscillation, a more involved analysis shows that T is greater
than $2 \pi \sqrt{\frac{l}{g}}$, Think of a qualitative argument to appreciate this result.

- Watch Video Solution

24. A man with a writs on his hands fall from te top of a tower. Does the watch give correct time?

- Watch Video Solution

25. Answer the following question :

What is the frequency of oscillation of a
simple pendulum mounted in a cabin that is freely falling under gravity?

D Watch Video Solution

26. A simple pendulum of length I and having a bob of mass M is suspended in a car. The car is moving on a circular track of radius R with a uniform speed v. If the pendulum makes small oscillations in a radial direction about its equilibrium position, what will be its time period?
27. A cylindrical piece of cork of density of base area A and height h floats in a liquid of density
p_{l}. The cork is depressed slightly and then released. Show that the cork oscillates up and down simple harmonically with a period
$T=2 \pi \sqrt{\frac{h p}{p_{1} g}}$
where p is the density of cork. (Ignore damping due to viscosity of the liquid).
28. One end of a U-tube containing mercury is connected to a suction pump and the other
end to atmosphere. A small pressure difference is maintained between the two columns. Show that, when the suction pump is removed, the column of mercury in the U-tube executes simple harmonic motion.

D Watch Video Solution

Additional Exercises

1. An air chamber of volume V has a neck area of cross section a into which a ball of mass m
just fits and can move up and down without any friction (Fig.14.27). Show that when the ball is pressed down a little and released, it executes SHM. Obtain an expression for the time period of oscillations assuming pressurevolume variations of air to be isothermal [see

Fig. 14.27].
2. You are riding in an automobile of mass

3000 kg . Assuming that you are examining the oscillation characteristics of its suspension system. The suspension sags 15 cm when the entire automobile is placed on it. Also, the amplitude of oscillation decreases by 50% during one complete oscillation. Estimate the
values of (a) the spring constant k and (b) the damping constant b for the spring and shock absorber system of one wheel, assuming that each wheel supports 750 kg .
3. Show that for a particle executing simple harmonic motion the average value of kinetic energy is equal to the average value of potential energy.

- Watch Video Solution

4. A circular disc of mass 10 kg is suspended by
a wire attached to its centre. The wire is twisted by rotating the disc and released. The period of torsional oscillations is found to be
1.5 s . The radius of the disc is 15 cm . Determine the torsional spring constant of the wire.
(Torsional spring constant a is defined by the relation $J=-\alpha \theta$, where J is the restoring couple and q the angle of twist).

D Watch Video Solution

5. A body describes simple harmonic motion with an amplitude of 5 cm and a period of 0.2
s. Find the acceleration and velocity of the
body when the displacement is (a) 5 cm (b) 3 cm (c) 0 cm .

D Watch Video Solution

6. A mass attached to a spring is free to oscillate, with angular velocity ω, in a horizontal plane without friction or damping.

It is pulled to a distance x_{0} and pushed towards the centre with a velocity v_{0} at time t
$=0$. Determine the amplitude of the resulting
oscillations in terms of the parameters ω, x_{0}
and v_{0}. [Hint : Start with the equation $x=a \cos (\omega t+\theta)$ and note that the initial velocity is negative.]

- Watch Video Solution

Example

1. Classify the following motion as periodic and non-periodic motion?

Motion of Halley's comet.
2. Classify the following motion as periodic and non-periodic motion?

Motion of clouds.

D View Text Solution
3. Classify the following motion as periodic and non-periodic motion?

Moon revolving around the Earth.
4. Which of the following functions of time represent periodic and non-periodic motion?
a. $\sin \omega t+\cos \omega t$
b. $\ln \omega t$

D View Text Solution
5. Which of the following represent simple
harmonic motion?
(i) $x=A \sin \omega t+B \cos \omega t$
(ii) $\mathrm{x}=\mathrm{A} \sin \omega t+\mathrm{B} \cos 2 \omega t$
(iii) $\mathrm{x}=\mathrm{A} e^{i \omega t}$
(iv) $x A \ln \omega t$

D View Text Solution

6. Consider a particle undergoing simple harmonic motion. The velocity of the particle at position x_{1} is v_{1} and velocity of the particle at position x_{2} is v_{2}. Show that the ratio of time period and amplitude is
$\frac{T}{A}=2 \pi \sqrt{\frac{x_{2}^{2}-x_{1}^{2}}{v_{1}^{2} x_{2}^{2}-v_{2}^{2} x_{1}^{2}}}$
7. A nurse measured the average heart beats
of a patient and reported to the doctor in
terms of time period as 0.8 s . Express the heart beat of the patient in terms of number of beats measured per minute.

- View Text Solution

8. Calculate the amplitude, angular frequency,
frequency, time period and initial phase for
the simple harmonic oscillation given below $y=0.3 \sin (40 \pi t+1.1)$

D View Text Solution

9. Calculate the amplitude, angular frequency, frequency, time period and initial phase for the simple harmonic oscillation given below $y=2 \cos (\pi t)$
10. Calculate the amplitude, angular frequency,
frequency, time period and initial phase for
the simple harmonic oscillation given below
$y=3 \sin (2 \pi t-1.5)$

D View Text Solution

11. Show that for a simple harmonic motion,
the phase difference between displacement and velocity is $\frac{\pi}{2}$ radian or 90°.
12. Show that for a simple harmonic motion, the phase difference between velocity and acceleration is $\frac{\pi}{2}$ radian or 90°.

- View Text Solution

13. Show that for a simple harmonic motion, the phase difference between displacement and acceleration is π radian or 180°.
14. A spring balance has a scale which ranges
from 0 to 25 kg and the length of the scale is
0.25 m . It is taken to an unknown planet X where the acceleration due to gravity is 11.5
$m s^{-1}$. Suppose a body of mass $M \mathrm{~kg}$ is
suspended in this spring and made to oscillate with a period of 0.50 s . Compute the gravitational force acting on the body.

D View Text Solution

15. Consider two springs whose force constants are $1 \mathrm{~N} \mathrm{~m}^{-1}$ and $2 \mathrm{~N} \mathrm{~m}^{-1}$ which are connected in series. Calculate the effective spring constant (k_{s}) and comment on k_{s}.

D View Text Solution

16. Consider two springs with force constants 1
$\mathrm{N} m^{-1}$ and $2 \mathrm{~N} \mathrm{~m}^{-1}$ connected in parallel.
Calculate the effective spring constant (k_{p}) and comment on k_{p}.
17. Calculate the equivalent spring constant
for the following systems and also compute if all the spring constants are equal:

(a)

- View Text Solution

18. A mass m moves with a speed v on a horizontal smooth surface and collides with a nearly massless spring whose spring constant is k. If the mass stops after collision, compute the maximum compression of the spring.

D View Text Solution

19. In simple pendulum experiment, we have used small angle approximation. Discuss the small angle approximation.
20. If the length of the simple pendulum is increased by 44% from its original length, calculate the percentage increase in time period of the pendulum.

- View Text Solution

21. Write down the kinetic energy and total energy expressions in terms of linear momentum, For one-dimensional case.
22. Compute the position of an oscillating particle when its kinetic energy and potential energy are equal.

D View Text Solution

Evaluation I Multiple Choice Questions

1. In a simple harmonic oscillation, the acceleration against displacement for one

complete oscillation will be

A. an ellipse
B. a circle
C. a parabola
D. a straight line

Answer: D

D View Text Solution
2. A particle executing SHM crosses points A and B with the same velocity. Having taken 3 s in passing from A to B, it returns to B after another 3 s . The time period is
A. 15 s
B. 6 s
C. 12 s
D. 9 s

Answer: C
3. The length of a second's pendulum on the surface of the Earth is 0.9 m . The length of the same pendulum on surface of planet X such that the acceleration of the planet X is n times greater than the Earth is
A. $0.9 n$
B. $\frac{0.9}{n} m$
C. $0.9 n^{2} m$
D. $\frac{0.9}{n^{2}}$

Answer: A

D View Text Solution

4. A simple pendulum is suspended from the roof of a school bus which moves in a horizontal direction with an acceleration a, then the time period is
A. $T \propto \frac{1}{g^{2}+a^{2}}$
B. $T \propto \frac{1}{\sqrt{g^{2}+a^{2}}}$
C. $T \propto \sqrt{g^{2}+a^{2}}$

$$
\text { D. } T \propto\left(g^{2}+a^{2}\right)
$$

Answer: B

D View Text Solution

5. Two bodies A and B whose masses are in the
ratio 1:2 are suspended from two separate massless springs of force constants k_{A} and k_{B} respectively. If the two bodies oscillate vertically such that their maximum velocities
are in the ratio $1: 2$, the ratio of the amplitude
A to that of B is
A. $\sqrt{\frac{k_{B}}{2 k_{A}}}$
B. $\sqrt{\frac{k_{B}}{8 k_{A}}}$
C. $\sqrt{\frac{2 k_{B}}{k_{A}}}$
D. $\sqrt{\frac{8 k_{B}}{2 k_{A}}}$

Answer: B
6. A spring is connected to a mass m
suspended from it and its time period for
vertical oscillation is T. The spring is now cut into two equal halves and the same mass is suspended from one of the halves. The period of vertical oscillation is

> А. $T^{\prime}=\sqrt{2} T$
> В. $T^{\prime}=\frac{T}{\sqrt{2}}$
> С. $T^{\prime}=\sqrt{2 T}$
> D. $T^{\prime}=\sqrt{\frac{T}{2}}$

Answer: B

D View Text Solution

7. The time period for small vertical oscillations of block of mass m when the masses of the pulleys are negligible and spring constant k_{1} and k_{2} is

> A. $T=4 \pi \sqrt{m\left(\frac{1}{k_{1}}+\frac{1}{k_{2}}\right)}$
> B. $T=2 \pi \sqrt{m\left(\frac{1}{k_{1}}+\frac{1}{k_{2}}\right)}$
> C. $T=4 \pi \sqrt{m\left(k_{1}+k_{2}\right)}$
> D. $T=2 \pi \sqrt{m\left(k_{1}+k_{2}\right)}$

Answer: A

D View Text Solution

8. A simple pendulum has a time period T_{1}.

When its point of suspension is moved
vertically upwards according as $y=k t^{2}$ where
y is vertical distance covered and $k=1 m s^{-2}$,
its time period becomes T_{1}. Then, $\frac{T_{1}^{2}}{T_{2}^{2}}$ is ($\mathrm{g}=10$ $\mathrm{m} s^{-2}$)

5
A. $\frac{5}{6}$
B. $\frac{11}{10}$
C. $\frac{6}{5}$
D. $\frac{5}{4}$

Answer: C

D View Text Solution
9. An ideal spring of spring constant k, is suspended from the ceiling of a room and a block of mass M is fastened to its lower end. If the block is released when the spring is unstretched, then the maximum extension in the spring is
A. $4 \frac{M g}{k}$
B. $\frac{M g}{k}$
C. $2 \frac{M g}{k}$
D. $\frac{M g}{2 k}$

Answer: C

D View Text Solution

10. A pendulum is hung in a very high building oscillates to and fro motion freely like a simple
harmonic oscillator. If the acceleration of the bob is $16 \mathrm{~ms}^{-2}$ at a distance of 4 m from the mean position, then the time period is
A. 2 s
B. 1 s
C. $2 \pi s$
D. πs

Answer: D

D View Text Solution

11. A hollow sphere is filled with water. It is
hung by a long thread. As the water flows out of a hole at the bottom, the period of oscillation will
A. first increase and then decrease
B. first decrease and then increase
C. increase continuously
D. decrease continuously

Answer: A

D View Text Solution

12. The damping force on an oscillator is directly proportional to the velocity. The units of the constant of proportionality are
A. $\mathrm{kg} \mathrm{m} s^{-1}$
B. $\mathrm{kg} \mathrm{m} s^{-2}$
C. $\mathrm{kg} s^{-1}$
D. kg s

Answer: C

D View Text Solution
13. When a damped harmonic oscillator completes 100 oscillations, its amplitude is reduced to $\frac{1}{3}$ of its initial value. What will be
its amplitude when it completes 200

oscillations?

A. $\frac{1}{5}$
B. $\frac{2}{3}$
C. $\frac{1}{6}$
D. $\frac{1}{9}$

Answer: D

D View Text Solution

14. Which of the following differential equations represents damped a harmonic oscillator?

$$
\begin{aligned}
& \text { A. } \frac{d^{2} y}{d t^{2}}+y=0 \\
& \text { B. } \frac{d^{2} y}{d t^{2}}+\gamma \frac{d y}{d t}+y=0 \\
& \text { C. } \frac{d^{2} y}{d t^{2}}+k y^{2}=0 \\
& \text { D. } \frac{d y}{d t}+y=0
\end{aligned}
$$

Answer: B
15. If the inertial mass and gravitational mass
of the simple pendulum of length I are not equal, then the time period of the simple pendulum is

$$
\begin{aligned}
& \text { A. } T=2 \pi \sqrt{\frac{m_{i} l}{m_{g} g}} \\
& \text { B. } T=2 \pi \sqrt{\frac{m_{g} l}{m_{i} g}} \\
& \text { C. } T=2 \pi \frac{m_{g}}{m_{i}} \sqrt{\frac{l}{g}} \\
& \text { D. } T=2 \pi \frac{m_{i}}{m_{g}} \sqrt{\frac{l}{g}}
\end{aligned}
$$

View Text Solution

Evaluation Iv Numerical Problems

1. Calculate the time period of the oscillation of a particle of mass m moving in the potential
defined as $U_{x}=\left\{\begin{array}{c}\frac{1}{2} k x^{2}, x<0 \\ m g x, x>0\end{array}\right.$
2. Consider two simple harmonic motion along
x and y-axis having same frequencies but different amplitudes as $x=A \sin (\omega t+\varphi)$
(along x axis) and $y=B \sin \omega t$ (along y axis).

Then show
that
$\frac{x^{2}}{A^{2}}+\frac{y^{2}}{B^{2}}-\frac{2 x y}{A B} \cos \varphi=\sin ^{2} \varphi \quad$ and \quad also discuss the special cases when
a. $\varphi=0$ b. $\varphi=\pi$ c. $\varphi=\frac{\pi}{2}$ d. $\varphi=\frac{\pi}{2}$ and
$\mathrm{A}=\mathrm{B}(\mathrm{e}) \varphi=\frac{\pi}{4}$
Note: when a particle is subjected to two simple harmonic motion at right angle to each
other the particle may move along different paths. Such paths are called Lissajous figures.

D View Text Solution

3. Show that for a particle executing simple harmonic motion
a. the average value of kinetic energy is equal to the average value of potential energy.
b. average potential energy = average kinetic energy $=\frac{1}{2}$ (total energy)

D View Text Solution

4. Compute the time period for the following system if the block of mass m is slightly displaced vertically down from its equilibrium position and then released. Assume that the pulley is light and smooth, strings and springs
are light.

- View Text Solution

[^0]: Determine (i) the frequency of oscillations,

