©゙"doubtnut

India's Number 1 Education App

PHYSICS

NCERT - FULL MARKS PHYSICS(TAMIL)

WORK, ENERGY AND POWER

Examples

1. Find the angle between force
$F=(3 \hat{i}+4 \hat{j}-5 \hat{k})$ unit and displacement
$d=(5 \hat{i}+4 \hat{j}+3 \hat{k})$ unit. Also find the projection of F and d.

D Watch Video Solution

2. It is well known that a rain drop falls under
the influence of the downward gravitational
force and the opposing resistive force. The
latter is known to be proportional to the speed of the drop, but is otherwise undetermined. Consider a drop of mass 1.0 g
falling from a height of 1.00 km . It hits the
ground with a speed of $50.0 \mathrm{~ms}^{-1}$ (a) What is
the work done by the gravitational force?

What is the work done by the unknown resistive force?

D Watch Video Solution

3. It is well known that a rain drop falls under
the influence of the downward gravitational
force and the opposing resistive force. The
latter is known to be proportional to the speed of the drop, but is otherwise
undetermined. Consider a drop of mass 1.0 g falling from a height of 1.00 km . It hits the ground with a speed of $50.0 \mathrm{~ms}^{-1}$ (a) What is the work done by the gravitational force ?

What is the work done by the unknown resistive force?

- Watch Video Solution

4. A car comes to a sliding stop in 5 m . During
this process, the force on the car due to road is 100 N and is directed opposite to the
motion.
(a) How much work done the road do on the car?
(b) How much work done the car do on the road?

D Watch Video Solution

5. A cyclist comes to a skidding stop in 10 m .

During this process, the force on the cycle due
to the road is 200 N and is directly opposite to
the motion.
a. How much work does the road do on the cycle?
b. How much work does the cycle do on the road?

D Watch Video Solution

6. In some demonstration, a police officer fires
a bullet of mass 50.0 g with speed $200 \mathrm{~ms}^{-1}$
on soft plywood of thickness 2.00 cm . The
bullet emerges with only 10% of its initial
kinetic energy. What is the emergent speed of the bullet?

D Watch Video Solution

7. A woman pushes a trunk on a railway platform which has a rough surface. She applies a force of 100 N over a distance of 10 m .

Thereafter, she gets progressively tired and her applied force reduces linearly with distance to 50 N . The total distance through which trunk has been moved is 20 m . Plot the
force applied by the woman and the frictional force, which is 50 N against the distance.

Calculat the work done by the two forces over 20 m.

- Watch Video Solution

8. A block of mass $m=1 \mathrm{~kg}$ moving on a horizontal surface with speed $v_{i}=2 \mathrm{~ms}^{-1}$ enters a rough patch ranging from $x 0.10 m \rightarrow x=2.01 m$. The retarding force F_{r}
on the block in this range ins inversely
proportional to x over this range
$F_{r}=-\frac{k}{x}$ for $0.1<x<2.01 m$
$=0$ for $<0.1 m$ and $x>2.01 m$ where $k=0.5 J$. What is the final K.E. and speed v_{f} of the block as it crosses the patch?

D Watch Video Solution

9. A bob of mass m is suspended by a light string of length L. It is imparted a horizontal velocity v_{0} at the lowest point A such that it completes a semi-circular trajectory in the
vertical plane with the string becoming slack on reaching the topmost point C, figure, Obtain an expression for (i) v_{0} (ii) the speeds at points B and C, (ii) the ration of kinetic energies $\left(K_{B} / K_{C}\right)$ at B and C .

Comment on the nature of the trajectory of
the bob after it reahes the poing C.

- Watch Video Solution

10. A bob of mass m is suspended by a light string of length L. It is imparted a horizontal velocity v_{0} at the lowest point A such that it completes a semi-circular trajectory in the vertical plane with the string becoming slack on reaching the topmost point C, figure, Obtain an expression for (i) v_{0} (ii) the speeds at points B and C, (ii) the ration of kinetic energies $\left(K_{B} / K_{C}\right)$ at B and C.

Comment on the nature of the trajectory of
the bob after it reahes the poing C.

- Watch Video Solution

11. A bob of mass m is suspended by a light string of length L. It is imparted a horizontal velocity v_{0} at the lowest point A such that it completes a semi-circular trajectory in the vertical plane with the string becoming slack on reaching the topmost point C, figure, Obtain an expression for (i) v_{0} (ii) the speeds at points B and C, (ii) the ration of kinetic energies $\left(K_{B} / K_{C}\right)$ at B and C.

Comment on the nature of the trajectory of
the bob after it reahes the poing C.

- Watch Video Solution

12. To stimulat car accidents, the auto manufacturers study the collisions of moving
cars with mounted springs of different spring
constants. Consider a typical simulation with a
car of mass 1000kg moving with a speed of
$18.0 \mathrm{~km} / \mathrm{h}$ on a smooth road and colliding with a horizontally mounted spring of spring constant $6.25 \times 10^{3} \mathrm{Nm}^{-1}$. What is the maximum compression of the spring?
13. Consider Example 6.8 taking the coefficient of friction, u, to be 0.5 and calculate the maximum compression of the spring.

D View Text Solution

14. Energy required to break one bond in DNA
is approximately

D Watch Video Solution
15. Express (a) the energy required to break one bond in DNA $\left(10^{-10} \mathrm{~J}\right)$ in eV.
(b) the kinetic energy of an air molecule $\left(10^{-21} J\right)$ in eV.
(c) the daily intake of a human adult $\left(10^{7} J\right)$ in kilocalories.

- Watch Video Solution

16. Express (a) the energy required to break one bond in DNA $\left(10^{-10} \mathrm{~J}\right)$ in eV.
(b) the kinetic energy of an air molecule
$\left(10^{-21} J\right)$ in eV.
(c) the daily intake of a human adult $\left(10^{7} J\right)$ in kilocalories.

D Watch Video Solution

17. An elevator can carry a maximum load of

1800 kg (elevator + passengers) is moving up
with a constant speed of $2 m s^{-1}$. The friction
force opposite the motion is $4000 N$.What is
minimum power delivered by the motor to the elevator?

D Watch Video Solution

18. In a nuclear reactor, a neutron of high
speed $\left(\approx 10^{7} \mathrm{~ms}^{-1}\right)$ must be slowed down to $10^{3} \mathrm{~ms}^{-1}$ so that it can have a high probality of interacting with isotipe $\quad 92 U^{235}$ and causing it to fission. Show that a neutron
can lose most of its K.E. in an elastic collision
with a light nuclei like deuterium or carbon
which has a mass of only a fewe times the neutron mass. The material making up the light nuclei usually heavy water $\left(D_{2} O\right)$ or graphite is called modertaor.

- Watch Video Solution

19. Consider the collision depicted in Figure, to
be between two billiard balls with equal masses $m_{1}=m_{2}$. The first ball is called the cue and the second ball is called the target.

The billiard player wants to sink the target ball
in a corner pocket, which is at an angle
$\theta_{2}=\phi=37^{\circ}$. Assume that the collision is elastic and that friction and rotational motion are not important. Obtain $\theta_{1}=\theta$.

- Watch Video Solution

Exercises

1. The sign of work done by a force is important to understant. State carefully if the following quantities are positive or negative.
(a) Work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket.
(b) Work done by the gravitational force in the above case. (c) Work done by friction on a body sliding down an inclined plane. (d) Work done by an applied froce on a body moving on a rough horizontal plane with uniform velocity. (e) Work done by the resistive force of air on a vibrating pendulum in bringing it to rest.
2. The sign of work done by a force is important to understant. State carefully if the following quantities are positive or negative.
(a) Work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket.
(b) Work done by the gravitational force in the
above case. (c) Work done by friction on a
body sliding down an inclined plane. (d) Work done by an applied froce on a body moving on
a rough horizontal plane with uniform velocity.
(e) Work done by the resistive force of air on a
vibrating pendulum in bringing it to rest.

- Watch Video Solution

3. The sign of work done by a force is important to understant. State carefully if the following quantities are positive or negative.
(a) Work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket.
(b) Work done by the gravitational force in the above case. (c) Work done by friction on a body sliding down an inclined plane. (d) Work done by an applied froce on a body moving on a rough horizontal plane with uniform velocity.
(e) Work done by the resistive force of air on a vibrating pendulum in bringing it to rest.

D Watch Video Solution

4. State the sign of work done by a force in the
following .
work done by an applied force on a body moving on a rough horizontal plane with uniform velocity.

- Watch Video Solution

5. The sign of work done by a force is important to understant. State carefully if the following quantities are positive or negative.
(a) Work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket.
(b) Work done by the gravitational force in the above case. (c) Work done by friction on a body sliding down an inclined plane. (d) Work done by an applied froce on a body moving on a rough horizontal plane with uniform velocity.
(e) Work done by the resistive force of air on a vibrating pendulum in bringing it to rest.

- Watch Video Solution

6. A body of mass 2 kg initially at rest moves
under the action of an applied horizontal
force of 7 N on a table with coefficient of kinetic friction $=0.1$. Calculate the
(a) work done by applied force in 10s. (b) work done by friction in 10s.
(c) work done by the net force on the body in

10s.
(d) change in K.E. of body in 10s, and interpret
your result.

- Watch Video Solution

7. A body of mass 2 kg initially at rest moves
under the action of an applied horizontal
force of 7 N on a table with coefficient of kinetic friction $=0.1$. Calculate the
(a) work done by applied force in 10s. (b) work done by friction in 10s.
(c) work done by the net force on the body in 10s.
(d) change in K.E. of body in 10s, and interpret your result.

- Watch Video Solution

8. A body of mass 2 kg initially at rest moves
under the action of an applied horizontal
force of 7 N on a table with coefficient of kinetic friction $=0.1$. Calculate the
(a) work done by applied force in 10s. (b) work done by friction in 10s.
(c) work done by the net force on the body in 10s.
(d) change in K.E. of body in 10s, and interpret your result.

- Watch Video Solution

9. A body of mass 2 kg initially at rest moves
under the action of an applied horizontal
force of 7 N on a table with coefficient of kinetic friction $=0.1$. Calculate the
(a) work done by applied force in 10s. (b) work done by friction in 10s.
(c) work done by the net force on the body in 10s.
(d) change in K.E. of body in 10s, and interpret your result.

- Watch Video Solution

10. Given in fig are examples of some potential energy functions in one dimension. The total enrgy of the particle is indicated by a cross on the ordinate axis. In each case, specify the regions, if any, in which the particle cannot be found for the given energy. Also, indicate the minimum total energy the particle must have in each case. Think of simple physical contexts for which these potential energy shapes are
relevant.

D Watch Video Solution

11. The potential energy function for a particle executing simple harmonic motion is given by $V(x)=\frac{1}{2} k x^{2}$, where k is the force constant
of the oscillatore. For $k=\frac{1}{2} N m^{-1}$, show that a particle of total energy 1 joule moving under this potential must turn back when it reaches $x= \pm 2 m$.

- Watch Video Solution

12. Answer the following:
a) The casing of a rocket in flight burns up due
to friction. At whose expense is the heat
required for burning obtained? The rocket or the atmosphere?
b) Comets move around the sun in highly elliptical orbits. The gravitational force on the comet due to the sun is not normal to the comet's velocity in general. Yet the work done by the gravitatonal force over every complete orbit of the comet is zero. Why?
c) An artificial satellite orbiting the earth in very atmosphere loses its energy grdually due to dissipation against atmospheric resistance, howerver small. Why then does its speed increase progressively as it comes closer and closer tothe earth? d)In fig i) the man walks

2 m carrying a mass of 15 kg on his hands. In

Fig ii) he walks the same distance pulling the rope behind him. The rope goes over pulley, and a mass of 15 kg hangs at its other end. In which case is the work done greater?

(i)
(iii)

D Watch Video Solution

13. Answer the following:
a) The casing of a rocket in flight burns up due
to friction. At whose expense is the heat
required for burning obtained? The rocket or the atmosphere?
b) Comets move around the sun in highly
elliptical orbits. The gravitational force on the
comet due to the sun is not normal to the
comet's velocity in general. Yet the work done
by the gravitatonal force over every complete orbit of the comet is zero. Why?
c) An artificial satellite orbiting the earth in
very atmosphere loses its energy grdually due
to dissipation against atmospheric resistance,
howerver small. Why then does its speed increase progressively as it comes closer and
closer tothe earth? d)In fig i) the man walks

2 m carrying a mass of 15 kg on his hands. In

Fig ii) he walks the same distance pulling the rope behind him. The rope goes over pulley, and a mass of 15 kg hangs at its other end. In which case is the work done greater?

14. Answer the following:
a) The casing of a rocket in flight burns up due
to friction. At whose expense is the heat required for burning obtained? The rocket or the atmosphere?
b) Comets move around the sun in highly elliptical orbits. The gravitational force on the comet due to the sun is not normal to the comet's velocity in general. Yet the work done by the gravitatonal force over every complete orbit of the comet is zero. Why?
c) An artificial satellite orbiting the earth in
very atmosphere loses its energy grdually due to dissipation against atmospheric resistance, howerver small. Why then does its speed increase progressively as it comes closer and closer tothe earth? d)In fig i) the man walks

2 m carrying a mass of 15 kg on his hands. In
Fig ii) he walks the same distance pulling the rope behind him. The rope goes over pulley, and a mass of 15 kg hangs at its other end. In which case is the work done greater?

(i)

- Watch Video Solution

15. Answer the following:
a) The casing of a rocket in flight burns up due
to friction. At whose expense is the heat required for burning obtained? The rocket or the atmosphere?
b) Comets move around the sun in highly elliptical orbits. The gravitational force on the comet due to the sun is not normal to the comet's velocity in general. Yet the work done by the gravitatonal force over every complete
orbit of the comet is zero. Why?
c) An artificial satellite orbiting the earth in
very atmosphere loses its energy grdually due to dissipation against atmospheric resistance,
howerver small. Why then does its speed increase progressively as it comes closer and closer tothe earth? d)In fig i) the man walks

2 m carrying a mass of 15 kg on his hands. In

Fig ii) he walks the same distance pulling the rope behind him. The rope goes over pulley, and a mass of 15 kg hangs at its other end. In
which case is the work done greater?

(i)
(iii)

- Watch Video Solution

16. When a conservative force does positive work on a body, the potential energy of the body
(D) Watch Video Solution
17. The work done by a body against friction always results in

D Watch Video Solution

18. Underline the correct alterntaive:
a) when a conservative force does positivie
work on a body, the potential energy of the body increase/decreases/remains unaltered.
work done by a body against friction always
results in a loss of its kinetic /potential energy.
c) The rate of change of total momentum of a
many-particle system is proportional to the external force/ sum of the internal forces on the system.
d) In an inelastic collision of two bodies, the quantities which do not change after the collision are the total kinetic energy/total linear momentum/total enregy of the system of two bodies.

D Watch Video Solution

19. Underline the correct alterntaive:
a) when a conservative force does positivie
work on a body, the potential energy of the body increase/decreases/remains unaltered.
work done by a body against friction always
results in a loss of its kinetic /potential energy.
c) The rate of change of total momentum of a many-particle system is proportional to the external force/ sum of the internal forces on the system.
d) In an inelastic collision of two bodies, the quantities which do not change after the
collision are the total kinetic energy/total linear momentum/total enregy of the system of two bodies.

D Watch Video Solution

20. State if each of the following statements is true or false. Give reasons for your answer.
a) In an elastic collision of two bodies, the momentum and energy of each body is conserved.
b)Total energy of a systm is always
conserved,no matter what internal and external forces on the body are present.

Work done in the motion of a body over a closed loop is zero for every force in nature.
d) In an inelastic collision, the final kinetic energy is always less than the initial kinetic energy of the sytem.

D Watch Video Solution

21. State if each of the following statements is
true or false. Give reasons for your answer.
a) In an elastic collision of two bodies, the momentum and energy of each body is conserved.
b)Total energy of a systm is always conserved,no matter what internal and external forces on the body are present.

Work done in the motion of a body over a closed loop is zero for every force in nature.
d) In an inelastic collision, the final kinetic energy is always less than the initial kinetic energy of the sytem.
22. State if each of the following statements is true or false. Give reasons for your answer.
a) In an elastic collision of two bodies, the momentum and energy of each body is conserved.
b)Total energy of a systm is always conserved,no matter what internal and external forces on the body are present.

Work done in the motion of a body over a closed loop is zero for every force in nature.
d) In an inelastic collision, the final kinetic
energy is always less than the initial kinetic energy of the sytem.

D Watch Video Solution

23. State if each of the following statements is true or false. Give reasons for your answer.
a) In an elastic collision of two bodies, the momentum and energy of each body is conserved.
b)Total energy of a systm is always conserved,no matter what internal and
external forces on the body are present.

Work done in the motion of a body over a closed loop is zero for every force in nature.
d) In an inelastic collision, the final kinetic energy is always less than the initial kinetic energy of the sytem.

D Watch Video Solution

24. In an elastic collision of two billiard balls, is
the total kinetic energy conserved during the
short time of collision of the ball (i.e when they are in contact)?

D Watch Video Solution

25. Anwer carefully, with reasons:
a) In an elastic collision of two billiard balls, is
the total kinetic energy conserved during the
short time of collision of the balls (i.e. when
they are in contact)?

Is the total linear momentum conserved during the short time of an elastic collision of
two balls?
c) What are the answers to a) and b) for an inelastic collision?
d) If the potenital energy of two billiard balls
depends only on the separation distance
between their centers, is the collision elastic
or inelastic? (note we are talking here of potential energy corresponding to the force during collision, not gravitational potential energy).
26. Anwer carefully, with reasons:
a) In an elastic collision of two billiard balls, is
the total kinetic energy conserved during the short time of collision of the balls (i.e. when they are in contact)?

Is the total linear momentum conserved during the short time of an elastic collision of two balls?
c) What are the answers to a) and b) for an inelastic collision?
d) If the potenital energy of two billiard balls depends only on the separation distance between their centers, is the collision elastic
or inelastic? (note we are talking here of potential energy corresponding to the force during collision, not gravitational potential energy).

D Watch Video Solution

27. Anwer carefully, with reasons:
a) In an elastic collision of two billiard balls, is
the total kinetic energy conserved during the
short time of collision of the balls (i.e. when
they are in contact)?

Is the total linear momentum conserved
during the short time of an elastic collision of two balls?
c) What are the answers to a) and b) for an inelastic collision?
d) If the potenital energy of two billiard balls depends only on the separation distance between their centers, is the collision elastic or inelastic? (note we are talking here of potential energy corresponding to the force during collision, not gravitational potential energy).
28. A body is initially at rest. It undergoes onedimensional motion with constant
acceleration. The power delivered to it at time t is proportional to (i) $t^{1 / 2}$ (ii) t (iii) $t^{3 / 2}$ (iv) t^{2}
A. $t^{\frac{1}{2}}$
B. t
C. $t^{\frac{3}{2}}$
D. t^{2}

Answer: B

- Watch Video Solution

29. A body is moving undirectionally under the
influence of a source of constatn power. It displacement in time t is proportional to
$t^{1 / 2}$ (ii) t (iii) $t^{3 / 2}$ (iv) t^{2}
A. $t^{\frac{1}{2}}$
B. t
C. $t^{\frac{3}{2}}$
D. t^{2}

Answer: C

D Watch Video Solution

30. A body constrained to move along the Zaxis of a co-ordinate system is subject to a constant forece $\vec{F}=-\hat{i}+2 \hat{j}+3 \hat{k}$, where
$\hat{i}, \hat{j}, \hat{k}$ are unit vectors along the $X-, Y$ - and $Z-$ axis of the system respectively. What is the
work done by this force in moving the body a distance of 4 m along the Z -axis ?

D Watch Video Solution

31. An electron and a proton are detected in a cosmic ray experiment, the first with kinetic energy 10 keV , and the second with 100 keV .

Which is faster, the electron or the proton ?

Obtain the ratio of their speeds.
(Electron mass $=9.11 \times 10^{-31} \mathrm{~kg}$, proton
mass

$$
\left.=1.67 \times 10^{-27} \mathrm{~kg}, 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}\right)
$$

D Watch Video Solution

32. A rain drop of radius 2 mm , falls from a height of 500 m above the ground. It falls with decreasing acceleration due to viscous resistance of air until half its original height. It attains its maximum (terminal) speed, and moves with uniform speed there after. What is
the work done by the gravitational force on
the drop in the first half and second half of its
journey? Take density of water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.

What is the work done by the resistive force in
the entire journey if its speed on reaching the ground is $10 \mathrm{~ms}^{-1}$?

D Watch Video Solution

33. A molecule in a gas container hits a
horizontal wall with a speed of $200 \mathrm{~ms}^{-1}$ and
angle 30° with the normal and rebounds with
the same speed. Is momentum conserved in
the collision? Is the collision elastic or inelastic.

D Watch Video Solution

34. A pump on the ground floor of a building
can pump of water to fill a tank of volume
$30 m s^{3}$ in 15 min . If the tank is 40 m above the ground and the efficiency of the pump is 30% , how much electric power is consumed by the pump? $\left(\right.$ Take $\left.g=10 m s^{2}\right)$
35. Two identical ball bearings in contact with each other and resting on a frictionless table are hit head on by another ball bearing of the same mass moving initially with a speed v , figure,. If the collision is elastic, which of the following is a possible result after collisioin?

36. The bob A of a simple pendulum released from 30° to the vertical hits another bobo B of the same mass at rest on a table as shown in figure. How high does the bob A rise after the collision ? Neglect the size of the bobs and assume the collision to be elastic.

- Watch Video Solution

37. The bob A of a simple pendulum is released
from a horizontal position A as shownin in
figure. If the length of the pendulum is 1.5 m , what is the speed with which the bob arrives at the lowermost point B, given that it dissipates 5% of its initial energy against air
resistance?

- Watch Video Solution

38. A trolley of mass 300 ks carrying a sand bag of 25 kg is moving uniformly with a speed of $27 \mathrm{~km} / \mathrm{h}$ on a frictionless track. After a
while, sand starts leaking out of a hole on the trolley's floor at the rate of $0.05 \mathrm{kgs}^{-1}$. What is the speed of the trolley after the entire sand bag is empty?

D Watch Video Solution

39. A particle of mass $0.5 k g$ travels in a straight line with velocity $v=a x^{3 / 2}$ where $a=5 m^{-1 / 2} s^{-1}$. What is the work done by
the net force during its displacement from $x=0$ to $x=2 m$?

Watch Video Solution

40. The blades of a windmill sweep out a circle of area A. (a) If the wind flows at a velocity v perpendicular to the circle, what is the mass of the air passing through in time t ? (b) What is the kinetic energy of the air? (c) Assume that the windmill converts 25% of the wind's energy into electrical energy, and that $A=30 \mathrm{~m}^{2}, v=36 \mathrm{kmh}^{-1}$ and the density of air is $1.2 \mathrm{kgm}^{-3}$, what is the electrical power produced?

- Watch Video Solution

41. The blades of a windmill sweep out a circle of area A .

What is the kinetic energy of the air?

- Watch Video Solution

42. The blades of a windmill sweep out a circle of area A. (a) If the wind flows at a velocity v perpendicular to the circle, what is the mass of the air passing through in time t ? (b) What is
the kinetic energy of the air? (c) Assume that the windmill converts 25% of the wind's energy into electrical energy, and that $A=30 \mathrm{~m}^{2}, v=36 \mathrm{kmh}^{-1}$ and the density of air is $1.2 \mathrm{kgm}^{-3}$, what is the electrical power produced?

D Watch Video Solution

43. A person trying to lose weight (dieter) lifts
a 10 kg mass through $0.5 \mathrm{~m}, 1000$ times, A
ssume that the potential energy lost each
time she lowers the mass is dissipated (a) How much work does she does against the gravitational force ? (b) Fat supplies
$3.8 \times 10^{7} J$ of energy per kilogram which is converted to mechanical energy with a 20% efficiency rate. How much fat will the dieter use up ?

D Watch Video Solution

44. A person trying to lose weight (dieter) lifts
a 10 kg mass through $0.5 \mathrm{~m}, 1000$ times, A
ssume that the potential energy lost each
time she lowers the mass is dissipated (a) How much work does she does against the gravitational force ? (b) Fat supplies $3.8 \times 10^{7} \mathrm{~J}$ of energy per kilogram which is converted to mechanical energy with a 20% efficiency rate. How much fat will the dieter use up?

D Watch Video Solution

45. A family uses 8 kW of power. (a) Direct solar energy is incident on the horizontal surface at an average rate of 200 W per square metre. If 20% of this energy can be converted to useful electrical energy, how large an area is needed to supply 8kW? (a) Compare this area to that of the roof of a typical house.

D Watch Video Solution

46. A family uses 8 kW of power. (a) Direct solar
energy is incident on the horizontal surface at
an average rate of 200 W per square metre. If
20% of this energy can be converted to
useful electrical energy, how large an area is
needed to supply 8 kW ? (a) Compare this area to that of the roof of a typical house.

D Watch Video Solution

Exercises Additional Exercises

1. A bullet of mass 0.012 kg and horizontal speed $70 \mathrm{~ms}^{-1}$ strikes a block of wood of mass
0.4 kg and instantly comes to rest with respect to the block. The block is suspended from the ceiling by thin wire. Calculate the height to which the block rises. Also, estimate the amount of heat produced in the block.

D Watch Video Solution

2. Two inclined frictionless tracks, one gradual
and the other steep meet at A from where to
stones are allowed to slide down from rest, one on each track (fig.) Will hte stones reach the bottom at the same time? Will they reach there with the same speed? Explain, given $\left.\theta_{1}=30^{\circ}, \theta_{92}\right)=60^{\circ}$ and $\mathrm{h}=10 \mathrm{~m}$. What are the speeds and time taken by the two stones?

D Watch Video Solution

3. A 1 kg block situated on a rough incline is
connected to a spring of spring constant $100 \mathrm{Nm}^{-1}$ as shown in figure,. The block is released from rest with the spring in the unstretched position. The block moves 10 cm down the incline before coming to rest. Find the coefficient of friction between the block and the incline. Assume that the spring has
negligible mass and the pulley is frictionless.

D Watch Video Solution

4. A bob of mass 0.3 kg falls from the ceiling of
an elevator moving down with a uniform
speed of $7 m s^{-1}$. If hits the floor of the elevator (length of the elevator $=3 \mathrm{~m}$) and
does not rebound. What is the heat produced
by the impact ? Would your answer be different if the elevator were stationary ?

D Watch Video Solution

5. A (trolley + child) of total mass 200 kg is moving with a uniform speed of $36 \mathrm{~km} / \mathrm{h}$ on a frictionless track. The child of mass 20 kg starts running on the trolley from one end to the other (10 m away) with a speed of $10 \mathrm{~ms}^{-1}$ relative to the trolley in the direction of the
trolley's motion and jumps out of the trolley
with the same relative velocity. What is the
final speed of the trolley? How much has the trolley moved from the time the child begins to run?

D Watch Video Solution

6. Which of the following potential energy
curves in figure., cannot possibley describly
describe the elastic collision of two billiard balls ? Here r is distance between centres of
the balls.

(i)

(ii)

(iii)

(v)

(vi)

D Watch Video Solution

7. Consider the decay of a free neutron at rest:
$\mathrm{n} T+e^{-}$Show that the tow-body dacay of
this type must necessarily give an electron of
fixed energy and, therefore, cannot for the observed continous energy distribution in the
β-decay of a neutron or a nucleus.

- Watch Video Solution

Example

1. A box is pulled with a force of 25 N to produce a displacement of 15 m . If the angle between the force and displacement is 30°, find the work done by the force.

D View Text Solution

2. An object of mass 2 kg falls from a height of

5 m to the ground. What is the work done by the gravitational force on the object? (Neglect air resistance, Take $\mathrm{g}=10 \mathrm{~m}^{-2}$)

- View Text Solution

3. An object of mass $m=1 \mathrm{~kg}$ is sliding from top to bottom in the frictionles inclined plane of inclinationangle $\theta=30^{\circ}$ and the lengthh of inclined plane is 10 m as shown in the figure. Calculate the work done by gravtiational force and normal force on the object. Assume acceleration due to gravity, $\mathrm{g}=$
$10 \mathrm{~m} s^{-2}$

D View Text Solution

4. If an object of mass 2 kg is thrown up from
the ground reaches a height of 5 m and falls back to the Earth (neglect the air resistance).

Calculate

The work done by gravity when the object reaches 5 m height

D View Text Solution

5. If an object of mass 2 kg is thrown up from
the ground reaches a height of 5 m and falls back to the Earth (neglect the air resistance).

Calculate

The work done by gravity when the object comes back to Earth

D View Text Solution

6. If an object of mass 2 kg is thrown up from the ground reaches a height of 5 m and falls back to the Earth (neglect the air resistance).

Calculate

Total work done by gravity both in upward and downward motion and mention the physical significance of the result.

D View Text Solution

7. A weight lifter lifts a mass of 250 kg with a force 5000 N to the height of 5 m .

What is the workdone by the weight lifter?

D View Text Solution

8. A weight lifter lifts a mass of 250 kg with a
force 5000 N to the height of 5 m .

What is the workdone by the gravity?

D View Text Solution

9. A weight lifter lifts a mass of 250 kg with a force 5000 N to the height of 5 m .

What is the net workdone on the object?

D View Text Solution

10. A variable force $F=k x^{2}$ acts on a particle which is initially at rest. Calculate the work done by the force during the displacement of the particle form $x=0 \mathrm{~m}$ to $\mathrm{x}=4 \mathrm{~m}$.
(Assume the constant $k=1 \mathrm{Nm}^{-2}$)

View Text Solution

11. Two objects of masses 2 kg and 4 kg are moving with the same momentum of 20 kg $m s^{-1}$.

Will they have same kinetic energy?

D View Text Solution

12. Two objects of masses 2 kg and 4 kg are moving with the same momentum of 20 kg
$m s^{-1}$.

Will they haved same speed?

D View Text Solution
13. An object of mass 2 kg is taken to a height

5 m from the ground ($\mathrm{g}=10 \mathrm{~m}^{-2}$).

Calculate the potential energy stored in the object.
14. An object of mass 2 kg is taken to a height 5 m from the ground ($\mathrm{g}=10 \mathrm{~m}^{-2}$).

Where does this potential energy come from?

D View Text Solution

15. An object of mass 2 kg is taken to a height

5 m from the ground $\left(\mathrm{g}=10 \mathrm{~m} \mathrm{~s}^{-2}\right)$.
What external force must act to bring the mass to that height?

D View Text Solution
16. An object of mass 2 kg is taken to a height 5 m from the ground ($\mathrm{g}=10 \mathrm{~m}^{-2}$).

What is the net force that acts on the object while the object is taken to the height ' h '?

D View Text Solution

17. Let the two springs A and B be such that
$k_{A}>k_{B}$. On which spring will more work has
to be done if they are stretched by the same force?
18. A body of mass m is attached to the spring which is elongated to 25 cm by an applied force from its equilibrium position.

Calculate the potential energy stored in the spring-mass system?

- View Text Solution

19. A body of mass m is attached to the spring which is elongated to 25 cm by an applied force from its equilibrium position.

What is the work done by the spring force in this elongation?

D View Text Solution

20. A body of mass m is attached to the spring
which is elongated to 25 cm by an applied force from its equilibrium position.

Suppose the spring is compressed to the same 25 cm , calculate the potential energy stored and also the work done by the spring force during compression. (The spring constant, $\mathrm{k}=$ $0.1 \mathrm{~N}^{-1}$).

D View Text Solution

21. Compute the work done by the gravitational force for the following cases.

22. Consider an object of mass 2 kg moved by
an external force 20 N in a surface having coefficient of kinetic friction 0.9 to a distance 10 m . What is the work done by the external force and kinetic friction ? Comment on the result. (Assume $\mathrm{g}=10 \mathrm{~ms}^{-2}$)

D View Text Solution
23. An object of mass 1 kg is falling from the height $\mathrm{h}=10 \mathrm{~m}$. Calculate

The total energy of an object at $h=10 \mathrm{~m}$
(Assume $\mathrm{g}=10 \mathrm{~ms}{ }^{-2}$)

D View Text Solution
24. An object of mass 1 kg is falling from the height $\mathrm{h}=10 \mathrm{~m}$. Calculate

Potential energy of the object when it is at $\mathrm{h}=$ 4 m
(Assume $\mathrm{g}=10 \mathrm{~ms}^{-2}$)

D View Text Solution

25. An object of mass 1 kg is falling from the height $\mathrm{h}=10 \mathrm{~m}$. Calculate

Kinetic energy of the object when it is at $\mathrm{h}=4$ m
(Assume $\mathrm{g}=10 m s^{-2}$)

D View Text Solution

26. An object of mass 1 kg is falling from the height $\mathrm{h}=10 \mathrm{~m}$. Calculate

What will be the speed of the object when it
hits the ground?
(Assume $\mathrm{g}=10 \mathrm{~ms}{ }^{-2}$)

D View Text Solution

27. A body of mass 100 kg is lifted to a height

10 m from the ground in two different ways as
shown in the figure. What is the work done by
the gravity in both the cases? Why is it easier
to take the object through a ramp?

Path (1) straight up

Path (2) along the ramp

28. An object of mass m is projected from the ground with initial speed v_{0}

Find the speed at height h.

D View Text Solution

29. An object of mass 2 kg attached to a spring
is moved to a distance $x=10 \mathrm{~m}$ from its
equilibrium position. The spring constant $k=1$
N m^{-1} and assume that the surface is frictionless.

When the mass crosses the equilibrium

position, what is the speed of the mass?

D View Text Solution

30. An object of mass 2 kg attached to a spring is moved to a distance $x=10 \mathrm{~m}$ from its equilibrium position. The spring constant $k=1$

N m^{-1} and assume that the surface is frictionless.

What is the force that acts on the object when
the mass crosses the equilibrium position and extremum position $x= \pm 10 m$.

D View Text Solution

31. Water in a bucket tied with rope is whirled around in a vertical circle of radius 0.5 m .

Calculate the minimum velocity at the lowest point so that the water does not spill from it in the course of motion.
$\left(g=10 m s^{-2}\right)$

D View Text Solution
32. Calculate the energy consumed in electrical units when a 75 W fan is used for 8 hours daily for one month (30 days).

D View Text Solution

33. A vehicle of mass 1250 kg is driven with an
acceleration $0.2 m s^{-2}$ along a straight level
road against an external resistive force 500 N .

Calculate the power delivered by the vehicle's
engine if the velocity of the vehicle is $30 \mathrm{~ms}^{-1}$

D View Text Solution

34. A lighter particle moving with a speed of 10 $\mathrm{m} s^{-1}$ collides with an object of double its mass moving in the same direction with half its speed. Assume that the collision is a one dimensional elastic collision. What will be the speed of both particles after the collision?

D View Text Solution

35. A bullet of mass 50 g is fired from below into a suspended object of mass 450 g . The object rises through a height of 1.8 m with bullet remaining inside the object. Find the speed of the bullet. Take $g=10 \mathrm{~ms}^{-2}$.

- View Text Solution

36. Show that the ratio of velocities of equal masses in an inelastic collision when one of
the masses is stationary is $\frac{v_{1}}{v_{2}}=\frac{1-e}{1+e}$.

- View Text Solution

Exercise Multiple Choice Questions

1. A uniform force of $(2 \hat{i}+\hat{j}) N$ acts on a particle of mass 1 kg . The particle displaces from position $(3 \hat{j}+\hat{k}) m$ to $(5 \hat{i}+3 \hat{j}) m$. The work done by the force on the particle is
A. 9 J
B. 6 J
C. 10 J
D. 12 J

Answer: C

D View Text Solution

2. A ball of mass 1 kg and another of mass 2 kg
are dropped from a tall building whose height
is 80 m . After, a fall of 40 m each towards

Earth, their respective kinetic energies will be in the ratio of
A. $\sqrt{2}: 1$
B. $1: \sqrt{2}$
C. 2:1
D. 1:2

Answer: D

D View Text Solution

3. A body of mass 1 kg is thrown upwards with
a velocity $20 \mathrm{~m} \mathrm{~s}^{-1}$. It momentarily comes to
rest after attaining a height of 18 m . How
much energy is lost due to air friction?
(Take $\mathrm{g}=10 \mathrm{~m} \mathrm{~s}^{-2}$)
A. 20 J
B. 30 J
C. 40 J
D. 10 J

Answer: A

D View Text Solution
4. An engine pumps water continuously through a hose. Water leaves the hose with a velocity v and m is the mass per unit length of the water of the jet. What is the rate at which kinetic energy is imparted to water ?
A. $\frac{1}{2} m v^{2}$
B. $m v^{3}$
C. $\frac{3}{2} m v^{2}$
D. $\frac{5}{2} m v^{2}$
5. A body of mass 4 m is lying in xy -plane at rest. It suddenly explodes into three pieces.

Two pieces of mass m move perpendicular to each other with equal speed v. The total kinetic energy generated due to explosion is
A. $m v^{2}$
B. $\frac{3}{2} m v^{2}$
C. $2 m v^{2}$
D. $4 m v^{2}$

Answer: B

D View Text Solution

6. The potential energy of a system increases,
if work is done
A. by the system against a conservative force
B. by the system against a nonconservative force
C. upon the system by a conservative force
D. upon the system by a non-conservative
force

Answer: A

D View Text Solution
7. What is the minimum velocity with which a body of mass m must enter a vertical loop of radius R so that it can complete the loop?
A. $\sqrt{2 g R}$
B. $\sqrt{3 g R}$
C. $\sqrt{5 g R}$
D. $\sqrt{g R}$

Answer: C

- View Text Solution

8. The work done by the conservative force for a closed path is
A. always negative
B. zero
C. always positive
D. not defined

Answer: B

- View Text Solution

9. If the linear momentum of the object is increased by 0.1%, then the kinetic energy is increased by
A. 0.1%
B. 0.2%
C. 0.4%
D. 0.01%

Answer: B
10. If the potential energy of the particle is
$\alpha-\frac{\beta}{2} x^{2}$, then force experienced by the particle is

$$
\begin{aligned}
& \text { A. } F=\frac{\beta}{2} x^{2} \\
& \text { B. } F=\beta x \\
& \text { C. } F=-\beta x \\
& \text { D. } F=-\frac{\beta}{2} x^{2}
\end{aligned}
$$

Answer: C
11. A wind-powered generator converts wind energy into electric energy. Assume that the generator converts a fixed fraction of the wind energy intecepted by its blades into electrical energy. For wind speed v, the electrical power output will be proportional to
A. v
B. v^{2}
C. v^{3}
D. v^{4}

Answer: C

D View Text Solution

12. Two equal masses m_{1} and m_{2} are moving
along the same straight line with velocities
$5 m s^{-1}$ and $-9 m s^{-1}$ respectively. If the collision is elastic, then calculate the velocities after the collision of m_{1} and m_{2}, respectively
A. $-4 m s^{-1}$ and $10 m s^{-1}$
B. $10 m s^{-1}$ and $0 m s^{-1}$

C. $-9 m s^{-1}$ and $5 m s^{-1}$
 D. $5 m s^{-1}$ and $1 m s^{-1}$

Answer: C

D View Text Solution

13. A particle is placed at the origin and a force
$\mathrm{F}=\mathrm{kx}$ is acting on it (where k is a positive constant). If $U(0)=0$, the graph of $U(x)$ versus
x will be (where U is the potential energy
function)

14. A particle which is constrained to move along x-axis, is subjected to a force in the same direction which varies with the distance x of the particle from the origin as
$F(x)=-k x+a x^{3}$. Here, k and a are positive constants. For $x \geq 0$, the functional form of the potential energy $U(x)$ of the particle is

Answer: D
15. A spring of force constant k is cut into two
pieces such that one piece is double the
length of the other. Then, the long piece willl
have a force constant of
A. $\frac{2}{3} k$
B. $\frac{3}{2} k$
C. 3k
D. 6 k

Answer: B

Exercise Iv Numerical Problems

1. Calculate the work done by a force of 30 N in
lifting a load of 2 kg to a height of 10 m
$\left(g=10 m s^{-2}\right)$

D View Text Solution
2. A ball with a velocity of $5 \mathrm{~ms}^{-1}$ impinges at angle of 60° with the vertical on a smooth
horizontal plane. If the coefficient of restitution is 0.5 , find the velocity and direction after the impact.

D View Text Solution

3. A bob of mass m is attached to one end of
the rod of negligible mass and length r, the other end of which is pivoted freely at a fixed center O as shown in the figure. What initial speed must be given to the object to reach the top of the circle? (Hint: Use law of
conservation of energy). Is this speed less or greater than speed obtained in the section 4.2.9?

D View Text Solution

4. Two different unknown masses A and B
collide. A is initially at rest when B has a speed
v. After collision B has a speed $\mathrm{v} / 2$ and moves
at right angles to its original direction of motion. Find the direction in which A moves after collision.

View Text Solution

5. A bullet of mass 20 g strikes pendulum of mass 5 kg . The centre of mass of pendulum rises a vertical distance of 10 cm . If the bullet gets embedded into the pendulum, calculate its initial speed.
