©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - TARGET PHYSICS (MARATHII

ENGLISH)

Motion in a plane

Exercise

1. When the force acting on the object and the
velocity of the object both are along the same
line, it is called
A. rectilinear motion
B. vibratory motion
C. rotational motion
D. oscillatory motion

Answer:

2. The actual distance travelled by the particle during its motion is called
A. speed
B. displacement
C. path length

D. position

Answer:

D Watch Video Solution
3. If distance covered by a particle is zero, what can you say about displacement?
A. It is positive
B. It is negative
C. It cannot be zero
D. It must be zero

Answer:

D Watch Video Solution
4. Choose the CORRECT statement.
A. The magnitude of displacement is less
than or equal to the path length
B. The magnitude of displacement is
greater than the path length
C. The magnitude of displacement is
infinite
D. The magnitude of displacement is twice
the path length

Answer:

- Watch Video Solution

5. The average speed is equal to the magnitude of average velocity, for the motion of the particle along a straight line and in the same direction. then
A. path length is less than the distance between them.
B. path length is less than the magnitude of velocity.
C. path length is greater than the magnitude of displacement.
D. path length is equal to the magnitude of displacement.

Answer:

D Watch Video Solution

6. If the particle moves with a constant velocity
its acceleration is \qquad
A. maximum
B. minimum
C. depends on frame of reference
D. zero

Answer:

D Watch Video Solution

7. Choose the WRONG statement

A. Speed can never be negative.
B. When the particle returns to the
starting point, its average velocity is
zero but average speed is not zero.
C. Displacement does not tell the nature of
the actual motion of a particle between
the points
D. If the velocity of a particle is zero at an
instant, its acceleration should also be

zero at that instant

Answer:

D Watch Video Solution

8. While plotting graph. independent variable
(i.e., time) is plotted along \qquad
A. x-axis
B. y-axis
C. z-axis

D. negative z-axis

Answer:

D Watch Video Solution

9. Displacement time graph cannot be

A. below the time axis
B. straight line perpendicular to time axis
as well as normal above and below the
time axis.

C. straight line parallel to time axis.

D. inclined to the time axis.

Answer:

- Watch Video Solution

10. The slope of $x-t$ graph at any point gives
A. instantaneous velocity
B. instantaneous acceleration
C. force at that instant

D. momentum at that instant.

Answer:

D Watch Video Solution

11. Ares under the curve of velocity-time graph of a particle moving with constant velocity is
A. acceleration of the particle.
B. distance travelled by the particle.
C. constant speed of the particle.

D. variable speed of the particle.

Answer:

D Watch Video Solution

12. A body is projected vertically upwards from
the ground. On reaching the greatest height
A. its velocity is zero and acceleration is
not zero.
B. is acceleration is zero and velocity is not
zero.
C. both velocity and acceleration are non
zero.
D. both velocity and acceleration are zero.

Answer:

D Watch Video Solution
13. When a car moves towards east 50 m then
towards south 50 m , later on towards west 50
m , finally towards north 50 m , the displacement of the car in magnitude is
A. 200 m
B. 100 m
C. 50m
D. zero

Answer:

14. A person travels along a straight road due east for the first half distance with speed v_{1} and the second half distance with speed v_{2}, the average speed of the person is

$$
\begin{aligned}
& \text { A. } \frac{v_{1}+v_{2}}{2} \\
& \text { B. } \frac{v_{1}}{2}+\frac{v_{2}}{2} \\
& \text { C. } \frac{v_{1}+v_{2}}{2} v_{1} v_{2} \\
& \text { D. } 2 v_{1} v_{2}\left(v_{1}+v_{2}\right)
\end{aligned}
$$

Answer:

D Watch Video Solution

15. A bus travel its onward journey with a constant speed of $30 \mathrm{~km} / \mathrm{hr}$ and its return journey with a constant speed of $60 \mathrm{~km} / \mathrm{hr}$.the average speed for its entire journey is
A. $90 \mathrm{~km} / \mathrm{hr}$
B. $45 \mathrm{~km} / \mathrm{h} \mathrm{r}$
C. $40 \mathrm{~km} / \mathrm{h} \mathrm{r}$
D. $15 \mathrm{~km} / \mathrm{hr}$
A. $90 \mathrm{~km} / \mathrm{hr}$
B. $45 \mathrm{~km} / \mathrm{hr}$
C. $40 \mathrm{~km} / \mathrm{hr}$
D. $15 \mathrm{~km} / \mathrm{hr}$

Answer:

D Watch Video Solution

16. A body covers one-half of its journey at $40 \mathrm{~ms}^{-1}$ and the next half at $50 \mathrm{~ms}{ }^{-1}$. Its average velocity is
A. $44.44 m s^{-1}$
B. $50 m s^{-1}$
C. $45 m s^{-1}$
D. $40 \mathrm{~ms}^{-1}$

Answer:

D Watch Video Solution

17. A train covers the first half of the distance between two stations at the speed of
$40 \mathrm{kmh}^{-1}$ and the other half $60 \mathrm{kmh}^{-1}$. Its average speed is
A. $52 k m h^{-1}$
B. $50 \mathrm{~km}^{-1}$
C. $48 \mathrm{kmh}^{-1}$
D. $42 k m h^{-1}$

Answer:
(Watch Video Solution
18. The position of an object moving along x -
axis is given by $x=a+b t^{2}$ where $a=8.5 m$
and $b=2.5 m$ and $t=0$ is measured in
second. If the object starts from
$t=0\left(\right.$ thevelocityat $\mathrm{t}=2 \mathrm{~s}^{`}$ is
A. $18.5 \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $9.25 \mathrm{~m} / \mathrm{s}$
D. $1.5 \mathrm{~m} / \mathrm{s}$

Answer:

- Watch Video Solution

19. An electron travelling with a speed of
$5 x 10^{3} \mathrm{~m} / \mathrm{s}$ passes through an electric field with an acceleration of $10^{12} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. How long will it take for electron to double its speed?
A. $0.5 \times 10^{-9} s$
B. $0.5 \times 10^{-10} s$
C. $5 \times 10^{-9} s$
D. $5 \times 10^{-9} s$

Answer:

- Watch Video Solution

20. An aeroplane takes off the ground after covering distance of 800 m of runway in 16 s .

Its acceleration will be
A. $100 \frac{m}{s^{2}}$
B. $50 \frac{m}{s^{2}}$
C. $16.25 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
D. $6.25 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

Answer:

D Watch Video Solution

21. A bullet strikes a plank of thickness 5 cm
with a velocity of $1000 \mathrm{~m} / \mathrm{s}$ and emerges out with a velocity of $400 \mathrm{~m} / \mathrm{s}$, the average retardation of the bullet is
A. $-8.4 \times 10^{6} \frac{m}{s^{2}}$
B. $8.4 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
C. $-60 \times 10^{5} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

$$
\text { D. } 60 \times 10^{5} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Answer:

- Watch Video Solution

22. A local train, travelling at $72 \mathrm{~km} / \mathrm{hr}$ is brought to rest in 10 seconds by applying the brake. How much is the acceleration produced in this case? Also how much is distance (s) covered by the train before coming to rest?

$$
\text { A. } a=2 \frac{m}{s^{2}}, s=300 m
$$

$$
\begin{aligned}
& \text { B. } a=-2 \frac{m}{s^{2}}, s=300 m \\
& \text { C. } a=2 \frac{m}{s^{2}}, s=100 m \\
& \text { D. } a=-2 \frac{m}{s^{2}}, s=100 m
\end{aligned}
$$

Answer:

D Watch Video Solution

23. The v-t graph of an athlete is shown below.

The distance travelled by him between $t=0$ and $t=12^{`}$ is
A. 36 m
B. 46 m
C. 66 m
D. 78 m

Answer:

D Watch Video Solution

24. A body projected vertically upwards with a velocity of u returns to the starting point in 6 second, If $g=9,8 m s^{-2}$ the value of 'u' is
A. $60 \mathrm{~m} / \mathrm{s}$
B. $30.4 \mathrm{~m} / \mathrm{s}$
C. $29.4 \mathrm{~m} / \mathrm{s}$
D. $15 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

25. A body released from rest to fall freely under gravity reaches the ground in 4 s . Then the height from which it is released is
A. 98 m
B. 78.4 m
C. 49 m
D. 24.5 m

Answer:

D Watch Video Solution

26. A stone is thrown vertically upwards with initial velocity of $14 m s^{-1}$. The maximum height it will reach is $\left[g=9.8 m s^{-2}\right]$
A. 16 m
B. 14 m
C. 10 m
D. 9.8 m

Answer:

- Watch Video Solution

27. A man swims relative to water with a velocity greater than velocity of water. Then
A. man may cross the river along shortest path
B. man cannot cross the river.
C. man cannot cross the river without drifting
D. man may cross the river along longest path

Answer:

28. Two trains A and B are moving on parallel tracks with velocities $60 \mathrm{~km} / \mathrm{h}$ and $90 \mathrm{~km} / \mathrm{h}$ respectively, in opposite directions. The relative velocity of train A with respect to train B is
A. $30 \mathrm{~km} / \mathrm{h}$
B. $60 \mathrm{~km} / \mathrm{h}$
C. $90 \mathrm{~km} / \mathrm{h}$
D. $150 \mathrm{~km} / \mathrm{h}$
29. If a car travelling at $58 \mathrm{~km} / \mathrm{h}$ overtakes another car travelling at $40 \mathrm{~km} / \mathrm{h}$, the relative velocity of first car with respect to another car is
A. $-18 k \frac{m}{h}$
B. $18 \mathrm{~km} / \mathrm{h}$
C. $98 \mathrm{~km} / \mathrm{h}$
D. $49 \mathrm{~km} / \mathrm{h}$

Answer:

D Watch Video Solution

30. A thief is running away on a straight road in jeep moving with a speed of $9 m s^{-1}$. A police man chases him on a motorcycle moving at a speed of $10 m s^{-1}$. If the instantaneous separation of the jeep from the motorcycle is 100 m , how long will it take for the police to catch the thief?
A. 1 s
B. 19 s
C. 90 s
D. 100 s

Answer:

D Watch Video Solution
31. If a car travelling at $58 \mathrm{~km} / \mathrm{h}$ overtakes another car travelling at $40 \mathrm{~km} / \mathrm{h}$, the relative
velocity of first car with respect to another car is

$$
\text { A. }-18 k \frac{m}{h}
$$

B. $18 \mathrm{~km} / \mathrm{h}$
C. $98 \mathrm{~km} / \mathrm{h}$
D. $49 \mathrm{~km} / \mathrm{h}$

Answer:

D Watch Video Solution
32. The two dimensional motion of a body in which a vertical motion with constant acceleration (g) and a horizontal motion with constant velocity acts, such a motion is
A. curved motion
B. circular motion
C. sinusoidal motion
D. projectile motion
33. Which of the following is NOT an example of a projectile?
A. Aeroplane in flight.
B. A bullet fired from the run.
C. A hammer thrown by an athlete
D. A stone thrown from the top of the building.

Answer:

D Watch Video Solution
34. The path followed by projectile is called
A. ellipse
B. projection
C. trajectory
D. parabola

Answer:

D Watch Video Solution

35. While studying projectile motion
A. air resistance is negligible with greater
speed
B. air resistance affects 0.5% or its motion.
C. air resistance is negligible with very
small speed.

D. air resistance affects 0.7% of its motion

without change in its speed

Answer:

D Watch Video Solution

36. The only force acting on the projectile is
A. gravitational force acting vertically
downward
B. the effect of rotation of the earth.
C. the effect of moon on the earth.

D. attractive force between earth's magnetic field and the projectile

Answer:

D Watch Video Solution

37. In projectile motion, a body is projected at an angle θ with velocity u then the horizontal component of velocity will be
A. $u \cos \theta=$ constant
B. $u \sin \theta=$ constant
C. u $\tan \theta=$ constant
D. $\mathrm{u} \cot \theta=$ constant

Answer:

D Watch Video Solution
38. The angle of projection for a projectile
thrown parallel to horizontal is
A. 90°
B. 60°
C. 45°
D. 0°

Answer:

D Watch Video Solution

39. A projectile is projected with velocity u making an angle θ with the horizontal, the
equation of the path of the projectile is given
by

$$
\begin{aligned}
& \text { A. } x=(\tan \theta) y-\left(\frac{g}{2 u^{2} \cos ^{2} \theta} y^{2}\right. \\
& \text { B. } y=(\tan \theta) x-\left(\frac{g}{2 u \cos \theta} x^{2}\right. \\
& \text { C. } y=(\tan \theta) x-\left(\frac{g}{2 u^{2} \cos \theta} x^{2}\right. \\
& \text { D. } y=(\tan \theta) x-\left(\frac{g}{2 u^{2} \cos ^{2} \theta} x^{2}\right.
\end{aligned}
$$

Answer:
40. Time taken by the projectile to cover entire trajectory is called as \qquad .
A. time of ascent
B. periodic time
C. time of descent
D. time of flight

Answer:
(D) Watch Video Solution
41. The time (T) required by the projectile to
retum to original plane of projection is given by
A. $T=\frac{u \sin \theta}{g}$
B. $T=\frac{u \cos \theta}{g}$
C. $T=\frac{2 u \sin \theta}{g}$
D. $T=\frac{2 u \cos \theta}{g}$

Answer:

42. The relation between time of ascent t_{a} and
time of descent t_{d} is
A. $t_{a}=t_{d}$
B. $t_{a}<t_{d}$
C. $t_{a}>t_{d}$
D. $t_{a}=2 t_{d}$

Answer:
(Watch Video Solution
43. A shell is fired at an angle of 30° to the horizontal with velocity $196 \mathrm{~m} / \mathrm{s}$. The time of flight is
A. 6.5 s
B. 10 s
C. 16.5 s
D. 20 s

Answer:

D Watch Video Solution
44. A body is thrown with velocity of $49 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 30° with the horizontal, the time required to attained maximum height is ,
A. 5 s
B. 4 s
C. 3 s
D. 2 s
A. 5 s
B. 4 s
C. 3.5 s

```
D. 2.5 s
```


Answer:

D Watch Video Solution

45. A projectile is launched at an angle of θ above the horizontal The elevation angle α of the highest point of the trajectory as seen from the launching position is given by
A. $\tan \alpha=\frac{1}{2} \tan \theta$

> B. $\sin \alpha=\frac{1}{2} \sin \theta$
> C. $\tan \alpha=\frac{\tan \theta}{2}$
> D. $\sin \alpha=\frac{\sin \theta}{2}$

Answer:

D Watch Video Solution

46. The horizontal distance between the point of projection and the point on the same horizontal plane, at which, the projectile
returns after moving along its trajectory, is called _____ of the projectile.
A. maximum height
B. maximum velocity
C. horizontal range
D. vertical range

Answer:
(Watch Video Solution
47. At the point of horizontal range (R), the coordinates are

$$
\text { A. } x=0, y=R
$$

$$
\text { B. } x=0, y=0
$$

$$
\text { C. } x=R, y=0
$$

$$
\text { D. } x=R, y=R
$$

Answer:

D Watch Video Solution
48. A shell is fired from canon with a velocity of
$200 \mathrm{~m} / \mathrm{s}$ at an angle of 30° with the horizontal
The horizontal range attained by it is

$$
\left[g=10 \mathrm{~ms}^{-2}\right]
$$

A. $2 \times 10^{2} \sqrt{2} m$
B. $2 \times 10^{2} \sqrt{3} m$
C. $4 \times 10^{4} \sqrt{3} m$
D. $2 \times 10^{3} \sqrt{3} m$

Answer:

49. A gun throws shell with muzzle speed of $98 m s^{-1}$. When the gun is elevated at 45°, the range is observed as 900 m . Due to air resistance is range is decreased by
A. 160 m
B. 120 m
C. 80 m
D. 40 m

- Watch Video Solution

50. The initial velocity of the projectile is u and
its maximum range is $R_{\text {max }}$ then u is given by
A. $u=R_{\max } \times g$
B. $u=\frac{R_{\max }}{g}$
C. $u=\sqrt{\frac{R_{\max }}{g}}$
D. $u=\sqrt{R_{\max } g}$

Answer:
51. A shell fired from a canon can cover maximum horizontal distance of 10 km . Then velocity of projection is
A. $\sqrt{980} \frac{m}{s}$
B. $\sqrt{9800} \frac{m}{s}$
C. $\sqrt{98000} \frac{m}{s}$
D. $10^{2} \sqrt{98} \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer:

- Watch Video Solution

52. For the maximum height of a projectile
A. horizontal component of velocity is zero,
B. vertical component of velocity is zero.
C. vertical acceleration is zero.
D. initial velocity should be zero

Answer:

53. The projectile attains maximum height when it is projected at an angle of
A. 35°
B. 45°
C. 90°
D. 120°

Answer:
(Watch Video Solution
54. A man can jump on the moon
as high as on the earth.
A. two
B. three
C. four
D. six

Answer:

D Watch Video Solution
55. A cricketer can throw a ball to a maximum
horizontal distance of 100 m . How much high
above the ground on the cricketer throw the same ball?
A. 100 m
B. 75 m
C. 50 m
D. 25 m

Answer:

56. For a projectile motion, the horizontal range of projectile is same for any two angles which are
A. vertically opposite.
B. complementary angles.
C. supplementary angles
D. equal angles.
57. A stone is projected with velocity of 100 m / s at an angle of 60° with the horizontal, its maximum height is
A. 883.6 m
B. 683.8 m
C. 382.6 m
D. 196.3 m
58. The maximum horizontal range of projectile is 980 m . Its initial speed and maximum height is
A. $98 m s^{-1}, 245 m$
B. $245 m s^{-1}, 98 m$
C. $196 m s^{-1}, 245 m$
D. $98 m s^{-1}, 490 m$
59. The height y and the distance x along the horizontal, for a body projected in the vertical plane are given by $y=8 t-5 t^{2}$ and $x=6 t$, the initial velocity at $t=0$ of the body is
A. $18 \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $6 \mathrm{~m} / \mathrm{s}$
D. $4 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

60. A body is projected with a velocity of 30 m / s at an angle of 30° with the vertical the maximum height and horizontal range are respectively
A. $33.75 \mathrm{~m}, 45^{*} \mathrm{sqrt} 3 \mathrm{~m}$
B. $11.48 \mathrm{~m}, 79.53$
C. $159.06 \mathrm{~m}, 11.48 \mathrm{~m}$

D. 22.96 m. 79.53 m

Answer:

D Watch Video Solution

61. When the particle is projected vertically upwards then θ, H and R of it respectively are
A. $0^{\circ}, \frac{u^{2}}{2} g, 0$
B. $90^{\circ}, 0, \frac{u^{2}}{g}$
C. $0^{\circ}, 0, \frac{u^{2}}{2} g$
D. $90^{\circ}, \frac{u^{2}}{2} g, 0$

Answer:

D Watch Video Solution

62. In uniform circular motion,
A. both velocity and acceleration are
constant
B. velocity changes and acceleration is
constant
C. velocity is constant and acceleration changes
D. both velocity and acceleration change.

Answer:

D Watch Video Solution

63. Select the WRONG statement
A. In U.C.M. linear speed is constant.
B. In U.CM. linear velocity is constant.
C. In U.C.M. magnitude of angular momentum is constant.

D. In U.CM. angular velocity is constant

Answer:

D Watch Video Solution

64. IF a particle moves in a circle describing equal angles is equal intervals of time, the velocity vectore
A. remains constant
B. changes in magnitude only.
C. changes in direction only.
D. changes both in magnitude and direction.

Answer:

- Watch Video Solution

65. A particle moves along a circle with a uniform speed v. After the position vector has made an angle of 30° with the reference position, its speed will be
A. $v \sqrt{2}$
B. $\frac{v}{\sqrt{2}}$
C. $\frac{v}{\sqrt{3}}$
D. v

Answer:

66. A particle in U.C.M possesses linear accleration since
A. its linear speed changes continuously.
B. both magnitude and direction of linear
velocily change continuously.
C. direction of linear velocity changes
continuously.

D.its linear speed does not change

continuously

Answer:

D Watch Video Solution

67. The accelaration of a particle in U.C.M.
directed towards centre and along the radius
is called
A. centripetal acceleration
B. centrifugal acceleration
C. gravitational acceleration.
D. tangential acceleration

Answer:

D Watch Video Solution
68. The angular velocity of a particle rotating in a circular orbit 100 times per minute is
A. $1.66 \mathrm{rad} / \mathrm{s}$
B. $10.47 \mathrm{rad} / \mathrm{s}$
C. $10.47 \mathrm{deg} / \mathrm{s}$
D. $60 \mathrm{deg} / \mathrm{s}$

Answer:

- Watch Video Solution

69. A body mass 100 g is revolving in a
horizontal circle. If its frequency of rotation is
3.5 r.p.s. and radius of circular path is 0.5 m , the angular speed of the body is
A. $18 \mathrm{rad} / \mathrm{s}$
B. $20 \mathrm{rad} / \mathrm{s}$
C. $22 \mathrm{rad} / \mathrm{s}$
D. $24 \mathrm{rad} / \mathrm{s}$

Answer:

D Watch Video Solution
70. What is the angular velocity of the earth?
A. $2 \frac{\pi}{86400} r a \frac{d}{s}$
B. $2 \frac{\pi}{3600} \mathrm{ra} \frac{d}{\mathrm{~s}}$
C. $2 \frac{\pi}{24} r a \frac{d}{s}$
D. $2 \frac{\pi}{6400} \mathrm{ra} \frac{d}{s}$

Answer:

D Watch Video Solution

71. An electric motor of 12 horse-power generates an angular velocity of $125 \mathrm{rad} / \mathrm{s}$.

What will be the frequency of rotation?
A. 20 Hz
B. $\frac{20}{\pi} H z$
C. $\frac{20}{2} \pi H z$
D. 40 Hz

Answer:

D Watch Video Solution

72. What is the angular speed of the seconds hand of a watch?
A. $60 \mathrm{rad} / \mathrm{s}$
B. $\pi \mathrm{rad} / \mathrm{s}$
C. $\frac{\pi}{30} \mathrm{rad} / \mathrm{s}$
D. $2 \mathrm{rad} / \mathrm{s}$

Answer:

D Watch Video Solution
73. The ratio of angular speeds of minute hand and hour hand of a watch is
A. $1: 12$
B. 60: 1
C. 1: 60
D. 12: 1

Answer:

D Watch Video Solution

74. If ω_{E} and ω_{H} are the angular velocities of the earth rotating about its own axis and the hour hand of the clock respectively, then

> A. $\omega+E=\frac{1}{4} \omega_{H}$
> B. $\omega+E=2 \omega_{H}$
> C. $\omega+E=\omega_{H}$
> D. $\omega+E=\frac{1}{2} \omega_{H}$

Answer:

D Watch Video Solution

75. A fan is making 600 revolutions per minute
. IF after some time it makes 1200 revolutions
per minute, then increase in its angular velocity is
A. $10 \pi \mathrm{rad} / \mathrm{s}$
B. $20 \pi \mathrm{rad} / \mathrm{s}$
C. $40 \pi \mathrm{rad} / \mathrm{s}$
D. $60 \pi \mathrm{rad} / \mathrm{s}$

Answer:

D Watch Video Solution
76. Angular velocity of hour arm of a clock, in
$\mathrm{rad} / \mathrm{s}$, is
A. $\frac{\pi}{43200}$
B. $\frac{\pi}{21600}$
C. $\frac{\pi}{30}$
D. $\frac{\pi}{1800}$

Answer:

D Watch Video Solution
77. Two particles of mass M and m are moving in a circle of radii R and r. If their time periods are same, what will be the ratio of their linear velocities?
A. MR:mr
B. $\mathrm{M}: \mathrm{m}$
C. R:r
D. 0.042361111111111

Answer:

78. A wheel having a diameter of 3 m starts
from rest and accelerates uniformly to an angular velocity of 210 r.p.m. in 5 seconds.

Angular acceleration of the wheel is
A. $4.4 \mathrm{rad} s^{-2}$
B. $3.3 \mathrm{rad} s^{-2}$
C. $2.2 \mathrm{rad} s^{-2}$
D. $1.1 \mathrm{rad} s^{-2}$
79. A Wheel has circumference C. IF it makes f r.p.s, the linear speed of a point on the circumference is
A. $2 \pi f C$
B. $f C$
C. $f \frac{C}{2} \pi$
D. $f \frac{C}{60}$
80. A body is whirled in a horizontal circle of
radius 20 cm . It has angular velocity at any point on circular path?
A. $10 \mathrm{~m} / \mathrm{s}$
B. $2 \mathrm{~m} / \mathrm{s}$
C. $20 \mathrm{~m} / \mathrm{s}$
D. $\sqrt{2} \mathrm{~m} / \mathrm{s}$
81. A particle moves in a circular path, 0.4 m in
radius, with constant speed. IF particle makes
5 revolution in each second of its motion, the speed of the particle is
A. $10.6 \mathrm{~m} / \mathrm{s}$
B. $11.2 \mathrm{~m} / \mathrm{s}$
C. $12.6 \mathrm{~m} / \mathrm{s}$
D. $13.6 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

82. An electric fan has blades of length 30 cm
as measured from the axis of rotation. If the
fan is rotating at 1200 r.p.m, the acceleration of a point on the tip of the blade is about
A. $1600 c \frac{m}{s^{2}}$
B. $4740 c \frac{m}{s^{2}}$
C. $2370 c \frac{m}{s^{2}}$
D. $5055 c \frac{m}{s^{2}}$

Answer:

- Watch Video Solution

83. The diameter of a flywheel is 1.2 m and it
makes 900 revolutions per minute. Calculate
the acceleration at a point on its rim

$$
\begin{aligned}
& \text { A. } 540 \pi^{2} \frac{m}{s^{2}} \\
& \text { B. } 270 \frac{m}{s^{2}}
\end{aligned}
$$

C. $360 \pi^{2} \frac{m}{s^{2}}$
D. $540 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

Answer:

D Watch Video Solution

84. The angular speed (in rev/min) needed
for a centrifuge to produce an acceleration of

1000 g at a radius arm of 10 cm is (Take $\mathrm{g}=10$
m / s^{2})
A. $1500 \mathrm{rev} / \mathrm{min}$
B. $4000 \mathrm{rev} / \mathrm{min}$
C. $2000 \mathrm{rev} / \mathrm{min}$
D. $3000 \mathrm{rev} / \mathrm{min}$

Answer:

D Watch Video Solution

85. A racing car of mass $10^{2} \mathrm{~kg}$ goes around a circular track (horizontal) of radius 10 cm . The maximum thrust that track can withstand is
$10^{5} \mathrm{~N}$. The maximum speed with which car can go around is
A. $10 \mathrm{~m} / \mathrm{s}$
B. $100 \mathrm{~m} / \mathrm{s}$
C. $50 \mathrm{~m} / \mathrm{s}$
D. $20 \mathrm{~m} / \mathrm{s}$

Answer:
(D) Watch Video Solution
86. Two particles of equal masses are revolving
in circular paths of radii r_{1} and r_{2} respectively with the same speed . The ratio of their centripetal forces is

> A. $\frac{r_{2}}{r_{1}}$
> B. $\sqrt{\frac{r_{2}}{r_{1}}}$
> C. $\left(\frac{r_{1}}{r_{2}}\right)^{2}$
> D. $\left(\frac{r_{2}}{r_{1}}\right)^{2}$

Answer:
87. A 10 kfg object attached to a nylon cord outside a space vehicle is rotating at a speed of $5 \mathrm{~m} / \mathrm{s}$. If the force acting on the cord is 125

N , its radius of path is
A. 2 m
B. 4 m
C. 6 m
D. 1 m

Answer:

D Watch Video Solution

88. The breaking tension of a string if $50 \mathrm{~N} . \mathrm{A}$
body of mass 1 kg is tied to one end of a 1 m
long string and whirled in a horizontal circle,

The maximum speed of the body should be
A. $5 \sqrt{2} \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $7.5 \mathrm{~m} / \mathrm{s}$

D. $5 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

89. A proton of mass $1.6 \times 10^{-27} \mathrm{~kg}$ goes
round in a circular orbit of radius 0.12 m under
a certripetal force of $4 \times 10^{-13} N$. then the frequency of revolution of the proton is about
A. 1.25×10^{6} cycles per second
B. 2.50×10^{6} cycles per second
C. 3.75×10^{6} cycles per second
D. 5.00×10^{6} cycles per second

Answer:

D Watch Video Solution

90. When the bob of a conical pendulam is moving in a horizontal circle at constant speed, which quantity is fixed?
A. Velocity
B. Acceleration
C. Centripetal force
D. Kinetic energy

Answer:

D Watch Video Solution
91. The period of a conical pendulam is
A. equal to that of a simple pendulum of same length I
B. more than that of a simple pendulum of
same length I
C. less than that of a simple pendulum of
same length I
D. independent of length of pendulum.

Answer:

92. Consider a simple pendulam of length 1 m .

Its bob performs a circular motion is horizontal plane with its string making an angle 60° with the vertical. The centripetal accleration experienced by the bob is
A. $17.3 \frac{m}{s^{2}}$
B. $5.8 \frac{m}{s^{2}}$
C. $10 \frac{m}{s^{2}}$
D. $5 \frac{m}{s^{2}}$

- Watch Video Solution

93. A particle of mass 1 kg is revolved in a horizontal circle of radius 1 m with the help of a string. IF the maximum tension the string can with stand is $16 \pi^{2} \mathrm{~N}$, then the maximum frequency with which the particle can revolve is
A. 3 Hz
B. 2 Hz
C. 4 Hz

D. 5 Hz

Answer:

D Watch Video Solution

94. Which of the following changes, when a particle is moving with uniform velocity?
A. speed
B. velocity
C. acceleration

D. position vector

Answer:

D Watch Video Solution

95. In an inertial frame of reference, a body performing uniform circular motion in clockwise direction has
A. constant velocity
B. zero angular acceleration

C. centripetal acceleration

D. tangential acceleration

Answer:

D Watch Video Solution

96. The three initial and final position of a man
on the x-axis are given (i) ($-8 \mathrm{~m}, 7 \mathrm{~m}$) (ii) (7m, -3
m) and (iii) ($7 \mathrm{~m}, 3 \mathrm{~m}$) Which pair gives the negative displacement?
A. (i)
B. (ii)
C. (iii)
D. (ii) and (iii)

Answer:

D Watch Video Solution

97. Assertion: The equation of motion can be applied only if acceleration is along the direction of velocity and is constant. Reason: If
the acceleration of a body is constant then its motion is known uniform motion
A. Assertion is True, Reason is True, Reason
is a correct explanation for Assertion
B. Assertion is True, Reason is True, Reason
is not a correct explanation for Assertion
C. Assertion is True, Reason is False
D. Assertion is False, Reason is False.

Answer:

98. Body can NOT have

A. constant speed and variable velocity.
B. acceleration and constant speed.
C. constant velocity and variable speed
D. non-zero speed and zero acceleration.

Answer:

99. A particle oscillates along a straight line 1 m
long, if it completes one oscillation in 0.1s, then the distance covered by it and its average speed in one oscillation is,
A. $1 \mathrm{~m}, 20 \mathrm{~m} / \mathrm{s}$
B. $2 \mathrm{~m}, 20 \mathrm{~m} / \mathrm{s}$
C. $2 \mathrm{~m}, 15 \mathrm{~m} / \mathrm{s}$
D. $1 \mathrm{~m}, 15 \mathrm{~m} / \mathrm{s}$
A. $1 \mathrm{~m} 20 \mathrm{~m} / \mathrm{s}$
B. $2 \mathrm{~m}, 20 \mathrm{~m} / \mathrm{s}$
C. $2 \mathrm{~m}, 15 \mathrm{~ms}$

D. $1 \mathrm{~m}, 15 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

100. The ratio of the numerical values of the
average velocity and average speed of a body
is always
A. Unity
B. Unity or less
C. Unity or more
D. Less than unity

Answer:

D Watch Video Solution

101. The speed v of particle moving along a straight line, when it is at a distance x from a
fixed point on the line is given by $v^{2}=108 x-9 x^{2}$. Then magnitude of its
acceleration when it is a distance 3 metre from
the fixed point is

$$
\begin{aligned}
& \text { A. } 9 \frac{m}{s^{2}} \\
& \text { B. } 18 \frac{m}{s^{2}} \\
& \text { C. } 27 \frac{m}{s^{2}} \\
& \text { D. } 36 \frac{m}{s^{2}}
\end{aligned}
$$

Answer:

D Watch Video Solution

102. A body starts from rest with uniform acceleration. If its velocity after n second is v, then its displacement in the last two seconds is

$$
\begin{aligned}
& \text { A. } 2 v \frac{n+1}{n} \\
& \text { B. } v \frac{n+1}{n} \\
& \text { C. } v \frac{n-1}{n} \\
& \text { D. } 2 v \frac{n-1}{n}
\end{aligned}
$$

Answer:

103. A particle starts from rest, accelerates at
$2 m s^{-2}$ for 10 s and then goes for constant speed for 30 s and then decelerates at $4 m s^{-2}$ till it stops. The distance travelled is
A. 750 m
B. 800 m
C. 700 m
D. 850 m

Answer:

D Watch Video Solution

104. A particle travels 10 m in first 5 s and 10 m next 3 s. Assuming constant acceleration what is the distance travelled in next 2 seconds?
A. 8.3 m
B. 9.3 m
C. 10.3 m
D. None of above

Answer:

D Watch Video Solution

105. A body A moves with a uniform
acceleration a and zero initial velocity. Another
body B starts from the same point, moves in
the same direction with a constant velocity v .

The two bodies meet after a time t. The value of t is
A. $2 \frac{v}{a}$
B. $\frac{v}{a}$
C. $\frac{v}{2} a$
D. $\sqrt{\frac{v}{2} a}$

Answer:

D Watch Video Solution

106. "The velocity of a particle is
$v=v_{0}+(>)+f t^{2}$. If its position $x=0$ at
$t=0$, then its displacement afler time $(t=1)$
A. $v_{0}+\frac{g}{2}+f$
B. $v_{0}+2 g+3 f$
C. $v_{0}+\frac{g}{2}+\frac{f}{3}$
D. $v_{0}+g+f$

Answer:

D Watch Video Solution

107. The acceleration a of a particle starting
from rest varies with time, according to
relation $a=\alpha t+\beta$. The velocity of the particle after a time t will be

$$
\begin{aligned}
& \text { A. } \alpha \frac{t^{2}}{2}+\beta \\
& \text { B. } \alpha \frac{t^{2}}{2}+\beta t \\
& \text { C. } \alpha t^{2}+\frac{1}{2} \beta t \\
& \text { D. } \frac{\alpha t^{2}+\beta}{2}
\end{aligned}
$$

Answer:

108. Acceleration of a body when displacement equation is $3 s=9 t+5 t^{2}$ is
A. $\frac{5}{3} \frac{m}{s^{2}}$
B. $\frac{14}{3} \frac{m}{s^{2}}$
C. $\frac{10}{3} \frac{m}{s^{2}}$
D. $\frac{19}{3} \frac{m}{s^{2}}$

Answer:

D Watch Video Solution

109. The relation between time and distance is
$t=\alpha x^{2}+\beta^{x}$, where α and β are constants.
The retardation is
A. $2 \alpha v^{3}$
B. $2 \beta v^{3}$
C. $2 \alpha \beta v^{3}$
D. $2 \beta^{2} v^{3}$

Answer:

110. A body starting from rest, accelerates at a constant rate a $\frac{m}{s^{2}}$ for some time, after which it decelerates at constant rate $b \frac{m}{s^{2}}$ to come to rest finally. If the total time elapsed is ts the maximum velocity attained by the body is given

$$
\begin{aligned}
& \text { A. } a \frac{b}{a+b} t \frac{m}{s} \\
& \text { B. } a \frac{b}{a-b} t \frac{m}{s} \\
& \text { C. } 2 a \frac{b}{a+b} t \frac{m}{s} \\
& \text { D. } 2 a \frac{b}{a-b} t \frac{m}{s}
\end{aligned}
$$

Answer:

D Watch Video Solution

111. A lift is going up. The variation in the speed of the litt is as given in the graph. What
is the height to which the lift takes the passengers?
A. 3.6 m
B. 28.8 m
C. 36.0 m
D. Cannot be calculated from the above

graph

Answer:

D Watch Video Solution

112. A stone is shot straight upward with a speed of $20 \mathrm{~m} / \mathrm{s}$ from a tower 200 m high. The speed with which it strikes the ground is $\left(g=10 \frac{m}{s^{2}}\right)$
A. $60 \mathrm{~m} / \mathrm{s}$
B. $65 \mathrm{~m} / \mathrm{s}$
C. $70 \mathrm{~m} / \mathrm{s}$
D. $75 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

113. A ball is dropped from a highly raised platform at $t=0$ starting from rest. After 6 second another ball is thrown downwards
from the same platform with a speed v. The two balls meet at $t=18 \mathrm{~s}$. What is the value of v ? (Take $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$)
A. $75 \mathrm{~m} / \mathrm{s}$
B. $55 \mathrm{~m} / \mathrm{s}$
C. $40 \mathrm{~m} / \mathrm{s}$
D. $60 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution
114. A balloon is rising vertically up with a velocity of $29 \mathrm{~m} s^{-1}$. A stone is dropped from
it and reaches ground in 10 s . The height of
the balloon when the stone was dropped from it is
A. 400 m
B. 150 m
C. 100 m
D. 200 m
115. The relative velocity of two objects moving with same speed and in the same direction is
A. negative
B. zero
C. positive
D. infinite

Answer:

116. Assertion: For a observer looking out
through the window of a fast moving train,
the nearby objects appear to move in the opposite direction to the trains, while the distant objects appear to be stationary Reason: the observer and the object are moving at velocities v_{1} and v_{2} respectively with reference to a laboratory frame, the velocity of the object with respect to the observer is $\vec{v}_{1}-\vec{v}_{2}$.
A. Assertion is True Reason is True, Reason
is a correct explanation for Assertion
B. Assertion is True Reason in True, Reason
is no correct explanation for Assertion
C. Assertion is True, Reason is False
D. Assertion is False, Reason is False

Answer:

D Watch Video Solution

117. A swimmer's speed in the direction of flow
of river is $16 \mathrm{~km} / \mathrm{h}$. Against the direction of
flow of river, the swimmer's speed is $8 \mathrm{~km} / \mathrm{h}$.
The swimmer's speed in still water and the
velocity of now of the river respectively are
A. $4 \mathrm{~km} / \mathrm{h}, 12 \mathrm{~km} / \mathrm{h}$
B. $12 \mathrm{~km} / \mathrm{h} 12 \mathrm{~km} / \mathrm{h}$
C. $4 \mathrm{~km} / \mathrm{h}, 4 \mathrm{~km} / \mathrm{h}$
D. $12 \mathrm{~km} / \mathrm{h}, 4 \mathrm{~km} / \mathrm{h}$

Answer:

- Watch Video Solution

118. A police jeep is chasing a thief with velocity of $45 \mathrm{~km} / \mathrm{h}$. The thief in another jeep is moving with velocity $153 \mathrm{~km} / \mathrm{h}$. Police fires a bullet with muzzle velocity of $180 \mathrm{~m} / \mathrm{s}$. The velocity with which it will strike the jeep of the thief is
A. $150 \mathrm{~m} / \mathrm{s}$
B. $27 \mathrm{~m} / \mathrm{s}$
C. $450 \mathrm{~m} / \mathrm{s}$

D. $250 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

119. A train A which is 120 m long is running with velocity $20 \mathrm{~m} / \mathrm{s}$ while train B which is 130
m long is running in opposite direction with velocity $30 \mathrm{~m} / \mathrm{s}$. What is the time taken by train B to cross the train A ?
A. 5 s
B. 25 s
C. 10s
D. 100 s

Answer:

- Watch Video Solution

120. A 150 m long trains travelling from east to
west at a speed of $20 \mathrm{~m} / \mathrm{s}$. A bird is flying from
west lo cast at a speed of $5 \mathrm{~m} / \mathrm{s}$. How long will
the bird take to cross the train?
A. 6 s
B. 2s
C. 3 s
D. 30 s

Answer:

D Watch Video Solution

121. If v_{x}, and v_{y}, are the magnitudes of component of instantaneous velocity along X and Y axes, then
A. $\vec{v}=v_{x} \hat{i}+v_{y} \hat{j}$
B. $\vec{v}=v_{x} \hat{i}+v_{y} \hat{k}$
C. $\vec{v}=\sqrt{v_{x}^{2}-v_{y}^{2}}$
D. $\vec{v}=\sqrt{v_{y}^{2}+v_{z}^{2}}$

Answer:

D Watch Video Solution

122. Position of a particle at any instant t is given by $\vec{r}=3 t \hat{i}+2 t^{2} h a i j+5 \hat{k}$. Its velocity at same instant will be
A. $4 t h a i I+5 k h a i i$
B. $3 h a i I+4 \hat{j}+5 \hat{k}$
C. $3 \hat{i}+4 t \hat{j}$
D. $3 \hat{i}+4 t \hat{j}$

Answer:

D Watch Video Solution

123. A particle starts from the origin with velocity $\vec{u}=(2 \hat{i}-4 \hat{j}) \frac{m}{s}$ with constant
acceleration $(3 \hat{I}+5 \hat{j}) \frac{m}{s^{2}}$. After travelling for
2 seconds, its distance from the origin is
A. 10 m
B. 10.2 m
C. 9.8 m
D. 11.7 m

Answer:
(Watch Video Solution
124. A boat is moving with velocity of $3 \hat{i}+4 \hat{j}$
in river and water is moving with a velocity of
$3 \hat{i}-4 \hat{j}$ ith respect to ground. Relative velocity of boat with respect to water is

$$
\begin{aligned}
& \text { A. }-6 \hat{I}-8 \hat{j} \\
& \text { B. }-6 \hat{i}+8 \hat{j} \\
& \text { C. } 8 \hat{i} \\
& \text { D. } 6 \hat{i}
\end{aligned}
$$

Answer:

125. A train is moving towards cast and a car is moving along north, both with some speed.

The observed direction of car to the passenger in the train is
A. East-north direction
B. West-north direction
C. South-east direction
D. East direction

Answer:

- Watch Video Solution

126. The speed of boat is $5 \mathrm{~km} / \mathrm{hr}$ in still water.

It crosses a river of width 1 km along the
shortest possible path in 15 minutes. The velocity of the river water is
A. $1 \mathrm{~km} / \mathrm{hr}$
B. $3 \mathrm{~km} / \mathrm{hr}$
C. $4 \mathrm{~km} / \mathrm{hr}$

D. $5 \mathrm{~km} / \mathrm{hr}$

Answer:

D Watch Video Solution

127. A particle is moving with velocity $5 \mathrm{~m} / \mathrm{s}$ towards east and its velocity changes to $5 \mathrm{~m} / \mathrm{s}$ north in 10 s . Find the acceleration.

$$
\begin{aligned}
& \text { A. } \sqrt{2} N-W \\
& \text { B. } \frac{1}{\sqrt{2}} N-W
\end{aligned}
$$

> C. $\frac{1}{\sqrt{2}} N-E$
> D. $\sqrt{2} N-E$

Answer:

D Watch Video Solution

128. A scooter going towards east at $10 \mathrm{~ms}^{-1}$ turns right through an angle of 90°. If the speed of the scooter remains unchanged in taking tum, the change in the velocity of the scooter is
A. $20.0 \mathrm{~ms}^{-1}$ south eastern direction
B. Zero
C. $10.0 \mathrm{~ms}^{-1}$ in southern direction
D. $14.14 m s^{-1}$ in south-west direction

Answer:

D Watch Video Solution

129. A river is flowing from west to eat at a speed of $4 \mathrm{~m} / \mathrm{min}$. In what direction should a man on the south bank of the river, capable of
swimming at $8 \mathrm{~m} / \mathrm{min}$ in still water, swim to

cross the river in the shortest time?

A. North
B. West - North
C. South-West

D. North-West

Answer:

130. A river is flowing from W to E with a speed
of $5 \mathrm{~m} / \mathrm{min}$. A man can swim in still water with
a velocity $10 \mathrm{~m} / \mathrm{min}$. In which direction should
the man swim so as to take the shortest possible path to go to the south?
A. 30° with downstream
B. 60° with downstream
C. 120° with downstream
D. South
131. In a projectile motion, the velocity vector of the projectile is
A. always perpendicular to the acceleration.
B. never perpendicular to noceleration
C. perpendicular to acceleration two times
during its flight,
D. perpendicular to acceleration only once
during its flight.

Answer:

- Watch Video Solution

132. Two bullets are fired simultaneously
horizontally and with different speeds from
the same place. Which bullet will hit the ground first?
A. The faster one.
B. The slower one.
C. Both will reach simultaneously
D. Depends on masses.

Answer:

D Watch Video Solution

133. At the highest point of the path of a projectile,
A. kinetic energy is maximum
B. potential energy is minimum
C. kinetic energy is minimum.
D. total energy is maximum.

Answer:

D Watch Video Solution

134. The velocity at the highest point of a projectile proiected 60° or with horizontal with velocity v is
A. zero
B. $\frac{v}{2}$
C. $\frac{v}{4}$
D. $\frac{v}{\sqrt{2}}$

Answer:

D Watch Video Solution

135. A bomber plane moves horizontally with a speed of $500 \mathrm{~m} / \mathrm{s}$ and a bomb released from it.
strikes the ground in 10 s . Angle at which it strikes the ground will be $\left(g=10 \frac{m}{s^{2}}\right)$
A. $\tan ^{-1}\left(\frac{1}{5}\right)$
B. $\tan \left(\frac{1}{5}\right)$
C. $\tan ^{-1}(1)$
D. $\tan ^{-1}(5)$

Answer:

D Watch Video Solution

136. The equation of motion of a projectile are given by $x=36 t$ metre and $2 y=96 t-9.8 t^{2}$ metre The angle of projection is
A. $\sin ^{-1}\left(\frac{4}{5}\right)$
B. $\sin ^{-1}\left(\frac{3}{5}\right)$
C. $\sin ^{-1}\left(\frac{4}{3}\right)$
D. $\sin ^{-1}\left(\frac{3}{4}\right)$

Answer:

D Watch Video Solution

137. A body thrown with an initial speed of 96
ft / s reaches the ground after $\left(g=32 f \frac{t}{s^{2}}\right)$
A. 3 s
B. 6 s
C. 12 s
D. 8 s

Answer:

D Watch Video Solution
138. A bomb is fired from a cannon with a velocity of $1000 \mathrm{~m} / \mathrm{s}$ making an angle of 30°
with the horizontal. What is the time taken by
the bomb to reach the highest point?
A. 11 s
B. 23 s
C. 38 s
D. 51 s

Answer:

D Watch Video Solution
139. A projectile can have the same range R for two angles of projection. If t_{1} and t_{2} are the times of flight in the two cases, then the product of the two time of flight is proportional to
A. R^{2}
B. $\frac{1}{R^{2}}$
C. $\frac{1}{R}$
D. R
A. R^{2}
B. $\frac{1}{R^{2}}$
C. $\frac{1}{R}$
D. R

Answer:

D Watch Video Solution

140. Neglecting the air resistance, the time of flight of a projectile is determined by
A. $u_{v e r t i c a l}$
B. u_{h} or izontal
C. $u=u_{v e r t i c a l}^{2}+u_{h \text { or } \text { izontal }}^{2}$
D. $u=u\left(u_{v e r t i c a l}^{2}+u_{h \text { or izontal }}^{2}\right)^{\frac{1}{2}}$

Answer:

D Watch Video Solution

141. A stone thrown at an angle to θ with the
horizontal reaches a maximum height H . Then
the time of flight of stone will be
A. $\sqrt{2 \frac{H}{g}}$
B. $2 \sqrt{2 \frac{H}{g}}$
C. $\left(2 \frac{\sqrt{2 H+\text { theat }}}{g}\right)$
D. $\left(\frac{\sqrt{2 H \sin \theta}}{g}\right)$

Answer:

- Watch Video Solution

142. If the range of a gun which fires a shell with muzzle speed v is R, then the angle of elevation of the gun is
A. $\cos ^{-1}\left(\frac{v^{2}}{R} g\right)$
B. $\cos ^{-1}\left(g \frac{R}{V^{2}}\right)$
C. $\frac{1}{2}\left(\frac{v^{2}}{R} g\right)$
D. $\frac{1}{2} \sin ^{-1}\left(g \frac{R}{v^{2}}\right)$

Answer:

D Watch Video Solution
143. A boy playing on the roof of 10 m high building throws a ball with a speed of $10 \mathrm{~ms}^{-1}$ at an angle of 30° with the horizontal. How far
from the throwing point will the ball be at the height of 10 m from the ground? $\left(g=10 m s^{-2}, \sin 30^{\circ}=\frac{1}{2}, \cos 30^{\circ}=\frac{\sqrt{3}}{2}\right)$
A. 2.60 m
B. 4.33 m
C. 5.20 m
D. 8.66 m

Answer:
144. A particle covers 50 m distance when projected with an initial speed. On the same surface it will cover a distance, when projected with double the initial speed
A. 100 m
B. 150 m
C. 200 m
D. 250 m

Answer:

145. The acceleration due to grivity on the planet A is 9 times the acceleration due to gravity on planet B. A man jumps to a height of 2 m on the surface of A . What is the height of jump by the same person on the planet B ?
A. 18 m
B. 6 m
C. $\frac{2}{3} m$
D. $\frac{2}{9} m$

Answer:

- Watch Video Solution

146. In a projectile motion, velocity at maximum height is
A. $\frac{u \cos \theta}{2}$
B. $(u \cos \theta)$
C. $\frac{u \sin \theta}{2}$
D. none of these

Answer:

- Watch Video Solution

147. A ball thrown by one player reaches the other in 2 s . The maximum height attained by the ball above the point of projection will be about
A. 10 m
B. 7.5 m
C. 5 m

Answer:

D Watch Video Solution

148. An aeroplane is flying at a constant
horizontal velocity of $600 \mathrm{~km} / \mathrm{hr}$ at an elevation of 6 km towards a point directly above the target on the earth's surface. At an appropriate time, the pilot releases a ball so
that it strikes the target at the carth. The ball
will appear to be falling
A. on a parabolic path as seen by pilot in
the plane
B. vertically along a straight path seen by
an observer on the ground near the
target.
C. on a parabolic path as een by an
observer on the ground near the target.

D. on a zig-zag path as seen by pilot in the

 plane.
Answer:

D Watch Video Solution

149. A body is projected horizontally from a point above the ground. The motion of the body is described by the equations $x=2 t$ and $y=5 t^{2}$, where x and y are the horizontal
and vertical displacements (in m) respectively
at time t. The trajectory of the body is
A. a straight line
B. circle
C. an ellipse
D. parabola

Answer:
(Watch Video Solution
150. The trajectory of a projectile fired
horizontally with velocity u is a parabola given
by

> А. $y=\frac{g}{2} u^{2} X^{2}$
> B. $y=-\frac{g}{2 u^{2}} X^{2}$
> C. $y=\frac{g}{2} u^{2} Y^{2}$
> D. $y=-\frac{g}{2 u^{2}} Y^{2}$

Answer:

D Watch Video Solution
151. If the equation of a projectile is
$y=\sqrt{3} x-g \frac{x^{2}}{2}$, then the angle of projection is
A. 80°
B. 60°
C. 45°
D. 30°

Answer:

152. A particle is projected obliquely into air with velocity of $20 \mathrm{~m} / \mathrm{s}$ at an angle of elevation of 45°. Neglecting air resistance the equation of motion is

$$
\begin{aligned}
& \text { A. } y=\frac{x}{\sqrt{2}}-g \frac{x}{200} \\
& \text { B. } y=x\left[\frac{1}{2}-g \frac{x}{400}\right] \\
& \text { C. } y=x\left[1-\frac{g}{400}\right] \\
& \text { D. } y=x-g \frac{x^{2}}{200}
\end{aligned}
$$

Answer:

153. The trajectory of a particle is symmetrical about the perpendicular drawn from the highest point on x-axis, if the particle performs projectile motion in xy plane. This is due to
A. velocity of projection of projectile.
B. air resistance while performing
projectile motion
C. gravitational acceleration which is same
for upward and downward motion

D. angle of projection of projectile

Answer:

D Watch Video Solution

154. The maximum height attained by projectile is increased by 10%, by changing the angle of projection, without changing the speed of projection. The percentage increase in the time of flight will be A. 0.2
B. 0.15
C. 0.1
D. 0.05

Answer:

D Watch Video Solution

155. The equation of motion of a projectile is
$y=a x-b x^{2}$ where a and b are constants of
motion. The horizontal range of the projectile
A. $\frac{a}{b}$
B. $\frac{\sqrt{a}}{b}$
C. $\frac{a^{2}}{2} b$
D. $\frac{a^{2}}{4} b$

Answer:

D Watch Video Solution
156. Four balls P, Q, R and S are thrown with equal velocities al angles of $10^{\circ}, 30^{\circ}, 45^{\circ}$ and
60° respectively. Which ball will fall at the maximum distance?
A. P
B. Q
C. R
D. S

Answer:

D Watch Video Solution
157. A projectile thrown with a speed v at an
angle θ has a range R on the surface of earth.

For same v and theta', its range on the surface of moon will be
A. $\frac{R}{6}$
B. 6 R
C. $\frac{R}{36}$
D. 36 R

Answer:

158. The initial speed of a shell is $140 \mathrm{~m} / \mathrm{s}$. At what angle must the gun be fined if the projectile is to strike a target at the same level as the gun? [The gun and the target are 1000 m apart]
A. 45°
B. 30°
C. 20°
D. 15°

Answer:

- Watch Video Solution

159. The range of a projectile, when launched at an angle of 15° with the horizontalis 1.5 km .

What is the range of the projectile, when launched at an angle of 45° with the horizontal?
A. 0.75 km
B. 1.5 km

C. 3.0 km

D. 6.0 km

Answer:

D Watch Video Solution

160. A ball is kicked at an angle of 30° with the
vertical. If the horizontal component of its
velocity is $19.6 \mathrm{~ms}^{-1}$. The maximum height is
A. $135,8 \mathrm{~m}$
B. 58.8 m
C. 39.2 m
D. 60 m

Answer:

D Watch Video Solution

161. Two stones are projected with the same speed but making different angles with the horizontal. Their ranges are equal. If the angle of projection of one is $\frac{\pi^{c}}{3}$ and its maximum
height is H , then the maximum height of the other is
A. $\frac{1}{3} H$
B. $\frac{2}{3} H$
C. $2 H$
D. $3 H$

Answer:
(Watch Video Solution
162. When a body is projected vertically up
from the ground, its velocity is reduced to
${ }^{`}(1 / 3)^{\wedge} r d$ of its initial value at height y above
the ground. The maximum height reached by
the body is

> A. $\frac{3}{4} y$
> B. $8 \frac{y}{9}$
> C. $\frac{9 y}{8}$
D. $9 y$
163. A body is projected at an angle of projection of 35° with horizontal. To get the same range with the same velocity of projection, the body should also be projected at an angle of
A. 55°
B. 65°
C. 70°

D. 80°

Answer:

D Watch Video Solution

164. Which of the following statements is false
for a particle moving in a circle with a constant angular speed?
A. The velocity vector is tangent to the circle.
B. The acceleration vector is tangent to the circle.
C. The acceleration vector points to the centre of the circle
D. The velocity and acceleration vectors are perpendicular to each other.

Answer:

D Watch Video Solution

165. A particle covers equal distances around a circular path in equal intervals of time. Which of the following quantities connected with the motion of the particle remains constant with time?
A. Displacement
B. Velocity
C. Speed
D. Acceleration
166. A particle performing uniform circular motion has
A. radial velocity and radial acceleration
B. radial velocity and transverse acceleration
C. transverse velocity and radial
acceleration

D. transverse velocity and transverse

 acceleration.
Answer:

D Watch Video Solution

167. A particle is moving on a circular path with
constant speed, then its acceleration will be
A. zero.
B. external radial acceleration
C. indemnal radial acceleration
D. constant acceleration.

Answer:

- Watch Video Solution

168. A sphere of mass m is tied to end of a string of length I and rotated through the other end along a horizontal circular path with speed v. The work done in full horizontal circle is
A. 0
B. $\left(m \frac{v^{2}}{l}\right) 2 \pi r$
C. $m g(2 \pi r)$
D. $\left(m \frac{v^{2}}{r}\right)(l)$

Answer:

D Watch Video Solution

169. If a particle moves with inform speed then its tangential accleration will be
A. $\frac{v^{2}}{r}$
B. zero
C. $r \omega^{2}$
D. infinite

Answer:

D Watch Video Solution

170. A body moves along a circular path with certain velocity. What will be the path of body

in following figure?

A. Move radially out
B. Move horizontally out
C. Fall vertically down.

D. Move tangentially out.

Answer:

171. IF the length of the second's hand in a stop clock is 3 cm , the angular velocity and linear velocity of the tip is
A. $0.2047 \mathrm{rad} / \mathrm{s}, 0.0314 \mathrm{~m} / \mathrm{s}$
B. $0.2547 \mathrm{rad} / \mathrm{s}, 0.314 \mathrm{~m} / \mathrm{s}$
C. $0.1472 \mathrm{rad} / \mathrm{s}, 0.06314 \mathrm{~m} / \mathrm{s}$
D. $0.1047 \mathrm{rad} / \mathrm{s}, 0.00314 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution
172. A wheel of diameter 20 cm is rotating at 600 rpm. The linear velocity of particle at its rim is
A. $6.28 \mathrm{~cm} / \mathrm{s}$
B. $62.8 \mathrm{~cm} / \mathrm{s}$
C. $0.628 \mathrm{~cm} / \mathrm{s}$
D. $628.4 \mathrm{~cm} / \mathrm{s}$

Answer:

D Watch Video Solution
173. The angular velocity of a wheel is 70 $\mathrm{rad} / \mathrm{s}$. If the radius of the wheel is 0.5 m .,then linear velocity of the wheel is
A. $10 \mathrm{~m} / \mathrm{s}$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $35 \mathrm{~m} / \mathrm{s}$
D. $70 \mathrm{~m} / \mathrm{s}$

Answer:

- Watch Video Solution

174. A particle of mass 200 g completes one rotation of a circular track of radius 2 m in 20 second. Calculate angular speed.
A. 70 m
B. 140 m
C. 110 m
D. 220 m

Answer:

D Watch Video Solution
175. The length of second's hand in a watch is 1
cm . The changle in velocity of its tip is 15
seconds is
A. zero
B. $\frac{\pi}{30} \sqrt{2} c \frac{m}{s}$
C. $\frac{\pi}{30} c \frac{m}{s}$
D. $\pi \frac{\sqrt{2}}{30} c \frac{m}{s}$

Answer:

D Watch Video Solution
176. If a cycle wheel of raduius 0.4 m completes
one revolution in one second, then
acceleration of the cycle is

$$
\begin{aligned}
& \text { A. } 0.4 \frac{\pi}{m} s^{2} \\
& \text { B. } 0.8 \frac{\pi}{m} s^{2} \\
& \text { C. } 0.4 \frac{\pi^{2}}{m} s^{2} \\
& \text { D. } 1.6 \frac{\pi^{2}}{m} s^{2}
\end{aligned}
$$

Answer:

D Watch Video Solution
177. Certain neutron stars are belived to be rotating at about 1 rev / s. IF such a star has a radius of 20 km , the acceleration of an object on the equator of the star will be
A. $20 \times 10^{8} \frac{m}{s^{2}}$
B. $8 \times 10^{5} \frac{m}{s^{2}}$
C. $120 \times 10^{5} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
D. $4 \times 10^{8} \frac{m}{s^{2}}$

Answer:

178. IF a tension In a string is 6.4 N . A load at
the lower end of a string is 0.1 kg , the length
of string is 6 m then find its angular velocity $\left(g=10 m / s^{2}\right)$
A. $3 \mathrm{rad} / \mathrm{s}$
B. $4 \mathrm{rad} / \mathrm{s}$
C. $2 \mathrm{rad} / \mathrm{s}$
D. $1 \mathrm{rad} / \mathrm{s}$

Answer:

D Watch Video Solution

179. A string breaks if its tension exceeds 10 newton. A stone of mass 250 g tied to this
string the length 10 cm is rotated in a horizontal circle. The maximum angular velocity of rotation can be
A. $20 \mathrm{rad} / \mathrm{s}$
B. $40 \mathrm{rad} / \mathrm{s}$

C. $100 \mathrm{rad} / \mathrm{s}$

D. $200 \mathrm{rad} / \mathrm{s}$

Answer:

D Watch Video Solution

180. A proton of mass $1.6 \times 10^{-27} \mathrm{~kg}$ goes
round in a circular orbit of radius 0.12 m under
a certripetal force of $4 \times 10^{-13} N$. then the frequency of revolution of the proton is about
A. 0.08×10^{8} cycles per s
B. 4×10^{8} cycles per s
C. 8×10^{8} cycles per s
D. 12×10^{8} cycles per s

Answer:

D Watch Video Solution
181. IF the radius of curvature of the path of two particles of same masses are in the ratio

1:2, then in order to have constant centripetal
force their, velocity, should be in the ratio of
A. 1:4
B. $4: 1$
C. $\sqrt{2}: 1$
D. $1: \sqrt{2}$

Answer:
(Watch Video Solution
182. A wheel rotates with a constant angular
velocity of 300 r.p.m. The angle through which
the wheel rotates in one second is
A. $\pi \mathrm{rad}$
B. $5 \pi \mathrm{rad}$
C. $10 \pi \mathrm{rad}$
D. $20 \pi \mathrm{rad}$

Answer:

D Watch Video Solution
183. A wheel completes 2000 revolutions to
cover the 9.5 km distance. Then the diameter of the wheel is
A. 1.5 m
B. 1.5 cm
C. 7.5 cm
D. 7.5 m

Answer:

D Watch Video Solution

184. The ratio of angular speed of second hand

 to that of the minute hand of a clock isA. 60:1
B. 1 : 60
C. 1:1
D. 1:6

Answer:

D Watch Video Solution
185. What is the angular speed of the minute
hand of the clock is degrees per second ?

A. 0.01

B. 0.1
C. 1.0
D. 0.001

Answer:

D Watch Video Solution
186. A paricle is describing the circular path of
radius 20 m in every 2 s . The average angular speed of the particle during 4 s is
A. $20 \pi r a d s^{-1}$
B. $4 \pi r a d s^{-1}$
C. $\pi r a d s^{-1}$
D. $2 \pi r a d s^{-1}$

Answer:

- Watch Video Solution

187. The linear velocity of a particle on the N pole of the earth is
A. zero
B. $486 \mathrm{~km} / \mathrm{hr}$
C. infinite.
D. $125 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution
188. A body revolves n times in a circle of radius $\pi \mathrm{cm}$ in one minute. Its linear veloity is

$$
\begin{aligned}
& \text { A. } \frac{60}{2} n c \frac{m}{s} \\
& \text { В. } 2 \frac{n}{60} c \frac{m}{s} \\
& \text { C. } 2 \pi^{2} \frac{n}{60} c \frac{m}{s} \\
& \text { D. } 2 \pi^{2} \frac{n^{2}}{60} c \frac{m}{s}
\end{aligned}
$$

Answer:

- Watch Video Solution

189. The second's hand of a watch has length
of 6 cm .Speed of end point and magnitude of
difference of velocities at two perpendicular positions will be
A. 6.28 and $0 \mathrm{~mm} / \mathrm{s}$
B. 8.88 and $4.44 \mathrm{~mm} / \mathrm{s}$
C. 8.88 and $6.28 \mathrm{~mm} / \mathrm{s}$
D. 6.28 and $8.88 \mathrm{~mm} / \mathrm{s}$

Answer:

190. Two Cars C_{1} and C_{2} are going round in concentric circles of radii R_{1} and R_{2}. They complete the circular paths in the same time

Then $\frac{\text { Speedof } C_{1}}{\text { Speedof }_{2}}=$
A. 1
B. $\frac{R_{1}}{R_{2}}$
C. $\frac{R_{2}}{R_{1}}$
D. cannot be determined as data is insufficient

Answer:

D Watch Video Solution

191. A wheel is 0.25 m in radius. When it makes

15 revolutions per minute, its linear speed at a point on circumference is
A. $\frac{\pi}{2} \frac{m}{s}$
B. $\frac{\pi}{8} \frac{m}{s}$
C. $\frac{\pi}{4} \frac{m}{s}$
D. $\pi \frac{m}{s}$

Answer:

D Watch Video Solution

192. A stone tied to the end of a string of
length 50 cm is whirled in a horizontal circle with a constant speed. IF the stone makes 40 revolutions in 20 s , then the speed of the stone along the circle is

$$
\begin{aligned}
& \text { А. } \frac{\pi}{s} \frac{m}{s^{-1}} \\
& \text { В. } \pi \frac{m}{s^{-1}}
\end{aligned}
$$

C. $2 \pi \frac{m}{s^{-1}}$
D. $\frac{\pi}{s} \frac{m}{s^{-1}}$

Answer:

D Watch Video Solution

193. The radius of the earth is 6400 km . the
linear velocity of a point on the equator is nearly
A. $1600 \mathrm{~km} / \mathrm{hr}$

B. $1675 \mathrm{~km} / \mathrm{hr}$

C. $1500 \mathrm{~km} / \mathrm{hr}$

D. $1800 \mathrm{~km} / \mathrm{hr}$

Answer:

D Watch Video Solution

194. What is the value of linear velocity if
$\omega=3 \hat{i}-4 \hat{j}+\hat{k}$ and ${ }^{`} r=5$ hat $\mathrm{I}-6$ hat $\mathrm{j}+6$ hat
k'?
A. $6 \hat{I}+2 \hat{j}-3 \hat{k}$
B. $-18 \hat{i}-13 \hat{j}+2 \hat{k}$
C. $4 \hat{i}+13 \hat{j}+6 \hat{k}$
D. $6 \hat{I}-2 \hat{j}+8 \hat{k}$

Answer:

D Watch Video Solution

195. IF the equation for the displancement of a particle moving on a circular path is given by $\theta=2 t^{3}+0.5$, where θ is in radius and t is in
seconds, then the angular velocity of the particle at $\mathrm{t}=2 \mathrm{~s}$ is
A. $8 \mathrm{rad} / \mathrm{s}$
B. $12 \mathrm{rad} / \mathrm{s}$
C. $24 \mathrm{rad} / \mathrm{s}$
D. $36 \mathrm{rad} / \mathrm{s}$

Answer:

- Watch Video Solution

196. An aircraft executes a horizontal loop of radius 1 km with a steady speed of $900 \mathrm{~km} \frac{/}{h}$. Ratio of its centripetal acceleration to acceleration due to gravity is
A. 9.2
B. 6.25
C. 5.0
D. 8.25

Answer:
197. A turn table which is rotating uniformly
has a particle placed on it. As seen from the ground, the particle goes in a circle with speed $20 \mathrm{~cm} / \mathrm{s}$ and acceleration $20 \mathrm{~cm} / \mathrm{s}^{2}$. The particle is now shifted to a new position where radius is half of the original value . the new values of speed and acceleration will be
A. $10 c \frac{m}{s}, 10 c \frac{m}{s^{2}}$
B. $10 c \frac{m}{s}, 80 c \frac{m}{s^{2}}$
C. $40 c \frac{m}{s}, 10 c \frac{m}{s^{2}}$
D. $40 c \frac{m}{s}, 40 c \frac{m}{s^{2}}$

Answer:

D Watch Video Solution

198. A particle goes round a circular path with
uniform speed v. After describing half the circle, what is the change in its centripetal acceleration?
A. $\frac{v^{2}}{r}$
B. $2 \frac{v^{2}}{r}$
C. $2 \frac{v^{2}}{\pi} r$
D. $\frac{v^{2}}{\pi} r$

Answer:

D Watch Video Solution
199. A body of mass 500 g is revolving in a horizontal circle of radius 0.49 m . The
centripetal force acting on it (if its period is 11
s) will be
A. 0.008 N
B. 8.0 N
C. 0.8 N
D. 0.08 N

Answer:
(Watch Video Solution
200. A mass of 2 kg describes a circle of radius
1.0 m on a smooth horizontal table at a
uniform speed. It is joined to the centre of the
circle by a string, which can just withstand 32
N. the greatest number of revolutions per minute the mass can make is
A. 38
B. 4
C. 76
D. 16

Answer:

D Watch Video Solution

201. A particle performs uniform circular motion iin a horizontal plane. The radius of the circle is 20 cm . The centripetal force acting on the particle is 10 N . Its kinectic energy is
A. 0.1 J
B. 0.2 J
C. 2.0 J

D. 1.0 J

Answer:

D Watch Video Solution

202. A string breaks under a load of 4 kg . A mass weighing 200 g is attached to the end of
this string which is one metre long and rotation when the string breaks, Is nearly(g=10 m / s^{2})
A. $16 \mathrm{rad} / \mathrm{s}$
B. $14 \mathrm{rad} / \mathrm{s}$
C. $12 \mathrm{rad} / \mathrm{s}$
D. $20 \mathrm{rad} / \mathrm{s}$

Answer:

D Watch Video Solution

203. A car of mass 1000kg moves on a circular path with constant speed of $12 m / s$. It turned through 90° after travelling 471 m on the road
. The centripetal force acting on the car is
A. 320 N
B. 480 N
C. 640 N
D. 1280 N

Answer:

D Watch Video Solution

204. A mass of 10 kg is whirled in a horizontal
circle by means of a string at an initial speed
of 5 r.p.m. Keeping the radius constant, the
tension in the string is quadrupled. The new speed is nearly
A. 14 r.p.m.
B. 10r.p.m.
C. 2.25 r.p.m.
D. 7 r.p.m.

Answer:
(Watch Video Solution
205. Consider a simple pendulam of length 1
m. Its bob performs a circular motion is
horizontal plane with its string making an
angle 60° with the vertical. The centripetal
accleration experienced by the bob is
A. 2 s
B. 1.4 s
C. 1.98 s
D. 2.4 s
206. The length of the string of a conical pendulam is 10 m and it has a bob of mass 50 g. The angle that the string makes with the vertical is 30°. If the bob covers one revolution is 3 s , then the corresponding centripetal force acting on the bob will be
A. 10 N
B. 1 N
C. 100 N
D. 5 N

Answer:

D Watch Video Solution

207. In a conical pendulam, when the bob moves in a horizontal circle of radius r with
uniform speed v, the string of length L describes a cone of semivertical angle θ. The tension in the string is given by

$$
\text { A. } T=m g \frac{L}{\sqrt{L^{2}-r^{2}}}
$$

$$
\begin{aligned}
& \text { B. } T=\frac{\frac{\left(L^{2}-r^{2}\right)^{1}}{2}}{m} g L \\
& \text { C. } T=m g \frac{L}{L^{2}-r^{2}} \\
& \text { D. } T=m g \frac{L}{\left(L^{2}-r^{2}\right)^{2}}
\end{aligned}
$$

Answer:

D Watch Video Solution

208. An automobile travelling with a speed of $60 \mathrm{kmh}^{-1}$ can apply brakes to stop after covering a distance of 20 m . If the car is going
iwit as fast i.e., $120 \mathrm{kmh}^{-1}$, the stopping distance will be
A. 20 m
B. 40 m
C. 60 m
D. 80 m

Answer:
(Watch Video Solution
209. The unifom motion in the following acceleration time graph is
A. $A B$
B. BC
C. CD
D. DE

Answer:

D Watch Video Solution
210. A particle starts from rest at $t=0$ and undergoes an acceleration a in $m s^{-2}$ with time t in seconds which is as shown in figure. Which one of the following plot represents velocity v in $m s^{-1}$ versus time t in seconds?
A.
\square
B.
C.
D.

Answer:

D Watch Video Solution
211. A ball is dropped vertically from a height d above the ground. It hits the ground and bounces up vertically to a height $\frac{d}{2}$.

Neglecting subsequent motion and
irresistance, its velocity v varies with the height h above the ground as
A.
B.
C.
D.

Answer:

D Watch Video Solution

212. Which of the following is CORRECT graph for variation of distance with time in free fall motion?
A.

R
B.

Pas
C.

D.

Answer:
213. An athlete completes one round of a circular track of radius R in 40 s . What will be his displacement at the end of 2 min 20 s ?

A. zero

B. 2 R
C. $2 \pi R$
D. $7 \pi R$

Answer:

D Watch Video Solution
214. The horizontal distance x and the vertical height y of a projectile at a time t are given by $x=a t$ and $y=b t^{2}+c t$ where a, b and c are constants The magnitude of the velocity of the projectile 1 second after it is fired is
A. $\left[\left(a^{2}+(2 b+c)^{2}\right]^{\frac{1}{2}}\right.$
B. $\left[\left(2 a^{2}+(b+c)^{2}\right]^{\frac{1}{2}}\right.$
C. $\left[\left(2 a^{2}+(2 b+c)^{2}\right]^{\frac{1}{2}}\right.$
D. $\left[\left(a^{2}+(b+2 c)^{2}\right]^{\frac{1}{2}}\right.$

Answer:

D Watch Video Solution

215. A body is projected horizontally from a
height with speed 20 metres/second. What
will be its speed after 5 second?
$\left[g=10 m e t r \frac{e}{\sec o} n d^{2}\right]$
A. 54 metres/ second
B. 20 metres/second
C. 50 metres /second

D. 700 metres/second

Answer:

D Watch Video Solution

216. A ball is thrown from rear end of the compartment to the front end which is moving at constant horizontal velocity. An observer A sitting in the compartment and another observer B standing on the ground draw the trajectory. They will have
A. equal horizontal and equal vertical ranges.
B.equal vertical ranges but different horizontal ranges.
C. different vertical ranges but equal horizontal ranges

D. different
vertical and
different

horizontal ranges.

Answer:

217. Time taken by the projectile to reach from
A to B in figure is t. Then the distance $A B$ is equal to
A. $u \frac{t}{\sqrt{3}}$
B. $\frac{\sqrt{3} u t}{2}$
C. $\sqrt{3 u t}$
D. 2ut

- Watch Video Solution

218. A stone is projected from the ground with
velocity $50 \mathrm{~m} / \mathrm{s}$ at an angle of 30°. It crosses a
wall after 3 s . How far beyond the wall the stone will strike the ground? $\left[g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right]$
A. 90.2 m
B. 89.6 m
C. 86.6 m
D. 70.2 m

Answer:

D Watch Video Solution

219. A man standing on the roof of a house of
height h throws one particle vertically downwards and another particle horizontally with the same velocity u. The ratio of their velocities when they reach the earth's surface will be

$$
\text { A. } \sqrt{2 g h+u^{2}}: u
$$

B. $1: 2$
C. 1:1
D. $\sqrt{2 g h+u^{2}}: \sqrt{2 g h}$

Answer:

- Watch Video Solution

220. A ball is rolled off the edge of a horizontal table at a speed of $4 \mathrm{~m} /$ second. It hits the ground after 0.4 second. Which statement given below is true?
A. It hits the ground at a horizontal
distance 2.6 m from the edge of the table
B. The speed with which it hits the ground
is $4.0 \mathrm{~m} /$ second
C. Height of the table is 0.8 m .
D. It hits the ground at an angle of 60° to
the horizontal.

Answer:

221. A particle comes round a circle of radius

Im once. The time taken by it is 10 s . The average velocity of motion is

$$
\begin{aligned}
& \text { A. } 0.2 \pi \frac{m}{s} \\
& \text { В. } 2 \pi \frac{m}{s} \\
& \text { C. } 2 \frac{m}{s} \\
& \text { D. zero }
\end{aligned}
$$

Answer:

D Watch Video Solution
222. The tangential velocity of a particle making p rotations along a circle of radius π in t seconds is

$$
\begin{aligned}
& \text { A. } 2 \pi \frac{p}{t^{2}} \\
& \text { B. } 2 \pi \frac{p^{2}}{t} \\
& \text { C. } \pi \frac{p}{2} t \\
& \text { D. } 2 \pi^{2} \frac{p}{t}
\end{aligned}
$$

Watch Video Solution

223. A cyclist turns around a curve at 15 $m i \leq s / h o u r$. IF he turns at double the speed, the tendency to overturn is
A. doubled.
B. quadrupled.
C. halved.
D. unchanged
224. A coin placed on a rotating turn-table slips when it is placed at a distance of 9 cm from the centre. If the angular velocity of the turn-table is trippled, it will just slip if its distance from the centre is
A. 27 cm
B. 9 cm
C. 3 cm

D. 1 cm

Answer:

D Watch Video Solution

225. A small coin is kept at the rim of a horizontal circular disc which is set into rotation about vertical axis passing through its centre. If radius of the disc is 5 cm and $\mu_{s}=0.25$, then the angular speed at which the coin will just slip is
A. $5 \mathrm{rad} / \mathrm{s}$
B. $7 \mathrm{rad} / \mathrm{s}$
C. $10 \mathrm{rad} / \mathrm{s}$
D. $4.9 \mathrm{rad} / \mathrm{s}$

Answer:

D Watch Video Solution

226. A motor cycle driver doubles its velocity when he is having a turn. The force exerted outwardly will be
A. double
B. half
C. 4 times
D. $\frac{1}{4}$ times

Answer:

D Watch Video Solution

227. A long horizontal rod has a bead which
can slide along its length, and initially placed
at a distance L from one end A of the rod. The
rod is set in angular motion about A with constant angular accleration α. If the coefficient of friction between the rod and the bead is μ, and gravity is neglected, then the time after which the bead starts slipping is
A. $\sqrt{\frac{\mu}{\alpha}}$
B. $\left(\frac{\mu}{\alpha}\right)$
C. $\frac{1}{\sqrt{\mu \alpha}}$
D. infinitesimal

Answer:
228. On the centre of a frictionless table, a small hole is made, through which a weightless string of lenth 2 is inserted. On the two ends of the strings, two balls of the same mass m are attached, Arrangement is made in
such a way that half of the string is on the table top and half is hanging below. The ball on the table top is made to move in a circular path with a constant speed v , What is the centripetal acceleration of the moving ball?
A. mvl
B. g
C. Zero
D. 2 mvl

Answer:

D Watch Video Solution
229. The ratio of centripetal forces on two clectrons which are revolving around nucleus
of hydrogen alom in $2^{n} d$ and $3^{r} d$ orbits respectively is
A. $27: 8$
B. $81: 16$
C. 8.27
D. 16: 81

Answer:

D Watch Video Solution
230. Two particles A and B are located at distances r_{A} and r_{B} respectively from the centre of a rotating disc such that $r_{A}>r_{B}$. In this case, if angular velocity ω of rotation is constant then
A. both A and B do not have any acceleration.
B. both A nd B have same acceleration
C. A has greater acceleration than B
D. B has greater acceleration than A

Answer:

D Watch Video Solution

231. IF p is the magnitude of linear momentum
of a particle executing a uniform circular motion, then the ratio of centripetal force acting on the particle to its linear momentum
is given by
A. $\frac{r}{v}$
B. $\frac{V^{2}}{m} r$

C. $\frac{v}{r}$
 D. $v \cdot r$

Answer:

D Watch Video Solution

232. Select the incorrect statements from the
following SI: Average velocity is path length
divided by time interval S2: In general, speed is greater than the magnitude of the velocily. S3:

A particle moving in a given direction with a
non-zero velocity can have zero speed. S4. The
magnitude of average velocity is the average
speed,
A. S2 and S3
B. S1 and S4
C. SI, S3 and S4
D. All four statements

Answer:

D Watch Video Solution
233. Assertion: The average velocity of the object over an interval of time is either smaller than or equal to the average spood of the object over the same interval. Reason: Velocity is a vector quantity and speed is a scalar quantity.
A. Assertion is True, Reason is True, Reason
is a correct explanation for Assertion
B. Assertion is True Reason is True, Reason
is not a correct explanation for Assertion
C. Assertion is True, Reason is False

D. Assertion is False, Reason is True.

Answer:

D Watch Video Solution

234. Two particles A and B having different masses are projected from a tower with same speed. A is projected vertically upward and B vertically downward. On reaching the ground
A. velocity of A is greater than that of B.
B. velocity of B is greater than that of A.
C. both A and B attain the same velocity
D. the particle with the larger mass attains
higher velocity.

Answer:

D Watch Video Solution

235. A person travelling in a straight line moves with a constant velocity v_{1} for certain distance ' x ' and with a constant velocity v_{2} for
next equal distance. The average velocity is

given by the relation

$$
\begin{aligned}
& \text { A. } v=\sqrt{v_{1} v_{2}} \\
& \text { B. } \frac{1}{v}=\frac{1}{v_{1}}+\frac{1}{v_{2}} \\
& \text { C. } \frac{2}{v}=\frac{1}{v_{1}}+\frac{1}{v_{2}} \\
& \text { D. } \frac{v}{2}=\frac{v_{1}+v_{2}}{2}
\end{aligned}
$$

Answer:

D Watch Video Solution

236. A body travelling along a straight line path travels first half of the distance with a velocity $7 m s^{-1}$. During the travel time of the second half of the distance, first half time is travelled with a velocity $14 m s^{-1}$ and the second half time is travelled with a velocity $21 m s^{-1}$. Then the average velocity of the body during the journey is
A. $14 m s^{-1}$
B. $10 m s^{-1}$
C. $9 m s^{-1}$

D. $12 m s^{-1}$

Answer:

D Watch Video Solution

237. Preeti reached the metro station and found that the escalator was not working. She walked up the stationary escalator in time t_{1}.

On other days. if she remains stationary on the moving escalater, then the escalator takes
her up in time t_{2}. The time taken by her to
walk up on the moving escalator will be:

$$
\begin{aligned}
& \text { A. } \frac{t_{1}+t_{2}}{2} \\
& \text { B. } \frac{t_{1} t_{2}}{t_{2}-t_{1}} \\
& \text { C. } \frac{t_{1} t_{2}}{t_{2}+t_{1}} \\
& \text { D. }\left(t_{1}-t_{2}\right)
\end{aligned}
$$

Answer:

D Watch Video Solution

238. A particle moves along x-axis obeying the equation ${ } \mathrm{x}=\mathrm{t}(\mathrm{t}-1)(\mathrm{t}-2)$, where x (in metres) is the position of the particle at any time t (in seconds). The displacement when the velocity of the particle is zero, is
A. $-\left(\frac{2}{3} \sqrt{3}\right) m,\left(\frac{2}{3} \sqrt{3}\right) m$
B. $-\left(\frac{5}{3} \sqrt{3}\right) m,\left(\frac{5}{3} \sqrt{3}\right) m$
C. $-3 m, 3 m$
D. $-5 m, 5 m$
239. If the velocity of a particle is $v=A t+B t^{2}$. where A and B are constants, then the distance travelled by it between 1 s and 2 s is
A. $\frac{3}{2} A+\frac{7}{3} B$
B. $\frac{A}{2}+\frac{B}{3}$
C. $\frac{3}{2} A+4 B$
D. $3 A+7 B$

Answer:

D Watch Video Solution

240. The displacement of a body along x-axis
depends on time as $x=\sqrt{t+1}$. Then the velocity of body
A. increases with time
B. decreases with time
C. independent of time
D. none of these

Answer:

D Watch Video Solution

241. The displacement of a particle moving in a straight line is given by the expression
$x=A t^{3}+B t^{2}+C t+D$ in metres, where t is in second and A, B, C and D are constants.

The ratio between the initial acceleration and initial velocity is
A. $2 \frac{C}{B}$
B. $2 \frac{B}{C}$
C. 2C
D. $\frac{C}{2} B$

Answer:

- Watch Video Solution

242. An object moving with a speed of 6.25 m / s, is decelerated at a rate given by $d \frac{v}{d t}=-2.5 \sqrt{v} \quad$ where $\quad \mathrm{v} \quad$ is the
instantaneous speed. The time taken by the object, to come to rest, would be
A. 1 s
B. 2s
C. 4 s
D. 8 s

Answer:
(Watch Video Solution
243. A particle is moving with constant acceleration and v_{1}, v_{2} and v_{3} are the average velocities of the particle in three successive intervals t_{1}, t_{2} and t_{3}. Which of the following relations will be correct?

$$
\begin{aligned}
& \text { A. } \frac{v_{1}-V_{3}}{V_{2}-V_{3}}=\frac{t_{1}-t_{2}}{t_{1}-t_{3}} \\
& \text { B. } \frac{v_{1}-V_{2}}{V_{2}-V_{3}}=\frac{t_{1}-t_{2}}{t_{1}-t_{3}} \\
& \text { C. } \frac{v_{1}-V_{2}}{V_{2}-V_{3}}=\frac{t_{1}-t_{2}}{t_{2}-t_{3}} \\
& \text { D. } \frac{v_{1}-V_{2}}{V_{2}-V_{3}}=\frac{t_{1}+t_{2}}{t_{2}+t_{3}}
\end{aligned}
$$

244. Two cars P and Q start from a point at the same time in a straight line and their positions are represented by
$X_{p}(t)=a t+b t^{2} \quad$ and $\quad X_{Q}(t)=f t-t^{2}$. At what time do the cars have the same velocity?

$$
\begin{aligned}
& \text { A. } \frac{f-a}{2(1+b)} \\
& \text { B. } a-\frac{f}{1}+b \\
& \text { C. } a+\frac{f}{2(b-1)}
\end{aligned}
$$

D. $a+\frac{f}{2(1+b)}$

Answer:

D Watch Video Solution

245. An object moving with a speed of 6.25 m / s, is decelerated at a rate given by $d \frac{v}{d t}=-2.5 \sqrt{v} \quad$ where $\quad \mathrm{v} \quad$ is the instantaneous speed. The time taken by the object, to come to rest, would be A. 2 s
B. 3 s
C. 2.5 s
D. 4 s

Answer:

D Watch Video Solution

246. A particle first accelerates from rest and
then retards to rest during the time interval of
8 s . If the retardation is 3 times the
acceleration, then the time for which it accelerated is
A. 2 s
B. 3 s
C. 4 s
D. 6 s

Answer:

D Watch Video Solution
247. A car accelerate from rest with $2 \frac{m}{s^{2}}$ on a straight line path and then comes to rest after applying brakes. Total distance travelled by the car is 100 m in 20 seconds. Then the maximum velocity attained by the car is
A. $10 \mathrm{~m} / \mathrm{s}$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $15 \mathrm{~m} / \mathrm{s}$
D. $4 \mathrm{~m} / \mathrm{s}$
248. The velocity of an object moving in straight line path is given as a function of time by $v=6 t-3 t^{2}$, where v is in $m s^{-1}$, t is in s .

The average velocity of the object between
$t=0$ and $t=2$ second is
A. 0
B. $3 m s^{-1}$
C. $2 m s^{-1}$
D. $4 m s^{-1}$

Answer:

D Watch Video Solution

249. Consider a car initially at rest, starts to move along a straight road first with acceleration $5 \mathrm{~m} / \mathrm{s}^{\wedge} 2$, then with uniform velocity and finally decelerating at $5 \mathrm{~m} / \mathrm{s}^{\wedge} 2$, before coming to stop. Total time taken from start to end is $t=25 \mathrm{~s}$. If the average velocity
during that time is $72 \mathrm{~km} / \mathrm{hr}$, the car moved with uniform velocity for a time of
A. 15 s
B. 30 s
C. 155 s
D. 2 s

Answer:
(Watch Video Solution
250. The velocity-time graph for two bodies A
and Bare shown. Then the acceleration of A
and B are in the ratio
A. $\sin 25^{\circ}$ to $\sin 50^{\circ}$
B. $\tan 25^{\circ}$ to $\tan 40^{\circ}$
C. $\cos 25^{\circ}$ to $\cos 50^{\circ}$
D. $\tan 25^{\circ}$ to $\tan 50^{\circ}$

Answer:

251. A particle shows distance-time curve as
shown in the figure. The maximum
instantaneous velocity of the particle is
around the point
A. P
B. S
C. R
D. Q

Answer:

D Watch Video Solution

252. The nature of graph drawn for a freely falling body with time on the x-axis and speed on the y. axis is (Assuming initial speed to be zero)
A.A straight line with positive y-axis intercept
B. A straight line passing through origin
C. A parabola.
D. A straight line parallel to y-axis with
positive x-axis intercept

Answer:

D Watch Video Solution

253. A body is thrown vertically upwards.

Which one of the following graphs correctly
represent the velocity vs time?
A.

R
B.

Pas
C.

D.

Answer:
254. All the graphs below are intended to represent the same motion. One of them does
it incorrectly. Pick it up.
A.
B.
C.
D.

Answer:

D Watch Video Solution

255. The speed versus time graph of a moving particle is shown in the following figure. If ' u ' is the initial speed at $t=0, \mathrm{v}$ is the speed at
time $\mathrm{t}, \quad a$ is the acceleration and
s'isthedis \tan cecovered \in timet', then total
area OABC is best described using. (Assume O as origin)

A. $v=u+a t$
B. $s=u t+\frac{1}{2} a t^{2}$
C. $v^{2}=u^{2}+2 a s$
D. $v=a t$

Answer:

D Watch Video Solution

256. A toy car with charge moves on a frictionless horizontal plane surface under the influence of a uniform electric field \vec{E}. Due to the force $q \vec{E}$. its velocity increases from 0 to
$6 \mathrm{~m} / \mathrm{s}$ in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average
velocity and the average speed of the day car between 0 to 3 seconds are respectively
A. $2 \mathrm{~m} / \mathrm{s}, 4 \mathrm{~m} / \mathrm{s}$
B. $1 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s}$
C. $1 \mathrm{~m} / \mathrm{s}, 3.5 \mathrm{~m} / \mathrm{s}$
D. $1.5 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

257. Two trains, which are moving along different tracks in opposite direction, are put on the same track by mistake. On noticing the mistake, when the trains are 300 m apart the drivers start slowing down the trains. The graphs given below show decrease in their velocities as function of time. The separation between the trains when both have stopped is
A. 120 m
B. 20 m

C. 60m

D. 280 m

Answer:

D Watch Video Solution

258. A stone falls freely under gravity. It covers
distances h_{1}, h_{2} and h_{3} in the first 5 seconds,
the next 5 seconds and the next 5 seconds respectively. The relation between h_{1}, h_{2} and h_{3} is
A. $h_{1}=2 h_{2}=3 h_{3}$
B. $h_{1}=\frac{h_{2}}{3}=3 \frac{h_{3}}{5}$
C. $h_{2}=3 h_{1}$ and $h_{3}=3 h_{2}$
D. 'h_1=h_2=h_3

Answer:

D Watch Video Solution

259. A, B, C are points in a vertical line such
that $A B=B C$. If a body falls freely from rest
at A, and t_{1} and t_{2} are times taken to travel distances $A B$ and $B C$, then ratio $\left(\frac{t_{2}}{t_{1}}\right)$ is
A. $\sqrt{2}+1$
B. $\sqrt{2}-1$
C. $2 \sqrt{2}$
D. $\frac{1}{\sqrt{2}}+1$

Answer:

- Watch Video Solution

260. A parachutist drops freely from an aeroplane for 10 s before the parachute opens out. Then he descends with a net retardation of $2.5 \mathrm{~ms}^{\wedge}-2$. If he jumps out of the planem a height of 2495 m and $g=10 \mathrm{~ms}^{-2}$, then his velocity on reaching the ground will be
A. $2.5 m s^{-1}$
B. $7.5 m s^{-1}$
C. $5 m s^{-1}$
D. $10 \mathrm{~ms}^{-1}$

Answer:

D Watch Video Solution

261. Two bodies of different masses m_{a}, and m_{b} are dropped from two different heights a and b. The ratio of the time taken by the two to cover these distances are
A. a:b
B. b:a
C. $\sqrt{a}: \sqrt{b}$

$$
\text { D. } a^{2}: b^{2}
$$

Answer:

D Watch Video Solution

262. A body falls freely for 10s. Its average
velocity during this journey (take $g=10 \mathrm{~ms}^{-2}$
)
A. $100 \mathrm{~ms}^{-1}$
B. $10 m s^{-1}$

C. $50 m s^{-1}$

$$
\text { D. } 5 m s^{-1}
$$

Answer:

- Watch Video Solution

263. An object is thrown vertically upward with
a speed of $30 \mathrm{~m} / \mathrm{s}$. The velocity of the object
half a second before it reaches the maximum height
A. $4.9 \mathrm{~m} / \mathrm{s}$
B. $9.8 \mathrm{~m} / \mathrm{s}$
C. $19.6 \mathrm{~m} / \mathrm{s}$
D. $25.1 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

264. Ball-1 is dropped from the top of a building from rest. At the same moment, ball-2
is thrown upward towards ball-1 with speed 14
m / s from a point 21 m below the top of building How far will the ball-1 have dropped when it passes ball-2. (Assume $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$)

$$
\begin{aligned}
& \text { A. } \frac{45}{4} m \\
& \text { B. } \frac{52}{6} m \\
& \text { C. } \frac{37}{2} m \\
& \text { D. } \frac{25}{2} m
\end{aligned}
$$

Answer:

- Watch Video Solution

265. From the top of a tower of height ' H ', body is thrown vertically upwards with a speed
'u'. Time taken by the body to reach the ground is ' 3 ' times the time taken by it to reach the highest point in its path. Then, the speed u is
A. $\sqrt{g} H$
B. $\sqrt{g \frac{H}{2}}$
C. $\sqrt{2 g \frac{H}{3}}$
D. $\sqrt{g \frac{H}{3}}$

Answer:

D Watch Video Solution

266. Points P, Q and R are in a vertical line such
that $P Q=Q R$. A ball at P is allowed to fall
freely with zero initial speed. The ratio of the times of descent through $P Q$ and $O R$ is
A. $1:(\sqrt{2}+1)$
B. $1:(\sqrt{2}-1)$
C. $1: 2$

D. $1: \sqrt{2}$

Answer:

- Watch Video Solution

267. A person standing on the floor of an elevator drops a coin. The coin reaches the
floor in time t_{1} if the elevator is at rest and in
time t_{2} if the elevator is moving uniformly.

Then

$$
\text { A. } t_{1}=t_{2}
$$

B. $t_{1}<t_{2}$ or $t_{1}>t_{2}$ depending upon whether the lift is going up or down
C. $t_{1}<t_{2}$
D. $t_{1}>t_{2}$

Answer:

D Watch Video Solution
268. The relative velocity of geostationary satellite with respect to the spinning motion of the earth is
A. $0 \mathrm{~m} / \mathrm{s}$
B. $6 \mathrm{~m} / \mathrm{s}$
C. $12 \mathrm{~m} / \mathrm{s}$
D. $14 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution
269. A particle moves so that its position
vector is given by $\vec{r}=\cos \omega t \widehat{x}=\sin \omega t \hat{y}$,
where ω is a constant. Which of the following is true?
A. Velocity is perpendicular to \vec{r} and acceleration is directed towards the origin.
B. Velocity is perpendicular to \vec{r} and
acceleration is directed away from the
origin.
C. Velocity and acceleration both are perpendicular to \vec{r}.
D. Velocity and acceleration both are parallel to \vec{r}.

Answer:

D Watch Video Solution

270. A particle has an initial velocity of $3 \hat{i}+4 \hat{j}$ and an acceleration of $0.4 \hat{i}+0.3 \hat{j}$. Its speed after 10 s is
A. 10 units
B. $7 \sqrt{2}$ units
C. 7 units
D. 8.5 units

Answer:

D Watch Video Solution

271. The position vector of a particle \vec{R} as a functions of time is given by $\vec{R}=4 \sin (2 \pi t) \hat{i}+4 \cos (2 \pi t) \hat{j}$ where, R is in metres, t is in seconds and \hat{i} and \hat{j} denote unit
vectors along x and y-directions, respectively

Which one of the following statements is
wrong for the motion of particle?
A. Path of the particle is a circle of radius 4
metre.
B. Acceleration vector is along $-\vec{R}$.
C. Magnitude of acceleration vector is $\frac{v^{2}}{R}$
where v is the velocity of particle.
D. Magnitude of the velocity of particle is 8
metre /second.

Answer:

D Watch Video Solution

272. A particle is moving such that its position coordinates (x, y) are $(2 m, 3 m)$ at time $t=0$.
(6m,
7m)
at
time
$t=2 s$ and $(13 m, 14 m)$ attimet=5 s` Average
velocity vector from $0 s$ to 5 s is
A. $\frac{1}{5}\left({ }^{\prime} 13 \hat{I}+14 \hat{j}^{\prime}\right)$
B. $\frac{7}{3}(\hat{I}+\hat{j})$
C. $2(\hat{I}+\hat{j}$

$$
\text { D. } \frac{11}{5}(\hat{I}+\hat{j})
$$

Answer:

D Watch Video Solution

273. Particle A moves along X-axis with a uniform velocity of magnitude $10 \mathrm{~m} / \mathrm{s}$. Particle
B moves with uniform velocity $20 \mathrm{~m} / \mathrm{s}$. along a direction making an angle of 60° with the positive direction of X-axis as shwon in the
figure. The relative velocity of B with respect to
that of A is
A. $10 \mathrm{~m} / \mathrm{s}$ along X -axis
B. $10 \sqrt{3} \mathrm{~m} / \mathrm{s}$ along Y -axis (perpendicular to

X-axis)
C. $10 \sqrt{5}$ along the bisection of the
velocities of A and B
D. $30 \mathrm{~m} / \mathrm{s}$ along negative X - axis.

Answer:

274. A ship A is moving westwards with a speed of $10 \mathrm{kmh}^{-1}$ and a ship B 100 km south of A, is moving northwards with a speed of $10 \mathrm{kmh}^{-1}$ The time after which the distance between them becomes shortest, is
A. Oh
B. 5 h
C. $5 \sqrt{2} h$
D. $10 \sqrt{2} h$

Answer:

D Watch Video Solution

275. The speed of swimmer in still water is 20 m / s. The speed of river water is $10 \mathrm{~m} / \mathrm{s}$ and is
flowing due east. If he is standing on the south bank and wishes to cross the river along
the shortest path, the angle at which he should make this strokes w.r.t.north is given by:
A. 60° west
B. 45° west
C. 30° west
D. 0°

Answer:

D Watch Video Solution

276. The speed of a projectile at its maximum
height is half of its initial speed. The angle of projection is
A. 60°
B. 15°
C. 30°
D. 45°

Answer:

D Watch Video Solution

277. Two bodies are thrown with the same
velocily al an angle of 30° and 60° to the
horizontal. The ratio of maximum heights

reached is

A. $\sqrt{3}$
B. 3
C. $\frac{1}{3}$
D. $\frac{1}{\sqrt{3}}$

Answer:
(Watch Video Solution
278. A body projected from the ground reaches a point ' X ' in its path after 3 seconds and from there it reaches the ground after further 6 seconds. The vertical distance of the point ' X ' from the ground is (acceleration due to gravity $=10 \mathrm{~ms}^{-2}$)
A. 30 m
B. 60 m
C. 80 m
D. 90 m

Answer:

D Watch Video Solution

279. Three projectiles A, B and Care projected at an angle of $30^{\circ}, 45^{\circ}, 60^{\circ}$ respectively. If R_{A}, R_{B} and R_{C} are ranges of A, B and C respectively, then (velocity of projection is same for A, B and C

$$
\text { A. } R_{A}=R_{B}=R_{C}
$$

$$
\text { B. } R_{A}=R_{C}>R_{B}
$$

C. $R_{A}<R_{B}<R_{C}$

$$
\text { D. } R_{A}=R_{C}<R_{B}
$$

Answer:

D Watch Video Solution

280. Two particles are simultaneously
projected in the horizontal direction from a point P at a certain height. The initial velocities of the particles are oppositely directed to each other and have magnitude v
each. The separation between the particles at
a time when their position vectors (drawn
from the point P are mutually perpendicular, is
A. $\frac{v^{2}}{2} g$
B. $\frac{v^{2}}{g}$
C. $4 \frac{v^{2}}{g}$
D. $2 \frac{v^{2}}{g}$

Answer:

D Watch Video Solution
281. The trajectory of a projectile projected
from origin is given by the equation
$y=x-\left(\frac{2 x^{2}}{5}\right)$. The initial velocity of the projectile is

$$
\begin{aligned}
& \text { A. } 25 m s^{-1} \\
& \text { B. } \frac{2}{5} m s^{-1} \\
& \text { C. } \frac{5}{2} m s^{-1} \\
& \text { D. } 5 m s^{-1}
\end{aligned}
$$

Answer:
282. A particle is projected with velocity $2 \sqrt{g h}$ and at an angle 60° to the horizontal so that it just clears two walls of equal height ' h ' which are at a distance 2 h from each other.

The time taken by the particle to travel between these two walls

> A. $s \sqrt{2 \frac{h}{g}}$
> В. $\sqrt{\frac{h}{2} g}$
> С. $2 \sqrt{\frac{h}{g}}$
D. $\sqrt{\frac{h}{g}}$

Answer:

D Watch Video Solution

283. A body projected from the ground reaches a point ' X ' in its path after 3 seconds and from there it reaches the ground after
further 6 seconds. The vertical distance of the point ' X ' from the ground is (acceleration due to gravity $=10 \mathrm{~ms}^{-2}$)
A. 30 m
B. 60 m
C. 80 m
D. 90 m

Answer:

D Watch Video Solution

284. The velocity of a projectile at the initial point A is $(2 \hat{i}+3 \hat{j}) \mathrm{m} / \mathrm{s}$. Its velocity (in m / s)
at point B is

$$
\begin{aligned}
& \text { A. }-2 \hat{I}-3 \hat{j} \\
& \text { В. }-2 \hat{i}+3 \hat{j} \\
& \text { С. } 2 \hat{I}-3 \hat{j} \\
& \text { D. } 2 \hat{I}+3 \hat{j}
\end{aligned}
$$

Answer:
(Watch Video Solution
285. A projectile is given an initial velocity of
$\hat{i}+2 \hat{j}$. The Cartesian equation of its path is
$\left(g=10 \frac{m}{s^{2}}\right.$
A. $y=2 x-5 x^{2}$
B. $y=x-5 x^{2}$
C. $4 y=2 x-5 x^{2}$
D. $y=2 x-25 x^{2}$

Answer:

D Watch Video Solution
286. A body is projected vertically upwards
with a velocity of $10 \mathrm{~ms}^{-1}$ and another body is
projected simultaneously from the same point with a velocity of $20 \mathrm{~ms}^{-1}$ at an angle of $\frac{\pi}{6}$ with the horizontal. The distance between the two bodies after one second from the time of projection is (Acceleration due to gravity is 10 $\left.m s^{\wedge}-2^{\wedge}\right)$
A. 10 m
B. $10 \sqrt{3} \mathrm{~m}$
C. 20 m

D. $20 \sqrt{3} \mathrm{~m}$

Answer:

D Watch Video Solution

287. The maximum height attained by projectile is increased by 10%, by changing the angle of projection, without changing the speed of projection. The percentage increase in the time of flight will be
A. 0.05
B. 0.1
C. 0.15
D. 0.2

Answer:

- Watch Video Solution

288. A particle is projected with a velocity v so
that its horizontal range twice the greatest
height attained. The horizontal range is
A. $4 \frac{v^{2}}{5 g}$
B. $\frac{v^{2}}{g}$
C. $\frac{v^{2}}{2 g}$
D. $2 \frac{v^{2}}{3} g$

Answer:

- Watch Video Solution

289. A particle moves so that its position
vector is given by $\vec{r}=\cos \omega t \widehat{x}=\sin \omega t \hat{y}$,
where ω is a constant. Which of the following is true?
A. Velocity is perpendicular to \vec{r} and acceleration is directed towards the origin.
B. Velocity is perpendicular to \vec{r} and
acceleration is directed away from the
origin.
C. Velocity and acceleration both are perpendicular to \vec{r}.
D. Velocity and acceleration both are parallel to \vec{r}.

Answer:

- Watch Video Solution

290. The angle between velocity and acceleration of a particle describing uniform circular motion is
A. 180°
B. 90°
C. 45°
D. 60°

Answer:

D Watch Video Solution

291. Angular speed of hour hand of a clock in

degree per second is
A. $\frac{1}{30}$
B. $\frac{1}{60}$
C. $\frac{1}{120}$
D. $\frac{1}{720}$

Answer:

D Watch Video Solution

292. The ratio of angular speed of a second-
hand to the hour-hand of a watch is
A. $3600: 1$
B. $720: 1$
C. $72: 1$
D. $60: 1$

Answer:

D Watch Video Solution

293. The difference between angular speed of minute hand and second hand of a clock is
A. $59 \frac{\pi}{900} \mathrm{rad} / \mathrm{s}$
B. $59 \frac{\pi}{1800} \mathrm{rad} / \mathrm{s}$
C. $59 \frac{\pi}{2400} \mathrm{rad} / \mathrm{s}$
D. $59 \frac{\pi}{3600} \mathrm{rad} / \mathrm{s}$

Answer:

D Watch Video Solution

294. For a particle in uniform circular motion, the accleration \vec{a} at a point $P(R, \theta)$ on the circle of radius R is (Here θ is measured from the X -axis)
A. $\frac{v^{2}}{R} \hat{i}+\frac{v^{2}}{R} \widehat{J}$
B. $-\left(\frac{v^{2}}{R}\right) \cos \theta \hat{i}+\frac{v^{2}}{R} \sin \theta \widehat{J}$
C. $-\left(\frac{v^{2}}{R}\right) \sin \theta \hat{i}+\frac{v^{2}}{R} \cos \theta \widehat{J}$
D. $-\left(\frac{v^{2}}{R}\right) \cos \theta \hat{i}+\frac{v^{2}}{R} \sin \theta \widehat{J}$

Answer:

D Watch Video Solution

295. Two cars of masses m_{1} and m_{2} are moving in circles of radii r_{1} and r_{2} respectively. Their speeds are such that they
make complete circle in the same time t The ratio of their centripetal acceleration is .
A. $m_{1} r_{1}: m_{2} r_{2}$
B. $m_{1}: m_{2}$
C. $r_{1}: r_{2}$
D. 1:1

Answer:

D Watch Video Solution

296. A particle moves in a circle of radius 5 cm

with constant speed and time period $0.2 \pi . s$.

The acceleration of the particle is

$$
\begin{aligned}
& \text { A. } 5 \frac{m}{s^{2}} \\
& \text { B. } 15 \frac{\mathrm{~m}}{s^{2}} \\
& \text { C. } 25 \frac{\mathrm{~m}}{s^{2}} \\
& \text { D. } 36 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{aligned}
$$

Answer:

D Watch Video Solution

297. A particle moves in a circle of radius 25 cm

at two revolutions per second. The
acceleration of the particle is m / s^{2} is
A. π^{2}
B. $8 \pi^{2}$
C. $4 \pi^{2}$
D. $2 \pi^{2}$

Answer:

- Watch Video Solution

298. The angular separation between the minute hand and the hour hand of a clock at

12:20 pm is
A. 120°
B. 90°
C. 110°
D. 100°

Answer:

D Watch Video Solution
299. Two particles A and B are moving in uniform circular motion in concentric circles of
radii r_{A} and r_{B} with speed V_{A} and V_{B} respectively. Their time period of rotation is
the same. The ratio of angular speed of A to that of B will be:
A. $r_{B}: r_{A}$
B. 1:1
C. $r_{A}: r_{B}$
D. $V_{B}: V_{A}$

Answer:

- Watch Video Solution

300. A particle is moving with a uniform speed in a circular orbit of radius R in the centripetal
force inversely proportional to the $n^{\text {th }}$ power of R. If the period of rotation of the particle is
T, then:
A. $T \propto \frac{R^{n+1}}{2}$
B. $T \propto \frac{R^{n}}{2}$
C. $T \propto \frac{R^{3}}{2}$ forany n
D. $T \propto R^{\frac{n}{2}}+1$

Answer:

D Watch Video Solution

301. One end of string of length I is connected to a particle of mass ' m ' and the other end is connected to a small peg on a smooth horizontal table. IF the particle moves in circle with speed'v', the net force on the particle
(directed towards centre) will be (T represents
the tension in the string)
A. T
B. $T+\frac{m v^{2}}{l}$
C. $T-\frac{m v^{2}}{l}$
D. Zero

Answer:
(Watch Video Solution
302. A particle of mass m is executing uniform circular motion on a path of radius r . IF p is the magnitude of its linear momentum, the radial force acting on the particle is
A. $p m r$
B. $r \frac{m}{p}$
C. $\frac{m p^{2}}{r}$
D. $\frac{p^{2}}{r} m$

Answer:

303. A toy cart is tied to the end of an unstretched string of length 'I'. When revolved, the toy cart moves in horizontal circle with radius $2 l$ and time period T. If it is speeded until it moves in horizontal circle of radius '31' with period T_{1}, relation between T and T_{1} is
(Hooke's law is obeyed)

$$
\begin{aligned}
& \text { A. } T_{1}=\frac{2}{\sqrt{3}} T \\
& \text { B. } t_{1}=\frac{\sqrt{3}}{2} T
\end{aligned}
$$

$$
\begin{aligned}
\text { C. } T_{1} & =\sqrt{3} T \\
\text { D. } t_{1} & =\sqrt{\frac{3}{2}} T
\end{aligned}
$$

Answer:

D Watch Video Solution

304. A body at rest starts sliding from top of a smooth inclined plane and requires 4 second to reach bottom. How much time does it take, starting from rest at top, to cover one-fourth of a distance?
A. 1 second
B. 2 second
C. 3 second
D. 4 second

Answer:

- Watch Video Solution

305. A wheel of circumference C is at rest on
the ground. When the wheel rolls forward
through half a revolution, then the displacement of initial point of contact will be

$$
\text { A. } C \sqrt{\frac{1}{\pi^{2}}+\frac{1}{4}}
$$

B. $\frac{C}{2}$
C. $\pi \sqrt{C^{2}+4}$
D. $C \sqrt{\frac{1}{\pi}+\frac{1}{2}}$

Answer:

D Watch Video Solution

306. Two stones are thrown up simultaneously
from the edge of a clir 240 m high with initial speed of $10 \mathrm{~m} / \mathrm{s}$ and $40 \mathrm{~m} / \mathrm{s}$ respectively.

Which of the following graphs best represents
the time variation of relative position of the second stone with respect to the first?
(Assume stones do not rebound after hitting
the ground and neglect air resistance, take $g=10 \frac{m}{s^{2}}$) (The figures are schematic and not drawn to scale).
A.

R
B.

Pas
C.

D.

Answer:
307. A body starting from rest at $t=0$ moves along a straight line with a constant acceleration. At $t=2 s$, the body reverses its direction keeping the acceleration same. The body returns to the initial position at $t=t_{0}$, then t_{0} is
A. 4 s
B. $(4+2 \sqrt{2}) s$
C. $(2+2 \sqrt{2}) s$

$$
\text { D. }(4+4 \sqrt{2}) s
$$

Answer:

D Watch Video Solution

308. Two particles are simultaneously
projected in the horizontal direction from a point P at a certain height. The initial velocities of the particles are oppositely directed to each other and have magnitude v each. The separation between the particles at
a time when their position vectors (drawn
from the point P are mutually perpendicular, is
A. $\frac{v^{2}}{2} g$
B. $\frac{v^{2}}{g}$
C. $4 \frac{v^{2}}{g}$
D. $2 \frac{v^{2}}{g}$

Answer:
(Watch Video Solution
309. A stone is dropped from the top of a tower of height 45 m . One second later another stone is thrown down from the town of the same tower. Both stones reach the ground at the same time. If ${ }^{\wedge}\left(g=10 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)$, magnitude of the initial velocity of the sound stone is
A. $16 \mathrm{~m} / \mathrm{s}$
B. $25 \mathrm{~m} / \mathrm{s}$
C. $12.5 \mathrm{~m} / \mathrm{s}$

D. $8 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

310. A particle of unit mass undergoes onedimensional motion such that its velocity varies according to $v(x)=\beta x^{-2 n}$ where β and n are constants and x is the position of
the particle. The acceleration of the particle as
a function of x, is given by

$$
\begin{aligned}
& \text { A. }-2 n \beta^{2} x^{-(2 n-1)} \\
& \text { B. }-2 n \beta^{2} x^{-(4 n-1)} \\
& \text { C. }-2 n \beta^{2} x^{-(2 n+1)} \\
& \text { D. }-2 n \beta^{2} e^{-(4 n+1)}
\end{aligned}
$$

Answer:

- Watch Video Solution

311. Two balls are thrown horizontally in opposite directions from the same point from a heighth with velocities $4 \mathrm{~m} / \mathrm{s}$ and $3 \mathrm{~m} / \mathrm{s}$. The

velocities are perpendicular will be

A. 65 m
B. 5.25 m
C. 2.45 m
D. None of these

Answer:
(Watch Video Solution
312. A projectile has some range R when the maximum height attained by it is either h_{1} or h_{2}, Then R, h_{1}, and h_{2} will be related as
A. $R=\sqrt{h_{1} h_{2}}$
B. $R=2 \sqrt{h_{1} h_{2}}$
C. $R=3 \sqrt{h_{1} h_{2}}$
D. $R=4 \sqrt{h_{1} h_{2}}$

Answer:

313. A large number of bullets are fired in all directions with same speed v. What is the maximum area on the ground on which these bullets will spread

> А. $\pi \frac{v^{2}}{g}$
> В. $\pi \frac{v^{4}}{g^{2}}$
> C. $\pi^{2} \frac{v^{4}}{g^{2}}$
> D. $\pi^{2} \frac{v^{2}}{g^{2}}$

Answer:

314. The ceiling of a tunnel is 5 m high. What is
the maximum horizontal distance that a ball
thrown with a speed of $20 \mathrm{~m} / \mathrm{s}$, can go without
hitting the ceiling of the tunnel? $\left(g=10 \frac{m}{s^{2}}\right)$
A. $10 \sqrt{3} \mathrm{~m}$
B. $20 \sqrt{3} \mathrm{~m}$
C. $30 \sqrt{3} \mathrm{~m}$
D. 40 m

Answer:

D Watch Video Solution

315. A small particle of mass mis projected at an angle θ with the x-axis with an initial velocity in the $x-y$ plane as shown in the figure.

At a time ${ }^{~} \mathrm{t}<\left(\mathrm{v} \mathrm{v}_{0} \mathrm{O}\right.$ sin theta)/g, the angular momentum of the particle is
where haii, \hat{j} and \hat{k} are unit vectors along x, y, and z-axis respectively.
A. $\frac{1}{2} m g v_{0} t^{2} \cos \theta h a i i$
B. $m g v_{0} t^{2} \cos \theta \hat{j}$
C. $m g v_{0} t \cos \theta \hat{k}$
D. $\frac{1}{2} m g v_{0} t^{2} \cos \theta h a i k$

Answer:

D Watch Video Solution

316. A projectile is fired from the surface of the earth with a velocity of $7 m s^{-1}$ and angle θ with the horizontal. Another projectile fired
from another planet with a velocity of
$2.5 m s^{-1}$ at the same angle follows a trajectory which is identical with the trajectory of the projectile fired from the earth. The value of the acceleration due to gravity on the planet is (in $m s^{-1}$ (given $=9,8 m s^{-2}$)
A. 9.8
B. 0.98
C. 16.3
D. 1.25

- Watch Video Solution

317. From a tower of height H , a particle is thrown vertically upwards with a speed u. The time taken by the particle, to hit the ground, is n times that taken by it to reach the highest point of its path. The relation between H, u and n is:

$$
\text { A. } 2 g H=n^{2} u^{2}
$$

B. $g H=(n-2)^{2} u^{2}$
C. $2 g H=n\left(u^{2}\right)(n-2)$

$$
\text { D. } g H=(n-2) u^{2}
$$

Answer:

D Watch Video Solution

318. The relation between linear speed v, angular speed ω and angular acceleration α in circular motion is

$$
\begin{aligned}
& \text { A. } \alpha=a \frac{\omega}{v} \\
& \text { B. } \alpha=a \frac{v}{\omega}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \alpha=v \frac{\omega}{a} \\
& \text { D. } \alpha=\frac{\omega}{a} v
\end{aligned}
$$

Answer:

- Watch Video Solution

319. If K.E of the particle of mass m performing
U.C.M in a circle of radius r is R. the acceleration of the particle is
A. $2 \frac{E}{m} r$
B. $\left(2 \frac{E}{m} r\right)^{2}$
C. $2 E m r$
D. $4 \frac{E}{m} r$

Answer:

D Watch Video Solution

320. A particle at rest is moved along a straight line by a machine giving constant power. The distance moved by the particle in time ' t ' is proportional to
A. $t^{\frac{1}{2}}$
B. $t^{\frac{2}{3}}$
C.t
D. $t^{\frac{3}{2}}$

Answer:

D Watch Video Solution

321. A coin is placed on a rotating tur table rolated with angular speed ω. The coin just slips if it is placed at 4 cm from the center of
the table. If angular velocity is doubled, at what distance will coin starts to slip.
A. 1 cm
B. 4 cm
C. 9 cm
D. 16 cm

Answer:
(Watch Video Solution
322. A particle has initial velocity $4 \hat{i}+3 \hat{j}$ and an accelaration $3 \hat{I}+4 \hat{j}$. The rate of change of
its speed is
A. 5 units
B. $\frac{24}{5}$ units
C. $\frac{18}{5}$ units
D. 7 units

Answer:

D Watch Video Solution
323. A boat crosses a lake and returns in time
T_{0}, at a speed V . On a rough day, there is
uniform current al speedy to help the onward journey and impede the return journey. If the time taken to go across and retum on the same day be T . then $\frac{T}{T_{0}}$ is

$$
\begin{aligned}
& \text { A. } \frac{1-v^{2}}{V^{2}} \\
& \text { B. } \frac{1}{1-\left(\frac{v^{2}}{V^{2}}\right)} \\
& \text { C. } \frac{1+v^{2}}{V^{2}} \\
& \text { D. } \frac{1}{1+\left(\frac{v^{2}}{V^{2}}\right)}
\end{aligned}
$$

Answer:

D Watch Video Solution

324. A bullet is fired from surface of earth with
a velocity of $u \mathrm{~m} / \mathrm{s}$ at an angle θ with the x -axis.

Simultaneously a similar bullet is fired from a certain plant with velocity $u^{\prime} \mathrm{m} / \mathrm{s}$ at the same angle with the direction of x-axis. The trajectories in the two cases are identical. If g and g^{\prime} are accelerations due to gravity on the
curth's surface and planet's surface
respectively, then

$$
\begin{aligned}
& \text { A. } \frac{u}{u^{\prime}}=\frac{g}{g^{\prime}} \\
& \text { B. } \frac{u}{u^{\prime}}=\frac{g^{2}}{g^{\prime} 2} \\
& \text { C. } \frac{u^{2}}{u^{\prime 2}}=\frac{g^{\prime}}{g} \\
& \text { D. } \frac{u^{2}}{u^{\prime 2}}=\frac{g}{g^{\prime}}
\end{aligned}
$$

Answer:

D Watch Video Solution

325. A man throws balls with same speed
vertically upwards one after the other at an
interval of 3 s . What should be the speed of
throw so that more than two balls are in the sky at any time?
A. Only with speed $29.4 \mathrm{~m} / \mathrm{s}$
B. More than $29.4 \mathrm{~m} / \mathrm{s}$
C. At least $9.8 \mathrm{~m} / \mathrm{s}$
D. Any speed less than $29.4 \mathrm{~m} / \mathrm{s}$

Answer:

- Watch Video Solution

326. A body is projected with velocity v_{1} from
the point P as shown in the figure. At the same
time, another body is projected vertically upwards from Q with velocity v_{2}. The point Q
lies vertically below the highest point. For both the bodies to collide, $\frac{v^{2}}{v_{1}}$ should be

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{3}}{2} \\
& \text { B. } \frac{1}{\sqrt{2}}
\end{aligned}
$$

c. $\frac{\sqrt{5}}{3}$
D. $\frac{7}{2}$

Answer:

D Watch Video Solution

327. A particle of mass 8 kg is initially at rest. A
force acts on it whose magnitude changes
with time. The force-time graph is shown in
the figure.
The velocity of the particle after 10 s is
A. $20 m s^{-1}$
B. $50 m s^{-1}$
C. $12.5 \mathrm{~ms}^{-1}$
D. $26 m s^{-1}$

Answer:

D Watch Video Solution

328. Two trains 120 m and 100 m in length are

running in opposite directions with velocities
$43 \mathrm{kmh}^{-1}$ and $29 \mathrm{kmh}^{-1}$. In what time they will completely cross each other?
A. 9 s
B. 11 s
C. 13 s
D. 15 s

Answer:
(Watch Video Solution
329. A body starting from rest is accelerated
uniformly for 15 s . If x_{1}, x_{2}, x_{3} are the distance
travelled in $5 \mathrm{~s}, 10 \mathrm{~s}$ and 15 s respectively, then
$x_{1}: x_{2}: x_{3}=$
A. $1: 2: 3$
B. 1:1:1
C. 1:3:5
D. 1:3:9

Answer:

330. Two particles are projected from the same point with the same speed, at different angles
θ_{1} and θ_{2} to the horizontal. Their times of
flight are t_{1} and t_{2} respectively and they have
the same horizontal range. Then the incorrect relation is
A. $\frac{t_{1}}{t_{2}}=\tan \theta_{1}$
B. $\theta_{1}+\theta=90^{\circ}$
C. $\frac{t_{1}}{\sin \theta_{1}=} \frac{t_{2}}{\sin \theta_{2}}$

$$
\text { D. } \frac{t_{1}}{t_{2}}=\tan \theta_{2}
$$

Answer:

D Watch Video Solution

331. A body of mass m starts moving from a position of rest with a constant acceleration a.

After covering a distance, it has acquired
velocity v . What will be the magnitude of its
velocity after it has covered a distance 2 s ?
A. $\frac{v}{2}$
B. v
C. $\sqrt{2} v$
D. 2 v

Answer:

- Watch Video Solution

332. A child travelling in a minibus accidentally drops a bottle out of the window. If the bus is moving in forward direction and bottle at the moment of falling is directed vertically
downward, then the correct path that the bottle takes in falling to ground is
A. Straight line
B. slant line
C. parabola
D. semicircle

Answer:
(Watch Video Solution
333. A particle is projected at $\frac{\pi}{4}$ to the horizontal with a kinetic energy K. The kinetic energy at the highest point is
A. K
B. zero
C. $\frac{K}{4}$
D. $\frac{K}{2}$

Answer:

D Watch Video Solution
334. A cyclist starts from the centre O of a circular park of radius two kilometre, reaches the edge P of the park, then cycles along the circumference and return to the centre along

QO as shown in the figure. If the round trip
takes 10 minutes, the net displacement and average speed of the cyclist (in metre and kilometre per hour) is

$$
\begin{aligned}
& \text { A. } 0, \frac{\pi+4}{2} \\
& \text { B. } \frac{\pi+4}{2}, 0
\end{aligned}
$$

C. $42.9, \frac{\pi+4}{2}$
D. $0,42.9$

Answer:

D Watch Video Solution

335. A projectile has initially the same horizontal velocity as it would acquire if it had moved from rest with uniform acceleration of
$4 m s^{-1}$ for half a minute. Ir the maximum
height reached by it is 180 m , then the angle of projection is (Take $g=10 m s^{-2}$)

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{1}{3}\right) \\
& \text { B. } \tan ^{-1}(0.5) \\
& \text { C. } \tan ^{-1}(0.8) \\
& \text { D. } \sin ^{-1}\left(\frac{4}{9}\right)
\end{aligned}
$$

Answer:

336. In a car race, car A takes a time of $t s$ less
than car B at the finish and passes the
finishing point with a velocity $\mathrm{v} \mathrm{m} / \mathrm{s}$ more than
the car B. Assuming that the cars start from rest and travel with constant acceleration a_{1} and a_{2} respectively, velocity v is given by
A. $\sqrt{a_{1} a_{2}} t$
B. $\sqrt{2}\left(a_{1} a_{2} t^{2}\right)^{\frac{1}{2}}$
C. 'sqrt(a_1a_2)t
D. $a_{1} \sqrt{a_{2}+t^{2}}$

Answer:

D Watch Video Solution

337. A body starting from rest, accelerates at a constant rate a $\frac{m}{s^{2}}$ for some time, after which it decelerates at constant rate $b \frac{m}{s^{2}}$ to come to rest finally. If the total time elapsed is ts the maximum velocity attained by the body is given
A. $a \frac{b}{a+b} t \frac{m}{s}$
B. $a \frac{b}{a-b} t \frac{m}{s}$
C. $2 a \frac{b}{a+b} t \frac{m}{s}$
D. $2 a \frac{b}{a-b} t \frac{m}{s}$

Answer:

D Watch Video Solution

338. The speed of a projectile when it is at its greatest height is $\sqrt{\frac{2}{5}}$ times its speed at half
the maximum height. What is its angle of projection?
A. 30°
B. 60°
C. 45°
D. 15°

Answer:

D Watch Video Solution

339. A particle of mass 2 kg is revolved in a horizontal circle of radius Im with the help of a string. If the maximum tension the string
can withstand is $32 \pi^{2} N$, then the maximum
frequency with which the particle can revolve
is
A. 3 Hz
B. 2 Hz
C. 4 Hz
D. 5 Hz

Answer:

D Watch Video Solution
340. A car of mass 840 kg moves on a circular path with constant speed of $10 \mathrm{~m} / \mathrm{s}$. It is turned through 90° after travelling 660 m on the road. The centripetal force acting on the car is
A. 324 N
B. 2640 N
C. 284 N
D. 200 N
(Watch Video Solution

