©゙’ doubtnut

India's Number 1 Education App

PHYSICS

NCERT - FULL MARKS PHYSICS(TAMIL)

SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

Example

1. Find the centre of mass of three particle at
the vertices of an equilateral triangle. The
$100 g, 150 g$, and $200 g$ respectively. Each side of the equilateral triangle is 0.5 m along.

D Watch Video Solution

2. Find the centre of mass of a uniform triangula lamina.

D Watch Video Solution
3. Find the centre of mass of a uniform L shaped lamina (a thin flat plate) with dimension as shown in Fig. The mass of the lamina is 3 kg .

- Watch Video Solution

4. Find the scalar and vector products of two vectors.
$a=(3 \hat{i}-4 \hat{j}+5 \hat{k})$ and $b=(-2 \hat{i}+\hat{j}-3 \hat{k})$
5. Find the torque of a force $(7 \hat{i}+3 \hat{j}-5 \hat{k})$ about the origin. The force acts on a particle whose position vector is $(\hat{i}-\hat{j}+\hat{k})$.

- Watch Video Solution

6. Show that the angular momentum about any point of a single particle moving with constant velocity remains constant throughout the motion.
7. Show that moment of a couple does not depend on the point about which you take the moments.

D Watch Video Solution

8. A metal bar 70 cm long and 4.00 kg in mass
is supported on two knife edges placed 10 cm
from each end. A 6.00 kg weight is suspended
at 30 cm from one end. Find the reactions at the knife edges. Assume the bar to be of uniform cross-section and homogeneous.

D Watch Video Solution

9. A $3 m$ along ladder weighing 20 kg leans on a
frictionless wall. Its feet rest on the floor $1 m$
from the wall. Find the rection forces of the wall and the floor.

- Watch Video Solution

10. What is the moment of inertia of a disc about one of its diameters?

- Watch Video Solution

11. Calculate the moment of inertia of a rod of mass M, and length I about an axis perpendicular to it passing through one of its ends.

- Watch Video Solution

12. What is the moment of inertia of a ring about a tangent to the circle of the ring ?
13. Obtain Eq. (7.38) $\omega=\omega_{0}+\alpha t$ from first principles.

D Watch Video Solution

14. The angular speed of a moton wheel is increased from 1200 rpm to 3120 rpm in 16 seconds. (i) What is the angular acceleration, assuming the acceleration to be uniform ?

How many revolutions does the engine make during this time?
15. A cord of negligible mass is wound round the rim of a flywheel of mass 20 kg and radius

20 cm . A steady pull of 25 N is applied on the cord as shown in Fig. The flywheel is mounted on a horizontal axle with frictionless bearings.

(a) Compute the angular acceleration of the wheel.
(b) Find the work done by the pull, when $2 m$ of the cord is unwound.
(c) Find also the kinetic energy of the wheel at this point. Assume that the wheel stars from
rest.
(d) Compare answers to parts (b)and (c).

D Watch Video Solution

16. Three bodies, a ring, a soild cylinder and a soild sphere roll down the same inclined plane without slipping. They start from rest. The radii of the bodies are identical. Which of the bodies reaches the ground with maximum velocity?

Exercises

1. Given the location of the centre of mass of a
(i) sphere, (ii) cylinder, (iii) ring, and (iv) cube, each of uniform mass density. Does the centre of mass of a body necessarily lie on the body?

D Watch Video Solution

2. In the HCI molecule, the separation between the nuclei of the two atoms is about
$1.27 \AA\left(1 \AA=10^{-10} m\right)$. Find the approximate location of the c.m of the molecule, given that a chlorine atom is about 35.5 times as massive as a hydrogen atom and nearly all the mass of an atom is concentrated in its nucleus ?

D Watch Video Solution

3. A child is standing at one end of a long trolley moving with a speed v on a smooth horizontal track. If the child starts running towards the other end of the trolley with a
speed u, the centre of mass of the system
(trolley + child) will move with a speed :

D Watch Video Solution

4. Show that the area of the triangle contained between the vectors a and b is one
half of the magnitude of $a \times b$.

D Watch Video Solution

5. Show that $\vec{a} \cdot(\vec{b} \times \vec{c})$ is equal in magnitude to the volume of the parallelpiped formed by the vectors \vec{a}, \vec{b} and \vec{c}

D Watch Video Solution

6. Find the components along the x, y, z axes of the angular momentum \vec{L} of a particle, whose position vector is \vec{r} with components x, y, z and momentum is \vec{p} with components p_{x}, p_{y} and p_{z}. Show that if the particle moves
only in the $x-y$ plane, the angular momentum has only a z-component.

D Watch Video Solution

7. Two particles each of mass m and speed v, travel in opposite direction along parallel lines separated by a distance d. Show that the
vector angular momentum of this system of particles is the same about any point taken as origin.
8. Find the value of x in the following figures.

11!
(111) |

(11)

181
9. A car weighs 1800 kg . The distance between
its front and back axles is 1.8 m . Its centre of gravity is $1.05 m$ behind the front axle. Determine the force exerted by the level ground on each front wheel and each back wheel.

- Watch Video Solution

10. (a) Find the moment of inertia of a sphere about a tangent to the sphere, given the
moment of inertia of the sphere about any of
its diameters to be $2 M R^{2} / 5$, where M is the mass of the sphere and R is the radius of the sphere.
(b) Given the moment of inertia of a disc of mass M and radius R about any of its diameters to be $\frac{1}{4} M R^{2}$, find the moment of inertia about an axis normal to the disc passing through a point on its edge.
11. Torques of equal magnitude are applied to
hollow cylinder and a solid sphere, both
having the same mass and same radius. The cylinder is free to rotate about its standard axis of symmetry, and the sphere is free to rotate about an axis passing through its centre. which of the two will acquire a greater angular speed after a given time ?

D Watch Video Solution

12. A solid cylinder of mass 20 kg rotates about
its axis with angular speed $100 s^{-1}$. The radius
of the cylinder is 0.25 m . What is the kinetic energy associated with the rotation of the cylinder ? What is the magnitude of angular momentum of the cylinder about its axis ?

- Watch Video Solution

13. A child stands at the centre of a turn table
with his two arms outstretched. The turn table
is set rotating with an angular speed of 40
rpm. How much is the angular speed of the child, if he folds his hands back reducing the moment of inertia to $(2 / 5)$ time the initial value ? Assume that the turn table rotates without friction.
(b) Show that the child's new $K . E$. of rotation is more than the initial $K . E$. of rotation. How do you account for this increase in $K . E$. ?
14. A rope of negligible mass is wound around
a hollow cylinder of mass 3 kg and radius 40 cm
. What is the angular acceleration of the cylinder, if the rope is pulled with a force of $30 N$? What is the linear acceleration of the rope ? Assume that there is no slipping.

- Watch Video Solution

15. To maintain a rotor at a uniform angular speed of $100 \mathrm{rads}^{-1}$ an engine needs to transmit a torque of 200 Nm . What is the
power required by engine ? Assume 100 \% efficiency of engine.

- Watch Video Solution

16. From a uniform disc of radius R, a circular section of radius $R / 2$ is cut out. The centre of
the hole is at $R / 2$ from the centre of the original disc. Locate the centre of mass of the resulting flat body.
17. A metre stick is balanced on a knife edge at its centre. When two coins, each of mass $5 g$ are put one on one of the other at the 12 cm mark, the stick is found to balanced at 45 cm . The mass of the metre stick is.

- Watch Video Solution

18. A solid wooden sphere rolls down two different inclined planes of the same height but of different inclinations. (a) Will it reach the bottom with same speed in each case ?
(b) Will it take longer to roll down one inclined plane than other ? Explain.

- Watch Video Solution

19. A hoop of radius 2 m , weight 100 kg . It rolls along horizontal floor so that its center of mass has a speed of $20 c \frac{\mathrm{~m}}{\mathrm{~s}}$. How much work has to be done to stop it?
20. The oxygen molecule has a mass of
$5.30 \times 10^{-26} \mathrm{~kg}$ and a moment of inertia of
$1.94 \times 10^{-46} \mathrm{kgm}^{2}$ about an axis through its
centre perpendicular to the line joining the two atoms. Suppose the mean speed of such a molecule in a gas is $500 \mathrm{~m} / \mathrm{s}$ and that its kinetic energy of rotation is two thirds of its kinetic energy of translation. Find the average angular velocity of the molecule.
21. A sphere rolls up an inclined plane whose inclination is 30°. At the bottom of the inclined plane, the center of mass of the sphere has a translational speed of $5 m s^{-1}$ (a) How far does the sphere travel up the plane?
(b) How long does it take to return to the bottom?

- Watch Video Solution

22. As shown in Fig. the two sides of a step
ladder $B A$ and $C A$ are $1.6 m$ long and hinged
at A. A rope $D E, 0.5 m$ is tied half way up. A weight 40 kg is suspended from a point $F, 1.2 m$ from B along the ladder $B A$.

Assuming the floor to be fricionless and neglecting the weight of the ladder, find the tension in the rope and forces exerted by the floor on the ladder. (Take $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
(Hint. Consider the eqilibrium of each side of
the ladder separately.)

Floor

- Watch Video Solution

23. A man stands on a rotating platform, with
his arms stretched horizontal holding a 5 kg
weight in each hand. The angular speed of the
platform is 30 revolutions per minute. The man then brings his arms close to his body with the distance of each weight from the axis
changing from 90 cm to 20 cm . moment of inertia of the man together with the platform may be taken to be constant and equal t
$7.6 \mathrm{kgm}^{2}$. (a) What is the his new angular speed ? (Neglect friction.)
(b) Is kinetic energy conserved in the process ?

If not, from where does the change come about?
24. A bullet of mass $10 g$ and speed $500 \mathrm{~m} / \mathrm{s}$ is
fired into a door and gets embedded exactly at
the centre of the door. The door is 1.0 m wide
and weight $12 k g$. It is hinged at one end and rotates about a vertical axis practically without friction. Find the angular speed of the door just after the bullet embeds into it.(Hint.

The moment of inertia of the door about the vertical axis at one end is $M L^{2} / 3$)
25. Two discs of moments of inertia I_{1} and I_{2} about their respective axes (normal to the disc and passing through the centre), and rotating with angular speed ω_{1} and ω_{2} are brought into contact face to face with their axes of rotation coincident. What is the angular speed of the two-disc system?

D Watch Video Solution

26. (a) Prove the theorem of perpendicular axes.
(Hint : Square of the distance of a point (x, y) in the $x-y$ plane from an axis through the origin and perpendicular to the plane is $\left(x^{2}+y^{2}\right)$.
(b) Prove the theorem of parallel axes.
(Hint : If the centre of mass of a system of n
particles is chosen to be the origin
$\left.\sum m_{i} r_{i}=0\right)$.
27. Prove the result that the velocity v of translation of a rolling body (like a ring, disc, cylinder or sphere) at the bottom of an inclined plane of a height h is given by $v^{2}=\frac{2 g h}{\left(1+k^{2} / R^{2}\right)} \quad$ using \quad dynamical consideration (i.e. by consideration of forces and torque). Note k is the radius of gyration of the body about its symmetry axis, and R is the radius of the body. The body starts from rest at the top of the plane.

Watch Video Solution

28. A disc rotating about its axis with angular speed ω_{o} is placed lightly (without any translational push) on a perfectly frictionless table. The radius of the disc is R. What are the linear velocities of the points A, B and C on the disc shown in Fig. 7.41? Will the disc roll in the direction indicated?

- Watch Video Solution

29. (i) Explain why friction is necessary to make the disc to roll in the direction indicated. (ii)

Give the direction of frictional force at B, and the sense of frictional torque, before perfect rolling begins. (iii) What is the force of friction after perfect rolling begins?

- Watch Video Solution

30. A solid disc and a ring, both of radius 10 cm are placed on a horizontal table simultaneously, with initial angular speed equal to $10 \pi r a d / s$. Which of the two will start to roll earlier ? The coefficient of kinetic friction is $\mu_{k}=0.2$.

- Watch Video Solution

31. A cylinder of mass 10 kg and radius 15 cm is
rolling perfectly on a plane of inclination 30°.

The coefficient of static friction is $\mu_{s}=0.25$.
(a) How much is the force of friction acting on the cylinder?
(b) What is the work done against friction during rolling ?
(c) If the inclination θ of plane is increased, at what value of θ does the cylinder begin to skid and not roll perfectly?
32. Separation of Motion of a system of particles into motion of the centre of mass and motion about the centre of mass :
(a) Show $p=p_{i}{ }^{\prime}+m_{i} V$
where pi is the momentum of the ith particle (of mass m_{i}) and $p_{i}^{\prime}=m_{i} v_{i}^{\prime}$. Note v_{i}^{\prime} is the velocity of the ith particle relative to the centre of mass.

Also, prove using the definition of the centre of mass $\sum p_{i}^{\prime}=O$
(b) Show $K=K^{\prime}+1 / 2 M V^{2}$
where K is the total kinetic energy of the
system of particles, K^{\prime} is the total kinetic energy of the system when the particle velocities are taken with respect to the centre of mass and $M V^{2} / 2$ is the kinetic energy of the translation of the system as a whole (i.e. of the centre of mass motion of the system). The result has been used in Sec. 7.14.
(c) Show $L=L^{\prime}+R \times M V$
where $L^{\prime}=\sum r_{i}^{\prime} \times p_{i}^{\prime}$ is the angular momentum of the system about the centre of mass with velocities taken relative to the centre of mass. Remember $-r^{\prime}{ }_{i}=r_{i}-R$, rest of the notation is the standard notation
used in the chapter. Note ' L and $M R \times V$ can be said to be angular momenta, respectively, about and of the centre of mass of the system of particles.
(d) Show $\frac{d L^{\prime}}{d t}=\sum r_{i}^{\prime} \times \frac{d p^{\prime}}{d t}$

Further, show that
$\frac{d L^{\prime}}{d t}=\tau^{\prime}{ }_{e x t}$
where $\tau^{\prime}{ }_{e x t}$ is the sum of all external torques
acting on the system about the centre of mass.

1. Read each statement below carefully and
state with reasons, if it is true ot false. (a)

During rolling the force of friction acts in the same direction as the direction of motion of
c.m of the body. (b) The instantaneous speed of the point of contact during rolling is zero.
(c) The instantaneous acceleration of the point of contact during rolling is zero. (d) For perfect rolling motion, work done against friction is zero. (e) A wheel moving down a
perfectly frictionless inclined plane will undergo slipping (not rolling motion).

D Watch Video Solution

2. Read each statement below carefully and state with reasons, if it is true ot false. (a)

During rolling the force of friction acts in the
same direction as the direction of motion of c.m of the body. (b) The instantaneous speed of the point of contact during rolling is zero.
(c) The instantaneous acceleration of the
point of contact during rolling is zero. (d) For perfect rolling motion, work done against friction is zero. (e) A wheel moving down a perfectly frictionless inclined plane will undergo slipping (not rolling motion).

D Watch Video Solution

3. Read each statement below carefully and state with reasons, if it is true ot false. (a)

During rolling the force of friction acts in the same direction as the direction of motion of
c.m of the body. (b) The instantaneous speed of the point of contact during rolling is zero.
(c) The instantaneous acceleration of the point of contact during rolling is zero. (d) For perfect rolling motion, work done against friction is zero. (e) A wheel moving down a perfectly frictionless inclined plane will undergo slipping (not rolling motion).

- Watch Video Solution

4. Read each statement below carefully and state with reasons, if it is true ot false. (a)

During rolling the force of friction acts in the same direction as the direction of motion of c.m of the body. (b) The instantaneous speed of the point of contact during rolling is zero.
(c) The instantaneous acceleration of the point of contact during rolling is zero. (d) For perfect rolling motion, work done against friction is zero. (e) A wheel moving down a perfectly frictionless inclined plane will undergo slipping (not rolling motion).

- Watch Video Solution

5. Read each statement below carefully and state with reasons, if it is true ot false. (a)

During rolling the force of friction acts in the same direction as the direction of motion of c.m of the body. (b) The instantaneous speed of the point of contact during rolling is zero.
(c) The instantaneous acceleration of the point of contact during rolling is zero. (d) For perfect rolling motion, work done against friction is zero. (e) A wheel moving down a
perfectly frictionless inclined plane will undergo slipping (not rolling motion).

- Watch Video Solution

