©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - TARGET PHYSICS (MARATHI

 ENGLISH)

 ENGLISH)}

ELECTROSTATICS

Excercise

1. Electrostatic means study of
A. electric charge in motion
B. elctric charges at rest
C. electric current through a conductor
D. dynamic current

Answer:

D Watch Video Solution
2. Which of the following is NOT an example of static electricity?
A. Hearing crackle when we take off synthetic clothes in dry weather.
B. Lightening
in the
sky
during
thunderstorms
C. Plastic comb is electrified when it is
rubbed with dry hair

D. Seeing spark in an elctrical switch when

we remove fuse

Answer:

3. What will happen if a glass rod is rubbed on a silk cloth?
A. a glass rod acquires positive charge and
silk cloth acquires equal negative charge
B. there is no tranfer of charge
C. a glass rod acquires negative charge and
silk cloth acquires equal positive charge
D. glass rod acquires positive charge and
silk cloth becomes neutral

Answer:

- Watch Video Solution

4. Frictional electricity is produced on the two objects due to
A. loss of electrons by one object
B. loss of protons by one object
C. loss of electrons by one object and equal
number of protons gained by other
object

D. loss of protons by one object and equal

number of electrons gained by other object

Answer:

D Watch Video Solution

5. The property of attraction or repulsion acquired by the material body when it is rubbed with aonther body is
A. charge
B. mass
C. resistance
D. inductance

Answer:

D Watch Video Solution
6. When any physical quantity exists in the form of discrete packets it is said to be
A. magnetised
B. polarised
C. quantized
D. electrolysed

Answer:

D Watch Video Solution
7. For the following raction, which is correct?
${ }_{92} U^{238} \rightarrow{ }_{90} T h^{234}+{ }_{2} H e^{4}$
A. Net charge is conserved
B. net momentum is conserved
C. heat is lost
D. heat is gained

Answer:

D Watch Video Solution

8. Coulomb's law is applicable for stationary point charges and not for the extended bodies. This statement is
A. 1
B. often true
C.
D. unpredictable

Answer:

D Watch Video Solution
9. The force between two electrons separated by a distance ' r ' is proportional to
A. r^{3}
B. $r^{\frac{1}{2}}$
C. $r^{-\frac{1}{2}}$
D. r^{-2}

Answer:

- Watch Video Solution

10. When the distanc ebetween the charged particles is halved the force between them becomes
A. $\frac{1}{4}$ times
B. $\frac{1}{2}$ times
C. 2 times
D. 4 times

Answer:

- Watch Video Solution

11. There are two charges +1 micro coulomb and +3 micro coulomb. The ratio of the forces
acting on them will be
A. $1: 5$
B. 1:1
C. 5:1
D. 1: 25

Answer:

D Watch Video Solution

12. A charge q_{1} exerts some force on a second charge q_{2}. If third charge q_{3} is brought near charge q_{1}, the force of q_{1} exerted on q_{2}
A. decreases
B. increases
C. remains unchanged
D. increases if q_{3} is of the same sign as q_{1}
and decreases if q_{3} is of opposite sign.

Answer:

D Watch Video Solution

13. The dimensions of ε_{0} are
A. $\left[M^{0} L^{0} T^{0} I^{0}\right]$
B. $\left[M^{3} L^{-2} T^{2} I^{3}\right]$
C. $\left[M^{-1} L^{-3} T^{4} I^{2}\right]$
D. $\left[M^{-1} L^{-3} T^{3} I^{2}\right]$

Answer:

D Watch Video Solution

14. S.I. unit of permittivity is
A. $\frac{N m^{2}}{C^{2}}$
B. $\frac{C^{2}}{N m^{2}}$
C. $\frac{C}{N m}$
D. $\frac{N m}{C}$

Answer:

D Watch Video Solution

15. Dielectric constant of a medium is also known as
A. relative permeability

B. permeability

C. permittivity
D. relative permittivity

Answer:

D Watch Video Solution

16. The relation between permittivity of medium, permittivity of vaccum and dielectric constant given as

> A. $k=\frac{\varepsilon_{0}}{\varepsilon}$
> B. $\varepsilon_{0}=\frac{\varepsilon}{k}$
> C. $k \varepsilon_{0}=\varepsilon$
> D. $\frac{\varepsilon}{\varepsilon_{0}}=\frac{1}{k}$

Answer:

D Watch Video Solution

17. The ratio of the forces between two small spheres with constant charge 'a' in air and 'b'
A. $1: k$
B. $k: 1$
C. $1: k^{2}$
D. $k^{2}: 1$

Answer:

D Watch Video Solution

18. Force between two charges, when placed in
free space is 10 N . if they are in a medium of
relative permittivity 5 , the force between them will be
A. $2 N$
B. 50 N
C. 0.5 N
D. 10 N

Answer:
(D) Watch Video Solution
19. In a hydrogen atom, the distance between proton and electron is $5.3 \times 10^{-11} \mathrm{~m}$. The electrical force of attraction between them will be
A. $6.3 \times 10^{-8} N$
B. $8.2 \times 10^{-8} N$
C. $9.6 \times 10^{-8} N$
D. $12.2 \times 10^{-8} \mathrm{~N}$

Answer:

20. How many electrons will constitute a charge of one coulomb?
A. 6.25×10^{18}
B. 6.25×10^{19}
C. 5.25×10^{18}
D. 5.25×10^{19}

Answer:
21. 4×10^{16} electrons are removed from a conductor. The conductor acquires a charge of
A. $-6.4 m C$
B. $+6.4 m C$
C. $-2.5 m C$
D. +2.5 mC

Answer:

D Watch Video Solution
22. If 6.24×10^{18} electrons carry a total charge of 1 coulomb then how many electrons would carry a total charge of 96500 C ?
A. 6.03×10^{23}
B. 1.6×10^{19}
C. 6.02×10^{18}
D. both (A) and (B)

Answer:

D Watch Video Solution
23. The superposition of forces is a method to
find force on a charge when
A. only a single charge is present
B. no charges are present
C. multiple charges are interacting
D. only two charges are interacting

Answer:

(Watch Video Solution
24. Conduction electrons are almost uniformly distributed within a conducting plate. When placed in an electrostatic field E_{1} the electric field within the plate
A. is zero
B. is infinite
C. depends upon E
D. depends upon the atomic numbers of
the conducting elements

Answer:

25. The electric field inside a spherical shell of uniform surface charge density is
A. zero
B. constant but less than zero
C. directly proportional to the distance
from the centre
D. inversely proportional to the distance
from centre

Answer:

D Watch Video Solution

26. The unit of electric field is NOT equivalent
to
A. $\frac{N}{C}$
B. $\frac{J}{C}$
C. $\frac{V}{m}$
D. $\frac{J}{C m}$

Answer:

D Watch Video Solution

27. Intensity of an electric field E due to a dipole, depends on distance 'r' as

$$
\begin{aligned}
& \text { A. } E \propto \frac{1}{r^{4}} \\
& \text { B. } E \propto \frac{1}{r^{3}} \\
& \text { C. } E \propto \frac{1}{r^{2}} \\
& \text { D. } E \propto \frac{1}{r}
\end{aligned}
$$

Answer:

D Watch Video Solution

28. The magnitude of electric field intensity E
is such that an electron placed in it would experience an electrical force equal to its weight given by
A. $m \geq$
B. $\frac{m g}{e}$
C. $\frac{e}{m g}$
D. $\frac{g R^{2}}{m^{2}}$

Answer:

D Watch Video Solution

29. The intensity of electric field required to
balance a proton of mass $1.7 \times 10^{-27} \mathrm{~kg}$ and
charge $1.6 \times 10^{-19} \mathrm{C}$ is nearly

$$
\begin{aligned}
& \text { A. } 10^{-7} \frac{V}{m} \\
& \text { B. } 10^{5} \frac{V}{m}
\end{aligned}
$$

> C. $10^{7} \frac{\mathrm{~V}}{\mathrm{~m}}$
> D. $10^{-5} \frac{\mathrm{~V}}{\mathrm{~m}}$

Answer:

D Watch Video Solution

30. The acceleration of a particle of charge of
0.5 C and 500 g mass kept in an electric field of intensity $200 \frac{N}{C}$ is
A. $2000 \frac{m}{s^{2}}$
B. $200 \frac{m}{s^{2}}$
C. $500 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
D. $20 \frac{m}{s^{2}}$

Answer:

D Watch Video Solution

31. The distance between a proton and an electron both having a charge 1.6×10^{-19} coulomb of a hydrogen atom is 10^{-10} metre.

The value of intensity of electric field produced on the electron due to proton will be

$$
\begin{aligned}
& \text { A. } 2.304 \times 10^{-10} \frac{\mathrm{~N}}{\mathrm{C}} \\
& \text { B. } 14.4 \frac{\mathrm{~V}}{\mathrm{~m}} \\
& \text { C. } 16 \frac{\mathrm{~V}}{\mathrm{~m}} \\
& \text { D. } 1.44 \times 10^{11} \frac{\mathrm{~N}}{\mathrm{C}}
\end{aligned}
$$

Answer:

32. Two charges $+4 e$ and $+e$ are at a distance x apart. At what distance a charge q must be placed from charge `+e1 so that it is in equilirium?
A. $\frac{x}{2}$
B. $\frac{2 x}{3}$
C. $\frac{x}{3}$
D. $\frac{x}{6}$

Answer:

33. When electric field intensity \vec{E} at any point in the electric field is directed towards or away from the same fixed point then the field is
A. circular electric field
B. uniform electric field
C. radial electric field
D. all of these

Answer:

D Watch Video Solution

34. Figure shows the electric lines of force emerging from a charged body. If the electric field at A and B are E_{A} and E_{B} respectively and if the displacement between A and B is r then
A. $E_{A}>E_{B}$
B. $E_{A}<E_{B}$
C. $E_{A}=\frac{E_{B}}{r}$
D. $E_{A}=\frac{E_{B}}{r^{2}}$

Answer:

D Watch Video Solution

35. An electric line of force is
A. a straight line joining any two charges
B. a path along which a free negative charge moves
C. a path along which a free test charge moves in an electric field
D. a ray of electric field emitted by a charge

Answer:

- Watch Video Solution

36. Which of the following is NOT true about electric lines of forces?
A. they never intersect with each other
B. they are parallel to each other and equally placed in a uniform field
C. they pass through conductor but do not pass through insulator
D. they do not pass through conductor but
pass through insulator

Answer:

- Watch Video Solution

37. Electric lines of force about a negative point charge are
A. circular and anticlockwise
B. circular and clockwise
C. radial and inward
D. radial and outward

Answer:

D Watch Video Solution

38. When electric field intensity \vec{E} at any point in the electric field is directed towards or away from the same fixed point then the field is
A. circular electric field
B. uniform electric field
C. radial electric field

D. tangential electric field

Answer:

- Watch Video Solution

39. The figure represents electric lines of force originating from charge q_{1} and q_{2}. We can conclude that
A. q_{1} is negative, q_{2} is positive
B. q_{1} is positive, q_{2} is negative
C. q_{1}, q_{2} are both positive
D. q_{1}, q_{2} are both negative

Answer:

D Watch Video Solution
40. The S.I. unit of electric flux is
A. weber
B. newton per coulomb

C. volt x metre

D. joule per coulomb

Answer:

D Watch Video Solution

41. The total number of tubes of induction passing normally through a surface situated in an electric field is called
A. normal electric induction

B. total normal electric induction

C. electric flux

D. all of these

Answer:

D Watch Video Solution

42. The T.N.E.I. is independent of the
A. position of charge density inside a closed surface only
B. charges outside the closed surface only
C. both (A) and (B)
D. neither (A) nor (B)

Answer:

D Watch Video Solution
43. Gauss' law should be invalid if
A. there were magnatic monopoles
B. the inverse square law were not exactly true
C. the velocity of light were not a universal

constant

D. none of these

Answer:

- Watch Video Solution

44. Electric intensity at a place due to a charge

is a ____ quantiy.
A. vector
B. scalar
C. unitless
D. dimensionless

Answer:

D Watch Video Solution
45. Gauss' law is true only if force due to a charge varies as
A. r^{-1}
B. r^{-2}
C. r^{-3}
D. r^{-4}

Answer:

- Watch Video Solution

46. In vector form dipole moment can be expressed as

$$
\begin{aligned}
& \text { A. } \vec{p}=2 \vec{q} \cdot \vec{l} \\
& \text { В. } \vec{p}=q \times 2 \vec{l} \\
& \text { C. } \vec{p}=\vec{q} \times 2 \vec{l} \\
& \text { D. } \vec{p}=\vec{q} \times \vec{l}
\end{aligned}
$$

Answer:

D Watch Video Solution
47. The SI unit and dimensions of dipole moment repectively are

$$
\begin{aligned}
& \text { A. } \frac{C}{m},\left[M^{1} L^{0} T^{1} I^{1}\right] \\
& \text { B. } \frac{C}{m},\left[M^{1} L^{1} T^{1} I^{1}\right] \\
& \text { C. } C m^{2},\left[M^{0} L^{1} T^{1} I^{1}\right] \\
& \text { D. } C m,\left[M^{0} L^{1} T^{1} I^{1}\right]
\end{aligned}
$$

Answer:

- Watch Video Solution

48. Which of the following charges can form an electric dipole?
A. $+1 \mu C,-1 m C$
B. $+5 \times 10^{-3} C,-2 \times 10^{-3} C$
C. $+10^{-3} m C,-1 \mu C$
D. $-1 C,-1 C$

Answer:

- Watch Video Solution

49. Two charges $+3.2 \times 10^{-19} C$ and $-3.2 \times 10^{-19} C$ are placed $2.4 A$ apart from an electric dipole.it is placed in a uniform electric field of intensity $4 \times 10^{5} \frac{\mathrm{~V}}{\mathrm{~m}}$. The electric dipole moment is

$$
\begin{aligned}
& \text { A. } 15.36 \times 10^{-29} \mathrm{Cm} \\
& \text { B. } 15.36 \times 10^{-19} \mathrm{Cm} \\
& \text { C. } 7.68 \times 10^{-29} \mathrm{Cm} \\
& \text { D. } 7.86 \times 10^{-29} \mathrm{Cm}
\end{aligned}
$$

50. The region surrounding a stationary electric dipole has
A. magnetic field only
B. electric field only
C. both electric and magnetic field
D. no electric and magnetic fields

Answer:

51. An electric dipole is kept in non-uniform electric field. It experiences
A. a force and a torque
B. a force but not a torque
C. a torque but not a force
D. neither a force nor a torque

Answer:

52. When axis of electric dipole lies along the direction of field then torque acting on dipole is
A. zero
B. $p E$
C. $\frac{p E}{2}$
D. $-p E$

Answer:

D Watch Video Solution
53. The moment of couple acting on an electric field is maximum when
A. axis of electric dipole is parallel to
uniform field
B. axis of electric dipole is perpendicular to
uniform field
C. field is non-uniform
D. axis of electric dipole is inclined at an
angle 45° to the field

Answer:

D Watch Video Solution

54. An electric dipole consisting of two opposite charges of 2×10^{-6} each separated by a distance of 3 cm is placed in all electric field of 2×10^{5} newton/coulomb. The maximum torque acting on the dipole in S.I. unit will be

$$
\text { A. } 12 \times 10^{-1} \mathrm{Nm}
$$

B. $12 \times 10^{-3} \mathrm{Nm}$
C. $24 \times 10^{-1} \mathrm{Nm}$
D. $24 \times 10^{-3} \mathrm{Nm}$

Answer:

D Watch Video Solution

55. The magnitude (minimum) of charge that a particle can have is
A. $1 C$
B. $1.6 \times 10^{-19} C$
C. $0.8 \times 10^{-19} C$
D. $3.2 \times 10^{-19} C$

Answer:

D Watch Video Solution

56. When the charge is not accumulated in some part of a conductor but spread evenly
then it is called a
A. non-uniform charge distribution
B. irregular charge distribution
C. uniform charge distribution
D. radial charge distribution

Answer:

D Watch Video Solution
57. We can define the term charge density when distribution of charge is

A. non-uniform

B. uniform

C. zero
D. unit

Answer:

D Watch Video Solution

58. Linear charge density for a circle of radius r is
A. $\frac{Q}{2 \pi r}$
B. $\frac{Q}{\pi r}$
C. $\frac{Q}{\pi r^{2}}$
D. $\frac{Q}{2 \pi r^{2}}$

Answer:

D Watch Video Solution

59. $10 \mu C$ charge is uniformly distributed along a wire of length 5 m . Its linear charge density is
A. $2 \times 10^{-6} \frac{C}{m}$
B. $5 \times 10^{-6} \frac{C}{m}$
C. $10 \times 10^{-6} \frac{C}{m}$
D. $3 \times 10^{-6} \frac{C}{m}$

Answer:

D Watch Video Solution
60. Charge per unit area is called as
A. linear charge density
B. volume charge density
C. surface charge density
D. unit charge density

Answer:

D Watch Video Solution

61. The SI unit of surface charge density is
A. $\frac{C}{m}$
B. $\frac{C}{m^{2}}$
c. $\frac{C}{m^{3}}$
D. C

Answer:

- Watch Video Solution

62. Asphere of radius 10 cm is given a charge of $20 \mu C$ on its surface. The surface charge density of sphere is
A. $3.18 \times 10^{-4} \frac{C}{m^{2}}$

> B. $2 \times 10^{-6} \frac{C}{m^{2}}$
> C. $3 \times 10^{-9} \frac{C}{m^{2}}$
> D. $1.59 \times 10^{-4} \frac{C}{m^{2}}$

Answer:

D Watch Video Solution

63. Volume charge density is
A. one dimensional
B. two dimensional
C. three dimensional
D. dimensionless

Answer:

D Watch Video Solution

64. A charge of magnitude $2 \mu C$ is distributed uniformly throughout the soild metal sphere of radius 1 cm , them volume charge density of sphere is
A. $0.48 \frac{C}{m^{3}}$
B. $0.56 \frac{C}{m^{3}}$
C. $0.2 \frac{C}{m^{3}}$
D. $0 \frac{C}{m^{3}}$

Answer:

D Watch Video Solution
65. Two identical conductors of copper and aluminium are placed in an identical electric
fields. The magnitude of induced charge in aluminium will be
A. zero
B. greater than in copper
C. equal to that in copper
D. less than in copper

Answer:

D Watch Video Solution
66. Assertion : When charges are shared between two bodies, there occurs no loss of charge. Howevr, there is a loss in electrical energy. Reason : Electrostatic potential energy does not come under the perview of the conservation law of energy.
A. Assertion is True, Reason is True, Reason
is a correct explanation of Assertion
B. Assertion is True, Reason is True, Reason
is not a correct explanation of Assertion

C. Assertion is True, Reason is False

D. Assertion is False, Reason is True

Answer:

D Watch Video Solution

67. Four charged balls numbered 1 to 4 are suspended using separate threads. Pairs (1,2) and $(1,3)$ show repulsion, while pair $(2,4)$ shows attraction. If ball 4 is now brought near balls 1 and 3 , it will be respectively
A. repelled, repelled
B. attracted, attracted
C. repelled, attracted
D. attracted, repelled

Answer:

D Watch Video Solution
68. Which among the following is a sure test of electrification?
A. Attraction
B. Induction
C. Repulsion
D. Conduction

Answer:

D Watch Video Solution

69. When a body is connected to the earth, electrons from the earth flow into the body.

This means the body is
A. uncharged
B. charged positively
C. charged negatively
D. an insulator

Answer:

D Watch Video Solution
70. Which of the following is NOT true about dielectric constant?
A. it han no units
B. it depends on temperature and nature of medium
C. it is always constant
D. both (A) and (B)

Answer:

- Watch Video Solution

71. A charge Q is divide into two charges q and
$(Q-q)$. What should be thr relation between
Q and q so that force between q and $(Q-q)$ is maximum?

$$
\begin{aligned}
& \text { A. } Q=\frac{1}{2} q \\
& \text { В. } Q=2 q \\
& \text { С. } Q=q \\
& \text { D. } Q=\frac{3}{2} q
\end{aligned}
$$

Answer:

72. Two point charges repel each other with a force of 100 N . one of the charges is increased by 10% andother is reduced by 10%. The new force of repulsion at the same distance would be
A. 100 N
B. 121 N
C. 99 N
D. 90 N

Answer:

D Watch Video Solution

73. Two fixed point charges $+4 q$ and $+q$ units are separeted by a distance ' x '. Where should a third point charge- q_{0} be placed for it to be in equilibrium?
A. Midway between the charges $+4 q$ and $+q$
B. at a distance $2 x$ from the charge $+4 q$
C. at a distance $\frac{2 x}{3}$ from the charge $+4 q$ D. atadis \tan cex/3omthechar $\geq+4 q^{`}$

Answer:

D Watch Video Solution

74. Two positive points charges are 3 m apart and their combined charge is $20 \mu C$. If the force between them is $0.075 N$, then the charges are
A. $10 \mu C, 10 \mu C$
B. $15 \mu C, 5 \mu C$
C. $12 \mu C, 8 \mu C$
D. $14 \mu C, 6 \mu C$

Answer:

D Watch Video Solution
75. Two point charges $+3 \mu C$ and $+8 \mu C$ repel each other with a force of 40 N . if a charge of
-5 is added to each of them, then the force between them will become
A. $-10 N$
B. $+10 N$
C. $+20 N$
D. $-20 N$

Answer:

D Watch Video Solution
76. Two equally charged, identical metal spheres A and B rpepel each other with a force
F. the spheres are kept fixed with a distance r between them. A third identical, but uncharged sphere C is brought in contact with

A and then placed at the mid-point of thr line joining A and B. the magnitude of the net electric force on C is
A. F
B. $3 \frac{F}{4}$
C. $\frac{F}{2}$
D. $\frac{F}{4}$

Answer:

D Watch Video Solution

77. Two charges q_{1} and q_{2} repel each other with a force of $0.1 N$. What will be the force exerted by q_{1} on q_{2}, when a third charge is placed near them?
A. less than $0.1 N$

B. more than $0.1 N$

C. $0.1 N$

D. less than $0.1 N$ if q_{1} and q_{2} are similar
and more than $0.1 N$ if q_{1} and q_{2} are
dissimilar.

Answer:

- Watch Video Solution

78. Three charges $4 q, \mathrm{Q}$ and q are in a straight line in the position $0, \frac{l}{2}$ and l respectively. The resultant force on q will be zero if Q is equal to
A. $-q$
B. $-2 q$
C. $-\frac{q}{2}$
D. $4 q$

Answer:

79. Two small spheres each having the charge $+Q$ are suspende by insulating threads of length L from a hook. This arrangement is taken in space where there is no gravitational effect then the angle between the two suspensions and the tension in each will be

$$
\begin{aligned}
& \text { А. } 180^{\circ}, \frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q^{2}}{(2 L)^{2}} \\
& \text { В. } 90^{\circ}, \frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q^{2}}{L^{2}} \\
& \text { С. } 180^{\circ}, \frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q^{2}}{2 L^{2}}
\end{aligned}
$$

D. $180^{\circ}, \frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q^{2}}{L^{2}}$

Answer:

D Watch Video Solution

80. $A B C$ is a right angled triangle in which
$A B=3 \mathrm{~cm}$ and $B C=4 \mathrm{~cm}$ and $\angle A B C=\frac{\pi}{2}$
. The three charges $+15,+12,-20$ e.s.u are
placed respectively on A, B and C. the force acting on B is
A. 125 dyne
B. 35 dyne
C. 25 dyne
D. zero

Answer:

- Watch Video Solution

81. Electric charges of $1 \mu C,-1 \mu C$ and $2 \mu C$ are placed in air at the corners A, B and C reepectively of an equilateral triangle $A B C$
having length of each side 10 cm . The resultant

force on the charge at C is

A. 0.9 N
B. $1.8 N$
C. $2.7 N$
D. $3.6 N$

Answer:
(Watch Video Solution
82. A charge q is placed at the centre of the
line joining two equal charges Q . the system of
the three charges will be in equilibrium if q is equal to

$$
\begin{aligned}
& \text { A. }-\frac{Q}{2} \\
& \text { B. }-\frac{Q}{4} \\
& \text { C. }+\frac{Q}{4} \\
& \text { D. }+\frac{Q}{2}
\end{aligned}
$$

Answer:

83. Equalc harges q are placed at four corners
A, B, C and D of a square of length a. the
magnitude of the force on the charge at B will be
A. $\frac{3 q^{2}}{4 \pi \varepsilon_{0} a^{2}}$
B. $\frac{4 q^{2}}{4 \pi \varepsilon_{0} a^{2}}$
C. $\left(\frac{1+2 \sqrt{2}}{2}\right) \frac{q^{2}}{4 \pi \varepsilon_{0} a^{2}}$
D. $\left(2+\frac{1}{2 \sqrt{2}}\right) \frac{q^{2}}{4 \pi \varepsilon_{0} a^{2}}$

Answer:

- Watch Video Solution

84. Infinite number of spheres, each of mass m
are placed on the X -axis at distances $1,2,4,8$,
$16, \ldots$. . meters from origin. The magnitude of
the gravitational field at the origin is
A. $9000 N$
B. 12000 N
C. $24000 N$
D. 36000 N

Answer:

D Watch Video Solution

85. The figure shows some of the electric field
lines corresponding to an electric field. The figure suggests
A. $E_{A}>E_{B}>E_{C}$
B. $E_{A}=E_{B}=E_{C}$
C. $E_{A}=E_{C}>E_{B}$
D. $E_{B}=E_{A}<E_{C}$

Answer:

- Watch Video Solution

86. What is the magnitude of a point charge due to which the electric field 30 cm away has
the magnitude 2 newton / coulomb ?

$$
\left[\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{N m^{2}}{C^{2}}\right]
$$

A. $2 \times 10^{-11} C$
B. $3 \times 10^{-11} C$
C. $5 \times 10^{-11} C$
D. $9 \times 10^{-11} C$

Answer:

D Watch Video Solution

87. The distance between the two charges
$25 \mu C$ and $36 \mu C$ is 11 cm . at what point on the
line joining the two, the intensity will be zero?
A. at a distance of 5 cm from $25 \mu C$
B. at a distance of 5 cm from $36 \mu C$
C. at a distance of 10 cm from $25 \mu C$
D. at a distance of 11 cm from $36 \mu C$

Answer:

D Watch Video Solution
88. Two equal charges q are placed at the vertices A and B of an equilateral triangle $A B C$
of side a. the magnitude of electric field at the point C is
A. $\frac{q}{4 \pi \varepsilon_{0} a^{2}}$
B. $\frac{\sqrt{2} q}{4 \pi \varepsilon_{0} a^{2}}$
C. $\frac{\sqrt{3} q}{4 \pi \varepsilon_{0} a^{2}}$
D. $\frac{q}{2 \pi \varepsilon_{0} a^{2}}$

Answer:

89. Which among the curves shown in figure below can possibly represent electrostatic

field lines?

A.
B.
C.
D.

Answer:

D Watch Video Solution

90. A conducting sphere of radius $R=20 \mathrm{~cm}$ is given a charge $Q=16 \mu C$. What is \vec{E} at centre?
A. $3.6 \times 10^{6} \frac{N}{C}$
B. $1.8 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{C}}$
C. zero
D. $0.9 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{C}}$

Answer:

D Watch Video Solution

91. Charges $q, 2 q, 3 q, 4 q$ are placed at the corners A, B, C and D of a square as shown in the following figure. The direction of electric field at the centre of the square is along
A. $A B$
B. CB
C. BD
D. AC

Answer:

D Watch Video Solution

92. The insulation property of air breaks down at $E=3 \times 10^{6}{ }^{\prime} \frac{\text { volt }}{\text { metre }}$. The maximum charge
that can be given to a sphere of diameter 5 m
is approximately (in coulomb)

A. 2×10^{-2}
B. 2×10^{-4}
C. 2×10^{-3}
D. 2×10^{-5}

Answer:
(Watch Video Solution
93. The number of electrons to be put on a sphreical conductor of radius 0.1 m to produce
an electric field of $0.036 \frac{N}{C}$ just above its surface is
A. 2.7×10^{5}
B. 2.6×10^{5}
C. 2.5×10^{5}
D. 2.4×10^{5}

Answer:
94. If the magnitude of intensity of electric
field at a distance x on axial line and at a
distance y on equatorial line on a given dipole are equal, then $x: y$ is
A. $1: 1$
B. 1:
C. cube(root $)(o f) 2: 1$
D. $2: 1$

Answer:

- Watch Video Solution

95. One of the following is not a property of field lines
A. field lines are continous curves without any breaks
B. two field lines cannot cross each other
C. field lines cannot cross each other

D. they form closed loops

Answer:

D Watch Video Solution

96. The wrong statement about electic lines of
force is
A. these originate from positive charge and
end on negative charge
B. they do not intersect each other at a point
C. they have the same form for a point charge and a sphere
D. they have physical existence

Answer:

- Watch Video Solution

97. Assertion : electric flux represents the number of electric lines passing normally through the given surface in the electric field. Reason: electric flux thriugh a syrface is given as $\phi=\frac{q}{\varepsilon_{0}}$
A. Assertion is True, Reason is True, Reason
is a correct explanation of Assertion
B. Assertion is True, Reason is True, Reason
is not a correct explanation of Assertion
C. Assertion is True, Reason is False

D. Assertion is False, Reason is True

Answer:

D Watch Video Solution

98. The electric flux coming out of one face of
a cube is $\frac{4}{\varepsilon_{0}}$. The charge placed at the centre of the cube will be \qquad .
A. 24 C
B. 8 C

C. 16 C

D. 12 C

Answer:

D Watch Video Solution

99. The flux entering and leaving a closed surface are 5×10^{5} and 4×10^{5} MKS units reapestively, then the charge inside the surface will be
A. $-8.85 \times 10^{-7} C$
B. $8.85 \times 10^{-7} C$
C. $8.85 \times 10^{7} C$
D. $-8.85 \times 10^{7} C$

Answer:

D Watch Video Solution

100. A point charge $+q$ is placed at the centre of a cube of side L . the electric flux emerging from the cube is
A. $\frac{q}{\varepsilon_{0}}$
B. zero
C. $\frac{6 q L^{2}}{\varepsilon_{0}}$
D. $\frac{q}{6 L^{2} \varepsilon_{0}}$

Answer:

D Watch Video Solution
101. A metallic solid sphere is placed in a uniform electric field. The lines of force follow
the path(s) shown in figure as
A. 1
B. 2
C. 3
D. 4

Answer:
(Watch Video Solution
102. What is T.N.E.I. through the surface A and

B respectively?

> A. $(q, 2 q)$
> B. $(-q,-2 q)$
> C. $(0, q)$
> D. $(q, 0)$

Answer:

- Watch Video Solution

103. Three charges $+5 C,+7 C,-4 C$ are situated within a body and charges
$-5 C,-7 C,+4 C$ are situated outside the body. The T.N.E.I. over the closed surface is
A. $-8 C$
B. 0
C. $+8 C$
D. $10 C$

Answer:

104. A water molecule has an electric dipole moment $6.4 \times 10^{-30} \mathrm{Cm}$ when it is in vapour state. The distance in metre between the centre of positive and negative charge of the molecule is
A. $4 * 10^{-10}$
B. $4 * 10^{-11}$
C. $4 * 10^{-12}$
D. $4 * 10^{-13}$

Answer:

D Watch Video Solution

105. An electric dipole cosisting of two opposite charges of $2 \times 10^{-1} C$ each separated by a distance of 3 cm is placed in an electeric field of $2 \times 10^{5} \frac{N}{C}$. The maximum torque on the dipole will be

$$
\text { A. } 12 \times 10^{-1} \mathrm{Nm}
$$

B. $12 \times 10^{-3} \mathrm{Nm}$

C. $24 \times 10^{-1} \mathrm{Nm}$

D. $24 \times 10^{-3} \mathrm{Nm}$

Answer:

- Watch Video Solution

106. For a dipole $q=2 \times 10^{-6} C$ and
$d=0.01 \mathrm{~m}$. Calculate the maximum torque for
this dipole if $E=5 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{C}}$
A. $1 \times 10^{-3} \mathrm{Nm}^{-1}$
B. $10 \times 10^{-3} \mathrm{Nm}^{-1}$
C. $10 \times 10^{-3} \mathrm{Nm}$
D. $1 \times 10^{2} N m^{2}$

Answer:

D Watch Video Solution

107. A square is centred at origin having sides
parallel to x-axis and y-axis. It has surface charge density $\sigma(x, y)=\sigma_{0} \quad$ within \quad its boundaries. The measure of charge of each
side 2a of square is Q . what is the total charge

on the square?

A. $4 \sigma_{0} Q^{2}$
B. $2 \sigma_{0} a^{3}$
C. $\sigma_{0} a^{2}$
D. zero

Answer:
(Watch Video Solution
108. Four metal conductors having differnet
shapes i. a sphere ii. Cylindrical iii. Pear iv.

Lightening conductor are mounted on insulating stands and charged. The one which
is best suited to retain the charges for a
longer time is
A. i
B. ii
C. iii
D. iv

Answer:

D Watch Video Solution

109. 64 small drops of mercury, each of radius r and charge q, coalesce to form a big drop. The ratio of the surface density of charge of each small drop that of the big drop is
A. $64: 1$
B. 1: 64
C. $1: 4$

D. $4: 1$

Answer:

D Watch Video Solution

110. A conducting sphere of radius 10 cm is
charged to $10 \mu C$. Another uncharged sphere of radius 20 cm is allowed to touch it for some
time. After that, if the spheres are separated,
then surface density of charges on the spheres will be in the ratio of
A. $1: 4$
B. 1:3
C. 2:1
D. $1: 1$

Answer:

D Watch Video Solution
111. Electric charges $q, q,-2 q$ are placed at
the corners of an equilateral triangle $A B C$ of
side I. the magnitude of electric dipole moment of the system is
A. $q l$
B. $2 q l$
C. $\sqrt{3} q l$
D. $4 q l$

Answer:
(Watch Video Solution
112. Infinite charges of magnitude q each are
lying at $x=1,2,4,8 \ldots \ldots$ metre on x-axis.
The value of intensity of electric field at point $x=0$ due to these charges will be
A. $12 \times 10^{9} q \frac{N}{C}$
B. zero
C. $6 \times 10^{9} q \frac{N}{C}$
D. $4 \times 10^{9} q \frac{N}{C}$

Answer:

113. If a charge is moved against the coulomb
force of an electric field, then
A. work is done by the electric field
B. enegy is used from some outside source
C. the strength of the field is decreased
D. the energy of the system is decreased

Answer:

114. Two indentical conducting balls A and B
have positive charges q_{1} and q_{2} respectively.
But $q_{1} \neq q_{2}$. The balls are brought together so
that they touch each other and then kept in
their original positions. The force between
them is
A. zero
B. same as that before the balls touched
C. greater that that before the balls touched

D. less than that before the balls touched

Answer:

D Watch Video Solution

115. Two identical metallic spheres A and B of exactly equal masses m are taken. A is given a
+ve charge of q coulomb and B is given an equal negative charge. If m_{A} and m_{B} are the mass of A and B after charging then
A. mass of A and mass of B still remain equal
B. mass of A increases
C. mass of B decreases
D. mass of B increases

Answer:

- Watch Video Solution

116. A soap bubble is given a negative charge,
then its radius
A. decreases
B. increases
C. remains unchanged

D. nothing can be predicted as information

is insufficient

Answer:

117. Two copper balls, each weighing 10 g are kept in air 10 cm apart. If one electron from every 10^{6} atoms is transferred from one ball to the other, the Coulomb force between them is (atomic weight of copper is 63.5)
A. $2.0 \times 10^{10} N$
B. $2.0 \times 10^{4} N$
C. $2.0 \times 10^{8} N$
D. $2.0 \times 10^{6} N$

Answer:

D Watch Video Solution

118. Two particles of equal mass m and charge q are placed at a distance of 16 cm . they do not experience any force. The value of $\frac{q}{m}$ is
A. 1
B. $\sqrt{\frac{\pi \varepsilon_{0}}{G}}$
C. $\sqrt{\left(4 \pi \varepsilon_{0}\right) G}$
D.

Answer:

D Watch Video Solution

119. Five balls numbered 1 to 5 are suspended
using separate threads. Pairs $(1,2),(2,4)$ and
$(4,1)$ show electrostatic attraction whilt pairs
$(2,3),(4,5)$ show repulsion. Therefore, ball 1
must be
A. neutral

B. metallic

C. positively charged

D. negatively charged

Answer:

D Watch Video Solution

120. Two spheres carrying charges $+6 \mu C$ and $+9 \mu C$, separated by a distance d, experiences
a force of repulsion F . when a charge of $-3 \mu C$
is given to both the spheres and kept at the
same distance as before, the new force of

repulsion is

A. $\frac{F}{3}$
B. F
C. $\frac{F}{9}$
D. $3 F$

Answer:
(Watch Video Solution
121. A charge of 0.8 coulomb is divided into two charges Q_{1} and Q_{2}. These are kept at a separation of 30 cm . the force on Q_{1} is maximum when
A. $Q_{1}=Q_{2}=0.4 C$
B. $Q_{1} \approx 0.8 C, Q_{2}$ NEGLIGIBLE
C. Q_{1} negligible, $Q_{2} \approx 0.8 C$
D. $Q_{1}=0.2 C, Q_{2}=0.6 C$

Answer:

122. The elctric force acting between two point charges kept at a certain distance invaccum is

16 N . If the same two charges are kept at the same distance in a medium of dielectric constant 8 , the electric force acting between them is N.
A. 1024
B. 128
C. 16
D. 2

Answer:

D Watch Video Solution

123. Two point charges A and B, having charges
$+Q$ and $-Q$ respectively, are placed at certain
distance apart and force acting between them is F . If 25% charge of A is transferred to B , then
force between the charges becomes:

$$
\text { A. } \frac{16 F}{9}
$$

B. $\frac{4 F}{3}$
C. F
D. $\frac{9 F}{16}$

Answer:

- Watch Video Solution

124. The force of repulsion between two identical positive charges when kept with aseparation r in air is F. half the gap between the two charges is filled by a dielectric slab of
dielectric constant $=4$. thenthe new force of repulsion between those two charges
becomes

> A. $\frac{F}{3}$
> B. $\frac{F}{2}$
> C. $\frac{F}{4}$
> D. $\frac{4 F}{9}$

Answer:

- Watch Video Solution

125. Charges Q are placed at the ends of a diagonal of a square and charges q are placed at the other two corners. The conditions for the net electric force on Q to be zero is

> A. $Q=-2 \sqrt{2} q$, being-ve
> B. $Q=-\frac{q}{2}$, q being -ve
> C. $Q=2 \sqrt{2} q, \mathrm{q}$ being -ve
> D. $Q=2 q, \mathrm{q}$ being -ve

Answer:

- Watch Video Solution

126. Three identical charges are placed on three vertices of a square. If the force acting
between q_{1} and q_{2} is F_{12} and between q_{1} and
q_{3} is F_{13} then $\frac{F_{13}}{F_{12}}=$
A. $\frac{1}{2}$
B. 2
C. $\frac{1}{\sqrt{2}}$
D. $\sqrt{2}$

- Watch Video Solution

127. Along cylindrical shell carries positive
surface charges σ in the upper half and negative surface charge $-\sigma$ in the lower half.

The electric field lines around the cylinder will look like figure given in
A.
B.
C.

```
CH
```

D.

Answer:

- Watch Video Solution

128. 4×10^{10} electrons are removed from a neutral metal sphere of diameter 20 cm placed
in air. The magnitude of the electric field (in
$N C^{-1}$) at a distance of 20 cm from its centre is
A. 640
B. 5760
C. zero
D. 1440
129. What is the magnitude of a point charge due to which the electric field 30 cm away has the magnitude 2 newton / coulomb ?

$$
\left[\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{N m^{2}}{C^{2}}\right]
$$

A. $2 \times 10^{-11} C$
B. $3 \times 10^{-11} C$
C. $5 \times 10^{-11} C$
D. $9 \times 10^{-11} C$

Answer:

D Watch Video Solution

130. When a $10 \mu C$ charge is enclosed by a closed surface, the flux passing through the
surface is ϕ. Now another 10μ charge is placed inside the closed surface, then the flux passing through the surface is \qquad
A. 4ϕ
B. ϕ
C. 2ϕ

D. zero

Answer:

D Watch Video Solution

131. A charge q is placed at one corner of a
cube. The electric flux through any of the three
faces adjacent to the charge is zero. The flux through any one of the other three faces is
A. $\frac{q}{3 \varepsilon_{0}}$
B. $\frac{q}{6 \varepsilon_{0}}$
C. $\frac{q}{12 \varepsilon_{0}}$
D. $\frac{q}{24 \varepsilon_{0}}$

Answer:

D Watch Video Solution
132. If the electric flux entering and leaving an enclosed surface are ϕ_{1} and ϕ_{2} respectively,
then the electric charge inside the surface will be

> A. $\left(\phi_{2}-\phi_{1}\right) * \varepsilon_{0}$
> B. $\frac{\phi_{1}+\phi_{2}}{\varepsilon_{0}}$
> C. $\frac{\phi_{1}-\phi_{2}}{\varepsilon_{0}}$
> D. $\varepsilon_{0}\left(\phi_{1}+\phi_{2}\right)$

Answer:
(Watch Video Solution
133. When a $10 \mu C$ charge is enclosed by a closed surface, the flux passing through the
surface is ϕ. Now another 10μ charge is placed inside the closed surface, then the flux passing through the surface is \qquad
A. 4ϕ
B. ϕ
C. 2ϕ
D. zero
134. What is the nature of Gaussian surface
involved in Gauss law of electrostatics?
A. scalar
B. electrical
C. magnetic
D. vector

Answer:
135. The angle between the dipole moment and electric field at any point on the equatorial plane is
A. 180°
B. 0°
C. 45°
D. 90°
136. If $\vec{E}_{a x}$ and $\vec{E}_{e q}$ represent electric field at a point on the axial and equatorial line of dipole. If points are at a distance r from the centre of the dipole, for $r\rangle a$

$$
\begin{aligned}
& \text { A. } \vec{E}_{a x}=\vec{E}_{e q} \\
& \text { B. } \vec{E}_{a x}=-\vec{E}_{e q} \\
& \text { C. } \vec{E}_{a x}=-2 \vec{E}_{e q} \\
& \text { D. } \vec{E}_{a x}=2 \vec{E}_{e q}
\end{aligned}
$$

Answer:

D Watch Video Solution

137. Electric field on the axis of a small eletric
dipole at a distance r is E_{1} and at a distance of $2 r$ on its perpendicular bisector, the electric field is E_{2}. Then the ratio $E_{2}: E_{1}$ is
A. $1: 4$
B. 1: 16
C. 1:8

D. $1: 2$

Answer:

D Watch Video Solution

138. Three point charges of $+2 q,+2 q,-4 q$ are placed at the corners A, B and C of an equilateral triangle $A B C$ of side x. the magnitude of the electric dipole moment of this system is
A. $2 q x$
B. $3 \sqrt{2} q x$
C. $3 q x$
D. $2 \sqrt{3} q x$

Answer:

- Watch Video Solution

139. When 10^{19} electrons are removed from a neutral metal plate, the elctric charge on it is

$$
\text { A. }-1.6 C
$$

B. $+1.6 C$
C. $10^{+} 19 C$
D. $10^{-19} C$

Answer:

D Watch Video Solution

140. a copper sphere of mass 2 g contains about 2×10^{22} atoms. The charge on the nucleus of each atom is 29e. What fraction of
the electrons must be removed from the sphere to give it a charge of $+2 \mu C$?
A. 1.08×10^{-11}
B. 2.16×10^{-11}
C. 3.24×10^{-11}
D. 4.32×10^{-11}

Answer:
(Watch Video Solution
141. Two metal spheres, one of radius R and
the other of radius 2 R respectively have the
same surface charge density σ. They are brought in contact and separated. What will be the new surface charge densities on them?

$$
\begin{aligned}
& \text { A. } \sigma_{1}=\frac{5}{3} \sigma, \sigma_{2}=\frac{5}{6} \sigma \\
& \text { B. } \sigma_{1}=\frac{5}{6} \sigma, \sigma_{2}=\frac{5}{2} \sigma \\
& \text { C. } \sigma_{1}=\frac{5}{2} \sigma, \sigma_{2}=\frac{5}{6} \sigma \\
& \text { D. } \sigma_{1}=\frac{5}{2} \sigma, \sigma_{2}=\frac{5}{3} \sigma
\end{aligned}
$$

142. An electron of mass m, charge e falls
through a distance h metre in a uniform electric field E. Then time of fall

$$
\begin{aligned}
& \text { A. } t=\sqrt{\frac{2 h m}{e E}} \\
& \text { B. } t=\frac{2 h m}{e E} \\
& \text { C. } t=\sqrt{\frac{2 e E}{h m}} \\
& \text { D. } t=\frac{2 e E}{h m}
\end{aligned}
$$

143. Pick out the statement which is incorrect.
A.A negative test charge experiences a
force opposite to the direction of the
field
B. the tangent drawn to a line of force
represents the direction of electric field
C. field lines never intersect
D. the electric field lined forms closed loop

Answer:

D Watch Video Solution

144. The angle between the dipole moment and electric field at any point on the equatorial plane is
A. 180°
B. 0°
C. 45°
D. 90°

Answer:

- Watch Video Solution

145. If a proton is brought towards another proton, the electrical potential energy of the
system
A. becomes zero
B. increases
C. remains unchanged
D. decreases

Answer:

D Watch Video Solution

146. Electric charges $\frac{3}{2} q, \frac{3}{2} q,-3 q$ are placed at the corners of an equilateral triangle $A B C$ of side I . the magnitude of electric dipole moment of the system is
A. $q l$
B. $\frac{3 \sqrt{3}}{2} q l$
C. $\sqrt{3} q l$

D. $4 q l$

Answer:

D Watch Video Solution

147. Consider a charged conductor resting on an insulating stand a shown below. At point X,
value of the charge density is σ, the potential is V and the field strenght is E. what will be the
values of same respectively at Y ?
A. $<\sigma, V,<E$
B. $\sigma,>V,>E$
C. $<\sigma,<V, E$
D. $>\sigma, V, E$

Answer:

D Watch Video Solution

148. A proton falls through a small distance in a uniform electric field of magnitude $1.8 \times 10^{5} \frac{N}{C}$. The direction of the field is
reversed keeping the magnitude unchanged and an electron falls through the same distance. The time of fall will be
A. same in both cases
B. more in the case of an electron
C. more in the case of proton
D. independent of charge

Answer:

D Watch Video Solution
149. The potential gradient along the length of a uniform wire is 12 volt per mtre. B and C are two points at 28 cm and 52 cm on a metre scale along the wire. The potential difference between B and C will be
A. 3 volt
B. 0.46 volt
C. 2.88 volt
D. 4.22 volt

Answer:

- Watch Video Solution

150. Assertion : the net work done by an electrostatic field on a charge whilr moving it from one point to another is independent of path. Reason: the net work done by an electrostatic force on a charge in it moving along a closed loop is zero.
A. Assertion is True, Reason is True, Reason is a correct explanation of Assertion

B. Assertion is True, Reason is True, Reason

 is not a correct explanation of AssertionC. Assertion is True, Reason is False
D. Assertion is False, Reason is True

Answer:

D Watch Video Solution

151. Choose the incorrect statement.
A. charge cannot exist without mass
B. charge is independent of velocity of charged particle
C. quatization of charge is microscopic phenomenon
D. inducing charge can be lesser or equal
to induced charge

Answer:

D Watch Video Solution

152. If q is the charge per unit area on the surface of a conductor, then the electric field intensity at a point on the surface is
A. $\left(\frac{q}{\varepsilon_{0}}\right)$ normal to surface
B. $\left(\frac{q}{2 \varepsilon_{0}}\right)$ normal to surface
C. $\left(\frac{q}{\varepsilon_{0}}\right)$ tangential to surface
D. ${ }^{`}\left(q /\left(2 e p s i _0\right)\right) t a n g e n t i a l ~ t o ~ s u r f a c e ~$

Answer:

- Watch Video Solution

153. For a dipole $q=2 \times 10^{-6} C$ and $d=0.01 \mathrm{~m}$. Calculate the maximum torque for this dipole if $E=5 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{C}}$
A. $1 \times 10^{-3} \mathrm{Nm}^{-1}$
B. $10 \times 10^{-3} \mathrm{Nm}^{-1}$
C. $10 \times 10^{-3} \mathrm{Nm}$
D. $1 \times 10^{2} \mathrm{Nm}^{2}$

Answer:

D Watch Video Solution
154. The surface charge density of an irregular shaped conductor is \qquad
A. zero
B. infinity
C. constant
D. different at different points

Answer:

- Watch Video Solution

155. The charges on two sphere are $+7 \mu C$ and
$-5 \mu C$ respectively. They experience a force F .
If each of them is given an additional charge
of $-2 \mu C$, the new force of attraction will be
A. F
B. $\frac{F}{2}$
C. $\frac{F}{\sqrt{3}}$
D. $2 F$

Answer:

156. If the magnitude of intensity of electric field at a distance x on axial line and at a distance y on equatorial line on a given dipole are equal, then $x: y$ is
A. 1:1
B. 1: $\sqrt{2}$
C. 1:2
D. $\sqrt[3]{2}: 1$

- Watch Video Solution

