©゙doubtnut

India's Number 1 Education App

CHEMISTRY

NCERT - FULL MARKS

CHEMISTRY(TAMIL)

ATOMIC STRUCTURE - II

Problem

1. The kinetic energy of sub-atomic particle is
$5.85 \times 10^{-25} \mathrm{~J}$. Calculate the frequency of the

$$
\left.h=6.626 \times 10^{-34} \mathrm{Js}\right)
$$

D Watch Video Solution

2. Calculate the de-Broglie wavelength of an electron that has been accelerated from rest through a potential difference of 1 kV
3. Calculate the wavelength associated with an electron (mass $9.1 \times 10^{-31} \mathrm{~kg}$) moving with a velocity of $10^{3} \mathrm{~m} \mathrm{sec}^{-1}\left(h=6.626 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{sec}^{-1}\right)$.

- Watch Video Solution

4. A moving electron has 4.55×10^{-25} joules of kinetic energy. Calculate its wavelength

$$
\begin{aligned}
& \text { (mass }=9.1 \times 10^{-31} \quad \text { kg } \quad \text { and } \\
& \left.h=6.626 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}\right) .
\end{aligned}
$$

5. Calculate the kinetic energy of a moving electron which has a wavelength of 4.8 pm .
[mass
of
electron
$=9.11 \times 10^{-31} \mathrm{~kg}, \mathrm{~h}=6.626 \times 10^{-34} \mathrm{Kgm}^{2} \mathrm{~s}^{-1}$
].

- Watch Video Solution

6. Two particles A and B are in motion. If the wavelength associated with the particle A is
$5 \times 10^{-8} m$, calculate the wavelength of particle B, if its momentum is half of A.

- Watch Video Solution

Example

1. Calculate the uncertainty in the velocity of a
wagon of mass 3000 kg whose position is
known to an accuracy of $\pm 10 \mathrm{pm}$ (Planck's
constant $=6.626 \times 10^{-34} \mathrm{Kgm}^{2} s^{-1}$.
2. Calculate the uncertainty in the position of an electron if the uncertainty in its velocity is $5.7 \times 10^{5} \mathrm{~m} / \mathrm{sec}\left(h=6.626 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}\right.$, mass of the electron $=9.1 \times 10^{-31} \mathrm{~kg}$).

- Watch Video Solution

3. The ionization energy of hydrogen atom in the ground state is $1312 \mathrm{kJmol}^{-1}$. Calculate the wavelength of radiation emitted when the electron in hydrogen atom makes a transition
from $\mathrm{n}=2$ state to $\mathrm{n}=1$ state (Planck's constant, $h=6.626 \times 10^{-34} J s$, velocity of light, $c=3 \times 10^{8} \mathrm{~ms}^{-1}$, Avogadro's constant, $\left.N_{A}=6.0237 \times 10^{23} \mathrm{~mol}^{-1}\right)$.

D Watch Video Solution

4. The electron energy of hydrogen atom in
the ground state works out to be
$-2.18 \times 10^{-18} \mathrm{~J}$ per atom. Calculate what will happen to the position of the electron in this
atom if an energy of $1.938 \times 10^{-18} \mathrm{~J}$ is supplied to the each hydrogen atom.

D Watch Video Solution

5. Calculate the ionisation energy of hydrogen atom as well as energy needed to promote its electron from first energy level to third energy level

D Watch Video Solution

1. Calculate the momentum of a particle which has a de-Broglie wavelength of

1A. $\left[h=6.626 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}\right]$

D Watch Video Solution

2. What is the mass of a photon of sodium
light with a wavelength of 5890 Å?
$\left[h=6.626 \times 10^{-34} J s\right]$
3. Calculate the wavelength of 1000 kg rocket moving with a velocity of 300 km per hour.

D Watch Video Solution

4. What must be the velocity of a beam of electrons if they are to display a de- Broglie wavelength of $100 \AA ̊$?
5. The wavelength of a moving body of mass 0.1 mg is $3.31 \times 10^{-29} \mathrm{~m}$. Calculate its kinetic energy $\left(h=6.626 \times 10^{-34} J s\right)$.

D Watch Video Solution

6. Calculate the wavelength of a particle of mass $m=6.62 \times 10^{-27}$ kg moving with kinetic energy
$7.425 \times 10^{-13} J\left(h=6.626 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{sec}^{-1}\right)$
7. Calculate the wavelength of an electron in a 10 MeV particle accelerator $\left(1 \mathrm{MeV}=10^{6} \mathrm{eV}\right)$.

D Watch Video Solution

8. What will be the wavelength of oxygen molecule in picometers moving with a velocity of $660 \mathrm{~ms}^{-1}\left(h=6.626 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}\right)$.
9. A moving electron has 4.9×10^{-25} joules of kinetic energy. Find out its de - Broglie wavelength
(Given

$$
\left.h=6.626 \times 10^{-34} J s, m_{e}=9.1 \times 10^{-31} \mathrm{~kg}\right)
$$

D Watch Video Solution

10. The approximate mass of an electron is 10^{-27} g. Calculate the uncertainty in its velocity if the uncertainty in its position were of the order of $10^{-11} \mathrm{~m}$
11. Calculate the product of uncertainity in position and velocity for an electron of mass
$9.1 \times 10^{-31} \mathrm{~kg}$ according to Heisenberg uncertainty principle.

D Watch Video Solution

12. Calculate the uncertainty in velocity (Δv)
of a cricket ball (mass $=0.15 \mathrm{~kg}$) if the
uncertainty position (Δx) is of the order of 1
$\AA\left(i . e .10^{-10} m\right)$.

D Watch Video Solution
13. Using uncertainity principle,calculate the uncertainty in velocity of an electron if the uncertainty in position is $10^{-4} \mathrm{~m}$.
14. The uncertainity in the position of a moving bullet of mass 10 g is $10^{-5} \mathrm{~m}$.Calculate the uncertainty in its velocity .

- Watch Video Solution

Self Evaluation Choose The Correct Answer

1. $E_{n}=-\frac{313.6}{n^{2}}$, If the value of $E_{i}=-34.84$
to which value ' n ' corresponds
A. 4
B. 3
C. 2
D. 1

Answer:

D Watch Video Solution

2. What is an electron?
A. Bohr
B. Heisenberg

C. de-Broglie

D. Pauli

Answer:

D Watch Video Solution

3. de-Broglie equation is

A. $\lambda=\frac{m v}{h}$
B. $\lambda=h m v$
C. $\lambda=\frac{h v}{m}$
D. $\lambda=\frac{h}{m v}$

Answer:

D Watch Video Solution

4. The value of Bohr radius for hydrogen atom
is
A. $0.529 \times 10^{-8} \mathrm{~cm}$
B. $0.529 \times 10^{-10} \mathrm{~cm}$
C. $0.529 \times 10^{-6} \mathrm{~cm}$

$$
\text { D. } 0.529 \times 10^{-12} \mathrm{~cm}
$$

Answer:

D Watch Video Solution

5. An electron and an alpha particle have same kinetic energy. How are the de Broglie wavelengths associated with them related ?
A. α-particle
B. proton

C. β-particle

D. neutron

Answer:

- Watch Video Solution

6. The total energy of electron in the ground
state of hydrogen atom is $(-13.6 \mathrm{eV})$. The kinetic energy of an electron in the first excited
state is
A. 2 E

$$
\text { B. }-4 E
$$

C. $-2 E$
D. $4 E$

Answer:

D Watch Video Solution

7. The bond order of oxygen molecule is

A. 2.5
B. 1
C. 3
D. 2

Answer:

- Watch Video Solution

8. The hybridisation in SF6 molecule is
A. $s p^{3}$
B. $s p^{3} d^{2}$
C. $s p^{3} d$
D. $s p^{2} d^{3}$

Answer:

- Watch Video Solution

9. which one of the following does not have intramolecular hydrogen bonding?
A. o-nitrophenol
B. m-nitro phenol

C. p-nitrophenol

D. None

Answer:

- Watch Video Solution

Self Evaluation Answer In One Or Two Sentences

1. What do you understand by the dual character of matter?
2. State Heisenberg's uncertainty principle and give its mathematical expression.

- Watch Video Solution

3. What is the significance of negative electronic energy?

D Watch Video Solution
4. Define orbital velocity and establish an expression for it.
(Watch Video Solution
5. What are molecular solids ? Explain the types of molecular solids.
(Watch Video Solution
6. Why He_{2} is not formed?

- Watch Video Solution

7. What is bond order?

- Watch Video Solution

8. Define hybridisation

- Watch Video Solution

Self Evaluation Answer Not Exceeding 60 Words

1. With what purpose was famous DavissonGermer experiment with electrons performed ?

D Watch Video Solution

2. Derive de-Broglie's equation. What is its significance?

- Watch Video Solution

3. Discuss the shapes of s, p and d orbitals.
4. Explain the formation of O_{2} molecule by molecular orbital theory.

D Watch Video Solution

5. Explain the formation of O_{2} molecule by molecular orbital theory.
