

PHYSICS

BOOKS - CHETANA PHYSICS (MARATHI ENGLISH)

ELECTROSTATICS

Exercise

1. What is the basic difference between electrostatics and current electricity?

2. Give two examples of electric charges developed due to friction.

3. Name the different elementary particles of a matter?

4. Explain Most matter around us is electrically neutral.

Watch Video Solution

5. Explain the process of charging by conduction with suitable example.

6. What do you mean by induction in electrostatics? How can we charge a conductor by induction?

Watch Video Solution

7. Distinguish between additive property of charge and additive property of mass.

8. What is the magnitude of charge on an electron?

Watch Video Solution

9. What are quarks?

Watch Video Solution

10. Explain quantization of charge.

11. How much positive and negative charge is present in Igm of water? How many electrons are present in it? Given, molecular mass of water is 18.0 g.

Watch Video Solution

12. State the law of conservation of charge.

13. Name the types of force experienced by charged objects when they are brought close to each other.

Watch Video Solution

14. Which type of force do like charges exert on each other?

15. Which type of force do unlike charges exert on each other?

Watch Video Solution

16. Name the fundamental law governing interaction between charges on any body

Watch Video Solution

17. What is a point charge?

18. State Coulomb's law and write it in scalar form.

Watch Video Solution

19. Define relative permittivity

OR

what is relative permittivity?

OR

Define dielectric constant of medium.

OR

Define specific inductive capacity.

Watch Video Solution

20. Define unit of charge from Coulomb's law.

Watch Video Solution

21. Charge on an electron is 1.6×10^{-19} . How many electrons are required to accumulate a

charge of one coulomb?

22. Express Coulomb's law in vector form.

Watch Video Solution

23. State the similarities between gravitational and electrostatic forces.

24. Distinguish between gravitational force and electrostatic force

Watch Video Solution

25. Calculate and compare the electrostatic and gravitational forces between two protons which are 10^{-15} m apart. Value of $G=6.674\times 10^{-11}Nm^2/kg^2$ and mass of the proton is `1.67 xx 10^-27kg.

26. (i)Two small spheres 18 cm apart have equal negative charges and repel each other with the force of 6×10^{-8} N. Find the total charge on both spheres

Watch Video Solution

27. (ii) A charge +q exerts a force of magnitude -0.2N on another change -2q. If they are separated by 25..0 cm, determine the value of q.

28. State and explain the principle of superposition of interacting charges.

29. Three charges of $2\mu C$, $3\mu C$ and $4\mu C$ are placed at points A, B and C respectively, as shown in Fig. a Determine the force on A due

to other charges.

Watch Video Solution

30. Three equal charges of 10×10^{-8} C respectively, each located at the comers of a right triangle whose sides are 15cm, 20cm and

25cm respectively. Find the force exerted on the charge located at $90\,^\circ$ angle.

Watch Video Solution

31. Three charges, q each, are placed at the vertices of an equilateral triangle. What will be the resultant force on charges Q placed at the

centroid of the triangle?

32. Four charges of $+6x10^{-8}\mathrm{C}$ each are placed at the comers of a square whose sides are 3cm each. Calculate the resultant force on

each charge and shows in direction an a diagram drawn to scale.

Watch Video Solution

33. What is a test charge?

34. What will happen if a test charge is kept beyond the electric field due to a certain charge?

Watch Video Solution

35. Define electric field write its formula vector form.

36. Derive the dimension eleic field state its unit.

Watch Video Solution

37. Explain the uniform electric field and non uniform electric field with suitable diagram

38. Derive an expression for electric field intensity due to a point charge in a material medium.

Watch Video Solution

39. Calculate the electric field due to a charge of $-8.0 imes 10^{-8}$ C at a distance of 5.0 cm from it

40. Define electric potential.

41. Define potential gradient and state its units and formula.

42. Derive the relation between electric field intensity and electric potential

OR

show that
$$E=rac{-dv}{dx}$$

Watch Video Solution

43. Two charge $5\mu C$ and $-4\mu C$ are kept 5.0 m apart at points A and B respectively. How much work will have to be done to move the charge at A through a distance of 5.0 m further away from point B along the line BA

44. A potential difference of 5000 volt is applied between two parallel plates 5cm apart a small oil drop having a charge of $9.6 \times 10^{-19} C$ falls between the plates. Find (a) electric field intensity between the plates and (b) the force on the oil drop.

Watch Video Solution

45. Gap between two electrodes of the sparkplug used in an automobile engine is 1.25 mm. If the potential of 20 V is applied across the gap, what will be the magnitude of electric field between the electrodes?

Watch Video Solution

46. Three point charges are placed at the vertices of a right isosceles triangle as shown in the Fig. a. What is the magnitude and direction of the resultant electric field at point P which is the mid point of its hypotenuse?

47. A simplified model of hydrogen atom consists of an electron revolving about a proton at a distance of 5.3×10^{-1} 1m. The charge on a proton is $+1.6 \times 10^{-19}$ C. Calculate the intensity of the electric field due to proton at this distance.

Watch Video Solution

48. What is the electric of force?

49. Diagrams of lines force.

Watch Video Solution

50. Lines of force are imaginary, can they have any practical use?

51. State the characteristics of lines of force.

Watch Video Solution

52. If two lines of force interest on one point, what does it mean?

Watch Video Solution

53. Define electric flux state its formula and units.

54. Derive an expression for the electric flux passing through a given area.

Watch Video Solution

55. State conditions in which electric flux will be maximum and minimum.

56. The electric field in a region is given by $\overrightarrow{E}=5.0N/C$. Calculate the electric flux Through a square of side 10.0 cm in the following cases:

(i) The square is along the XY plane.

Watch Video Solution

57. The electric field in a region is given by $\overrightarrow{E}=5.0N/C$. Calculate the electric flux Through a square of side 10.0 cm in the

following cases:

(ii) The square is along XZ plane.

Watch Video Solution

58. The electric field in a region is given by

 $\stackrel{
ightarrow}{E} = 5.0 N/C$. Calculate the electric flux

Through a square of side 10.1 cm in the following cases:

(iii) The normal to the square makes an angle of 45° with the Z axis.

59. State Gaus's law.

Watch Video Solution

60. Show that the total flux passing through a sphere is independent of the radius of sphere.

61. State and prove Gauss' law in electrostatics. Define. **Watch Video Solution 62.** Define electric dipole.

63. What is the called dipole axis?

64. What is called axial line of dipole?

Watch Video Solution

65. What is called equatorial line of dipole?

Watch Video Solution

66. How do we measure strength of a dipole?

67. Define dipole moment of electric dipole.

Watch Video Solution

68. Write the expression for dipole moment in vector form

69. State the unit of dipole moment of electric dipole.

Watch Video Solution

70. State the dimension of dipole moment.

Watch Video Solution

71. How can we induce a dipole in non polar molecules ?

72. Distinguish between polar molecules and non-polar molecules

Watch Video Solution

73. Derive the expression for the couple acting on the electric dipole in uniform electric field

74. Derive the expression for electric intensity at a point on the axis of a dipole

Watch Video Solution

75. Derive an expression for electric field intensity of a point on the equatorial line.

76. Define Linear charge density. State its formula and units.

Watch Video Solution

77. Define Surface charge density. State its formula and unit.

78. Define Volume charge density. State its formula and units.

Watch Video Solution

79. Give suitable examples showing that static charge can be useful.

80. Give suitable examples showing that static charge can be harmful.

Watch Video Solution

81. Mention the precautions to be taken against static charge.

82. Two point charges, each of $4\mu C$ when placed in vacuum, repel each other with a force of 1.6 Newton. Calculate the distance between the two charges.

Watch Video Solution

83. Find the value of the electric intensity at a point at a distance of 15 cm in air from a point charge of 450 μC .

84. How many electrons need be removed from a metal sphere of 0.05 m radius so that it acquires a charge of 4×10^{-15} C ? $e=1.6 \times 10^{-19}$ C.

Watch Video Solution

85. What charge placed 9 cm from a charge of $100 \mu C$ will produce a force of 1/9 N in air?

86. Two point charges whose magnitudes are in the ratio $3\colon 2$ repel each other with a force 135×10^{14} N when they are 4 cm apart in air. Find the magnitude of each charge.

Watch Video Solution

87. Two small insulated metal spheres placed 5 cm apart in air carry charges of 5 and 0.5 micro- coulomb respectively. Find the force between them. What would the force be if the

spheres are in a medium of dielectric constant

3?

Watch Video Solution

88. The mutual force of repulsion between two point charges kept a fixed distance apart is 9×10^{-5} N when in vacuum and 4×10^{-5} N when placed in a dielectric medium. What is the value of dielectric constant of the medium?

89. The force exerted by an electric field on a charge of 5 micro-coulomb is 10×10^{-4} N. What is the electric intensity of the field at the point?

Watch Video Solution

90. The potential at a point A is -160 volt and the potential at a point B is + 240 volt. How much work is done by an external force to move a charge of $-25\mu C$ from B to A?

91. Two positive charges of $20\mu C$ and $8\mu C$ are 20 cm apart, find the work done in bringing them 5 cm closer

Watch Video Solution

92. Three Charge of +10, -10 and $+5\mu C$ are placed at the corners A, B and C of an equilateral triangle ABC having each side 1m

long. Find the resultant force on the charge at

Watch Video Solution

93. A positively charged glass rod is brought close to a metallic rod isolated from ground, the charge on the side of the metallic rod away from the glass rod will be____

A. same as that on the glass rod and equal in quantity

B. opposite to that on the glass of and equal

in quantity C. same as that on the glass rod but lesser in quantity D. same as that on the glass rod but more in quantity A. same as that on the glass rod and equal in quantity B. opposite to that on the glass of and equal in quantity C. same as that on the glass rod but lesser in quantity

D. same as that on the glass rod but more in quantity

Answer:

Watch Video Solution

94. An electron is placed between two parallel plates connected to a battery. If the battery is switched on, the electron will

A. be attracted to the + ve plate

B. be attracted to the -ve plate

C. remain stationary

D. move parallel to the plates

Answer:

Watch Video Solution

95. A charge of $+7\mu C$ is placed at the centre of two concentric spheres with radius 2.0 cm and 4.0 cm respectively. The ratio of the flux through them will be.

- A. 1:4
- B. 1:2
- C. 1: 1
- D. 1:16

Answer:

Watch Video Solution

96. Two charges of 1.0 C each are placed one meter apart in free space. The force between them will be.

$$\mathsf{B.}\,9 imes10^9~\mathsf{N}$$

$$\mathsf{C.}\,9 imes10^{-9}\,\mathsf{N}$$

D. 10 N

Answer:

Watch Video Solution

97. Two point charges of $+5\mu C$ are so placed that they experience a force of 8×10^{-3} N.

They are then moved apart, so that the force is

now $2 \times 10^{-3}\,$ N. The distance between them is now

A. 1/4 the previous distance

B. double the previous distance

C. four times the previous distance

D. half the previous distance

Answer:

98. A metallic sphere A isolated from ground is charged to $+50\mu C$. This sphere is brought in contact with other isolated metallics sphere B of half the radius of sphere A.The charge on the two sphere will be now in the ratio.

- A. 1:2
- B. 2:1
- C. 4:1
- D. 1:1

Answer:

99. Which of the following produces uniform electric field?

A. point charge

B. linear charge

C. two parallel plates

D. charge distributed an circular any

Answer:

Watch Video Solution

100. Two point charges of $A=+5.0\mu C$ and $B=\,-\,5.0\mu C$ are separated by 5.0 cm. A point charge $C=1.0\mu C$ is placed at 3.0 cm away from the centre on the perpendicular bisector of the line joining the two point charges. The charge at C will experience a force directed towards

A. point A

B. point B

C. a direction parallel to line AB

D. a direction along the perpendicular bisector

A. point A

B. point B

C. a directtion parallel to line AB

D. a direction along the perpendicular

bisector

Answer:

101. The number of electrons removed from a body in order to produce positive charge of $5 imes 10^{-19}$ coulomb on it, will be

- **A.** 3
- B. 5
- C. 7
- D. 9

Answer:

102. On being negatively charged, a soap bubble

- A. expands
- B. contracts
- C. neither expands nor contracts
- D. none of these

Answer:

103. The Coulomb's repulsive force between two point charges placed at distance d apart, is F. If the distance is increased to 2d then the repulsive force between the charges as compared to its previous value, will become

A. 1/4 the previous distance

B. 1/2

 $\mathsf{C.}\,3/4$

D. same

A. 1/4 the previous distance

B. 1/2

c.3/4

D. same

Answer:

Watch Video Solution

104. When a glass rod is rubbed with silk it gains positive charge, because

A. electrons are removed from it

B. protons are removed from it

C. protons are added to it

D. electron are added to it

Answer:

Watch Video Solution

105. An electric dipole consists of two equal and opposite charges of magnitude $2\mu C$ placed 0.03 m apart. It is lying in an electric field of intensity $2\times 10^5 N/C$. The maximum torque acting on the dipole will be

A. 2.4 Nm

B. 1.2 Nm

 $\mathsf{C.}\,1.2\times10^{-2}\,\mathsf{Nm}$

D. $2.4 \times 10^{-2} \text{ Nm}$

Answer:

Watch Video Solution

106. Which of the following quantities is a vector quantity?

A. intensity of electric field

B. electric charge density

C. electric charge

D. electric potential

A. intensity of electric field

B. electric charge density

C. electric charge

D. electric potential

Answer:

107. Two point charges of 2 coulomb and 6 coulomb repel each other with a force of 12 newton. If each charge is given an additional charge of -2 coulomb then the force between them will become

- A. 4N attractive
- B. 4N repulsive
- C. 8N attractive
- D. zero

Answer:

108. Static electricity can be produced by

- A. only induction
- B. only friction
- C. only chemical reaction
- D. induction and friction

Answer:

109. The electric potential while moving along the lines of force

- A. decreases
- B. increases
- C. remain same
- D. becomes infinite

Answer:

110. The Coulomb's law is valid for the charges which are

A. stationary and point charges

B. moving and point charges

C. both 'a' and 'b'

D. none of these

Answer:

111. The unit of intensity of electric field is

A. newton // coulomb

B. joule // coulomb

C. coulomb // newton

D. none of these

Answer:

112. Dielectric constant is

- A. dimensionless quantity
- B. universal constant
- C. conversion factor
- D. none of these

Answer:

113. If a dielectric is placed between two charges in place of vacuum or air, then the force between the charges will

- A. decrease
- B. increase
- C. remain unchanged
- D. none of these

Answer:

114. If a body is charged by rubbing, its weight

A. decreases slightly

B. increases slightly

C. Remains constant

D. may increase or decrease slightly

Answer:

115. The unit of dipole moment is

- A. coulomb-m
- B. coulomb- m^2
- C. metre // coulomb
- D. coulomb//m

Answer:

116. Two positive charges of same magnitude are kept 20 cm apart. A point between the charges will have zero intensity is at

- A. 5 cm from first charge
- B. 5 cm from second charge
- C. midway between two charges
- D. can not be predicted

Answer:

117. The electric intensity at a point at 10 cm from point charge is 5N/C. The potential atsame point will be

- A. 5 volt
- B. 1 volt
- C. 0.5 volt
- D. 0.05 volt

Answer:

118. Coulomb's force between two point charges separated by certain distance in air is F. If the charges are situated in medium at same place then Coulomb's force reduces to F/4. The dielectric constant of medium will be

A. 2

B. 4

C. 5

D. 6

Watch Video Solution

119. The permittivity of medium is $26.55 imes10^{-12}C^2\,/Nm^2.$ The dielectric constant of medium will be

A. 2

B. 3

C. 4

D. 5

Watch Video Solution

120. The charge on conductor is +1.6 Coulomb, then it has

- A. excess of 10^{19} electrons
- B. shortage of 10^{19} electrons
- C. excess of 10^{20} electrons
- D. shortage of 10^{20} electrons

Watch Video Solution

121. If the distance between two point charges is doubled and magnitude of charges are also doubled, the Coulomb's force between them will be

A. same

B. half

C. two-times

D. four times

Answer:

Watch Video Solution

122. Two identical metallic spheres A and B of exactly equal masses m are taken. A is given a +ve charge of q coulomb and B is given an equal negative charge. If m_A and m_B are the mass of A and B after charging then

A. $m_A=m_B$

B. $m_B > m_A$

C. $m_B < m_A$

D. none of these

Answer:

Watch Video Solution

123. A charged spherical conductor of radius R carries a charge + Q. A point test charge + q_0 is placed at a distance x from the surface of

the sphere. The force experienced by the test change will be proportional to

A.
$$X^2$$

B.
$$(R + X)^2$$

$$\mathsf{C.} \; \frac{1}{\left(R-X\right)^2}$$

$$\text{D.}\ \frac{1}{\left(R+X\right)^2}$$

Answer:

124. An electric dipole consisting of two opposite charges of 2×10^{-6} each separated by a distance of 3 cm is placed in all electric field of 2×10^5 newton/coulomb. The maximum torque acting on the dipole in S.I. unit will be

A.
$$12 imes 10^{-1}$$

B.
$$12 imes 10^{-2}$$

$$\mathsf{C.}\,12\times10^{-3}$$

D.
$$24 imes 10^{-3}$$

Answer: 24×10^{-3}

Watch Video Solution

125. Electric lines of force about a negative point charge are

A. circular, clockwise

B. circular, anticlockwise

C. radial, inward

D. radial, outward

Watch Video Solution

126. Which of the following is inverse square law?

- A. Newton'slaw of universal gravitation
- B. Ohm's law
- C. Coulomb's law
- D. both (a) and (c)

Watch Video Solution

127. SI unit of electric intensity is

A. A.m

B. `V//m.

C. Nm^2/C^2

D. C^2/N . m^2

Answer:

128. A charge of 6 pCexperiencesforce of 0.24 N in an electric field. The potential gradient at this point is

A.
$$4 imes 10^5 V/m$$

B.
$$4 imes 10^6 V/m$$

C.
$$4 imes 10^4 V/m$$

D.
$$4 imes 10^3 V/m$$

129. A p.d.of 200 volt ismaintained acrosstwo parallel plates of a parallel plate capacitor.

Distance between the two platesis 4 mm.Calculate electric field intensity between the two plates

A.
$$5 imes 10^5 V/m$$

B.
$$5 imes 10^4 V/m$$

C. zero

D. $2 imes 10^4 V/m$

Answer:

Watch Video Solution

130. Static electricity is produced due to

- A. conduction
- B. radiation
- C. convection
- D. friction and induction

Watch Video Solution

- **131.** Every charge q that exists on the surface of a body can be represented by (where n = 1,2,
- 3...) e \rightarrow electric charge

A.
$$n^2/e$$

B. n.e

 $\mathsf{C}.\,e\,/\,n$

D. n/e

Watch Video Solution

132. If 'R' is radius of a sphere and Q is charge supplied to it, then the surface charge density (σ) is given by

A.
$$\sigma=rac{Q}{2\pi R}$$

B.
$$\sigma=rac{Q}{\left(rac{4}{3}\pi R^2
ight)}$$

C.
$$\sigma=rac{Q}{4\pi R^2}$$

D.
$$\sigma=rac{Q}{\pi R^2}$$

Watch Video Solution

133. The branch of physics which deals with the study of static chargesis

A. Current electricity

B. Electronics

C. Electrostatics

D. Modem physics

Answer:

Watch Video Solution

134. The bodies get charged when rubbed with each other due to transfer of

A. atoms

B. molecules

C. electrons

D. protons

Answer:

Watch Video Solution

135. If an isolated metallic conductor is positively beharged then its mass will

A. decrease

B. increase

C. remains the same

D. become double

Answer:

Watch Video Solution

136. Two equal and opposite charges separated by a short distance is called an

A. electric pole

B. electric dipole

C. electric dipole moment

D. electric torque

Answer:

Watch Video Solution

137. What is the electric of force?

A. are parallel lines of force

B. are perpendicular to each other

C. are intersecting lines

D. do not cross each other

Watch Video Solution

138. To charge a body to +1C

- A. one electron has to be removed from it
- B. one electron has to be added to it
- C. $6.25 imes 10^{18}$ electrons are to be added to

it

D. $\frac{1}{1.6 \times 10^{-19}}$ electrons are to be removed from it

Answer:

Watch Video Solution

139. An electric line of force is the path followed by

A. An electron

B. A neutron

- C. A unit positive charge
- D. A unit negative charge

Watch Video Solution

140. The SI unit of linear charge density is

- A. C/cm
- B. C/m
- $\mathsf{C}.\,C/m^2$

D. C/m^3

Answer:

Watch Video Solution

141. The SI unit of surface charge density is

A. C/cm^2

B. C/m

 $\mathsf{C}.\,C/m^3$

D. C/m^4

Watch Video Solution

142. The SI unit of volume charge density is

A.
$$C/cm^3$$

B.
$$C/m$$

$$\mathsf{C}.\,C/m^2$$

D.
$$C/m^3$$

Answer:

143. The uniform charge distribution along the length of the thin rod or wire is called the

A. Linear charge density

B. Surface charge density

C. Volume charge density

D. Superficial charge density

Answer:

Watch Video Solution

144. The uniform charge distribution over the entire area of a plane is called the

A. Linear charge density

B. Surface charge density

C. Volume charge density

D. Cubical charge density

Answer:

145. The permittivity of medium is $26.55 imes 10^{-12} C^2/Nm^2$. The dielectric constant of the medium will be

- A. 2
- B. 3
- C. 4
- D. 5

Answer:

146. Two protons in a nucleus of U^{238} are $6 imes 10^{-15}$ m apart. Their mutual electrostatic potential energy is

A.
$$3.4 imes 10^5 eV$$

B.
$$2.4 imes 10^5 eV$$

C.
$$3.84 imes 10^{-14} eV$$

D.
$$3.84 imes 10^5 eV$$

Answer:

147. An electric dipole of length 2 cm is placed with its axis making angle of 30° to a uniform electric field of $10^5 N/C$. It experiences a torque of 17.32 Nm. The magnitude of charge on the dipole is

A.
$$1.732 imes 10^{-3}C$$

B.
$$1.414 \times 10^{-2}$$
 C

$${\sf C.\,1.732 imes 10^{-2}\,C}$$

 $\mathrm{D.}\,10^{-2}\,\mathrm{C}$

Answer:

Watch Video Solution

148. An electric dipole consist of two opposite charges each of magnitude $1\mu C$ separated by distance 2 cm. The dipole is placed in an external field of $10^5 N/C$. The maximum torque acting on the dipole is

A.
$$2 imes 10^{-3}$$
 Nm

B. $5 imes 10^{-3}~ ext{Nm}$

 $\text{C.}\,3\times10^{-3}\,\text{Nm}$

D. $4 imes 10^{-3}$ Nm

Answer:

Watch Video Solution

149. Select and write the most appropriate answer from the given alternative for questions 1, 2, 3

Two positive charges are placed a certain distance apart. A slab of dielectric medium

isintroduced between them. As a result, the repulsion between two charges

- A. decreases
- B. remains constant
- C. increases
- D. changes to attraction

Answer:

150. Two identical metallic spheres A and B of exactly equal masses m are taken. A is given a +ve charge of q coulomb and B is given an equal negative charge. If m_A and m_B are the mass of A and B after charging then

A.
$$m_A < m_B$$

$$\mathsf{B.}\, m_A = m_B$$

C.
$$m_A>m_B$$

D. none of the above

Answer:

151. Two point charges of 2 coulomb and 6 coulomb repel each other with a force of 12 newton. If each charge is given an additional charge of -2 coulomb then the force between them will become

A. zero

B. 4 N repulsive

C. 4 N attractive

D. 8 N attractive

Answer:

Watch Video Solution

152. State the law of conservation of charge.

Watch Video Solution

153. Name the fundamental law governing interaction between charges on any body

154. What will be the no. of electrons removed from a body in order to produce a positive charge of 48×10^{-20} coulomb on it?

155. Define Surface charge density. State its formula and unit.

156. State the characteristics of lines of force.

Watch Video Solution

157. Distinguish between polar molecules and non polar molecules (Any 2 points)

158. State one similarity and one difference between gravitational force and electrostatic force

Watch Video Solution

159. What charge placed at 9 cm from a charge of $100\mu c$ will experience a force of $\frac{1}{9}$ N in air?

160. Derive an expression for torque acting on an electric dipole in uniform electric field.

Watch Video Solution

161. Show that the total flux passing through a sphere is independent of the radius of sphere.

162. Three Charge of +10, -10 and $+5\mu C$ are placed at the corners A, B and C of an equilateral triangle ABC having each side 1m long. Find the resultant force on the charge at C.

Watch Video Solution

163. Derive an expression for the electric intensity due to an electric dipole at a point on the axis of dipole. When a point charge of

 $5 imes 10^{-9}$ C is taken from point A to point B, the work done is 10^{-6} J. Find the potential difference between points A and points B.

