©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHETANA PHYSICS (MARATHI

ENGLISH)

ELECTROSTATICS

Exercise

1. What is the basic difference between
electrostatics and current electricity?

- Watch Video Solution

2. Give two examples of electric charges developed due to friction.

D Watch Video Solution
3. Name the different elementary particles of a matter?

D Watch Video Solution

4. Explain Most matter around us is electrically

 neutral.
- Watch Video Solution

5. Explain the process of charging by conduction with suitable example.

- Watch Video Solution

6. What do you mean by induction in electrostatics? How can we charge a conductor by induction?

D Watch Video Solution

7. Distinguish between additive property of charge and additive property of mass.

D Watch Video Solution

8. What is the magnitude of charge on an electron?

- Watch Video Solution

9. What are quarks?

D Watch Video Solution
10. Explain quantization of charge.
11. How much positive and negative charge is present in Igm of water? How many electrons are present in it? Given, molecular mass of water is 18.0 g .

D Watch Video Solution
12. State the law of conservation of charge.
13. Name the types of force experienced by charged objects when they are brought close to each other.

- Watch Video Solution

14. Which type of force do like charges exert on each other?

- Watch Video Solution

15. Which type of force do unlike charges exert on each other?

- Watch Video Solution

16. Name the fundamental law governing interaction between charges on any body

- Watch Video Solution

17. What is a point charge?

- Watch Video Solution

18. State Coulomb's law and write it in scalar form.

- Watch Video Solution

19. Define relative permittivity

OR
what is relative permittivity?
OR

Define dielectric constant of medium.

OR

Define specific inductive capacity.

D Watch Video Solution

20. Define unit of charge from Coulomb's law.

- Watch Video Solution

21. Charge on an electron is 1.6×10^{-19}. How many electrons are required to accumulate a

charge of one coulomb?

- Watch Video Solution

22. Express Coulomb's law in vector form.

D Watch Video Solution

23. State the similarities between gravitational and electrostatic forces.
24. Distinguish between gravitational force and electrostatic force

- Watch Video Solution

25. Calculate and compare the electrostatic and gravitational forces between two protons which are $10^{-15} \mathrm{~m}$ apart. Value of
$G=6.674 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$ and mass of the proton is $1.67 \mathrm{xx} 10^{\wedge}-27 \mathrm{~kg}$.
26. (i)Two small spheres 18 cm apart have equal negative charges and repel each other with the force of $6 \times 10^{-8} \mathrm{~N}$. Find the total charge on both spheres

- Watch Video Solution

27. (ii)A charge $+q$ exerts a force of magnitude
-0.2 N on another change $-2 q$. If they are separated by 25.0 cm , determine the value of q.
28. State and explain the principle of superposition of interacting charges.

- Watch Video Solution

29. Three charges of $2 \mu C, 3 \mu C$ and $4 \mu C$ are placed at points A, B and C respectively, as shown in Fig. a Determine the force on A due
to other charges.

- Watch Video Solution

30. Three equal charges of $10 \times 10^{-8} \mathrm{C}$ respectively, each located at the comers of a right triangle whose sides are $15 \mathrm{~cm}, 20 \mathrm{~cm}$ and

25 cm respectively. Find the force exerted on the charge located at 90° angle.

D Watch Video Solution

31. Three charges, q each, are placed at the vertices of an equilateral triangle. What will be
the resultant force on charges Q placed at the

centroid of the triangle?

- Watch Video Solution

32. Four charges of $+6 x 10^{-8} \mathrm{C}$ each are placed at the comers of a square whose sides are 3 cm each. Calculate the resultant force on
each charge and shows in direction an a
diagram
drawn
to
scale.

D Watch Video Solution

33. What is a test charge ?

Watch Video Solution

34. What will happen if a test charge is kept beyond the electric field due to a certain charge?

- Watch Video Solution

35. Define electric field write its formula vector form.
36. Derive the dimension eleic field state its unit.

- Watch Video Solution

37. Explain the uniform electric field and non
uniform electric field with suitable diagram

- Watch Video Solution

38. Derive an expression for electric field intensity due to a point charge in a material medium.

- Watch Video Solution

39. Calculate the electric field due to a charge of $-8.0 \times 10^{-8} \mathrm{C}$ at a distance of 5.0 cm from
it

D Watch Video Solution
40. Define electric potential.

- Watch Video Solution

41. Define potential gradient and state its units and formula.

- Watch Video Solution

42. Derive the relation between electric field
intensity and electric potential

OR
show that $E=\frac{-d v}{d x}$

D Watch Video Solution

43. Two charge $5 \mu C$ and $-4 \mu C$ are kept 5.0 m apart at points A and B respectively. How much
work will have to be done to move the charge at A through a distance of 5.0 m further away from point B along the line $B A$

D Watch Video Solution

44. A potential difference of 5000 volt is applied between two parallel plates 5 cm apart
a small oil drop having a charge of $9.6 \times 10^{-19} C$ falls between the plates. Find (a) electric field intensity between the plates and (b) the force on the oil drop.

- Watch Video Solution

45. Gap between two electrodes of the sparkplug used in an automobile engine is 1.25 mm .

If the potential of 20 V is applied across the
gap, what will be the magnitude of electric field between the electrodes?

D Watch Video Solution

46. Three point charges are placed at the vertices of a right isosceles triangle as shown
in the Fig. a. What is the magnitude and direction of the resultant electric field at point P which is the mid point of its hypotenuse?

D Watch Video Solution
47. A simplified model of hydrogen atom consists of an electron revolving about a proton at a distance of $5.3 \times 10^{-1} 1 \mathrm{~m}$. The charge on a proton is $+1.6 \times 10^{-19} \mathrm{C}$. Calculate the intensity of the electric field due to proton at this distance.

D Watch Video Solution

48. What is the electric of force?

- Watch Video Solution

49. Diagrams of lines force.

(Watch Video Solution

50. Lines of force are imaginary, can they have any practical use?

D Watch Video Solution

51. State the characteristics of lines of force.

- Watch Video Solution

52. If two lines of force interest on one point, what does it mean?

- Watch Video Solution

53. Define electric flux state its formula and units.

- Watch Video Solution

54. Derive an expression for the electric flux passing through a given area.

D Watch Video Solution

55. State conditions in which electric flux will be maximum and minimum.
56. The electric field in a region is given by
$\vec{E}=5.0 N / C$. Calculate the electric flux

Through a square of side 10.0 cm in the following cases:
(i) The square is along the XY plane.

D Watch Video Solution

57. The electric field in a region is given by $\vec{E}=5.0 N / C$. Calculate the electric flux

Through a square of side 10.0 cm in the
following cases:
(ii) The square is along XZ plane.

D Watch Video Solution

58. The electric field in a region is given by $\vec{E}=5.0 N / C$. Calculate the electric flux

Through a square of side 10.1 cm in the following cases:
(iii) The normal to the square makes an angle of 45° with the Z axis.
59. State Gaus's law.

- Watch Video Solution

60. Show that the total flux passing through a sphere is independent of the radius of sphere.

- Watch Video Solution

61. State and prove Gauss' law in electrostatics.

Define.

- Watch Video Solution

62. Define electric dipole.

- Watch Video Solution

63. What is the called dipole axis?
64. What is called axial line of dipole?

D Watch Video Solution
65. What is called equatorial line of dipole?

D Watch Video Solution

66. How do we measure strength of a dipole?
67. Define dipole moment of electric dipole.

- Watch Video Solution

68. Write the expression for dipole moment in vector form
69. State the unit of dipole moment of electric dipole.

- Watch Video Solution

70. State the dimension of dipole moment.

- Watch Video Solution

71. How can we induce a dipole in non polar molecules ?

- Watch Video Solution

72. Distinguish between polar molecules and non-polar molecules

- Watch Video Solution

73. Derive the expression for the couple acting on the electric dipole in uniform electric field
74. Derive the expression for electric intensity at a point on the axis of a dipole

- Watch Video Solution

75. Derive an expression for electric field intensity of a point on the equatorial line.

- Watch Video Solution

76. Define Linear charge density. State its formula and units.

D Watch Video Solution
77. Define Surface charge density. State its formula and unit.
(Watch Video Solution
78. Define Volume charge density. State its formula and units.

- Watch Video Solution

79. Give suitable examples showing that static charge can be useful.

- Watch Video Solution

80. Give suitable examples showing that static charge can be harmful.

D Watch Video Solution

81. Mention the precautions to be taken against static charge.
82. Two point charges, each of $4 \mu C$ when
placed in vacuum, repel each other with a
force of 1.6 Newton. Calculate the distance between the two charges.

- Watch Video Solution

83. Find the value of the electric intensity at a
point at a distance of 15 cm in air from a point charge of $450 \mu C$.
84. How many electrons need be removed from a metal sphere of 0.05 m radius so that it acquires a charge of $4 \times 10^{-15} \quad$ C ? $e=1.6 \times 10^{-19} \mathrm{C}$.

D Watch Video Solution

85. What charge placed 9 cm from a charge of $100 \mu C$ will produce a force of $1 / 9 \mathrm{~N}$ in air?
86. Two point charges whose magnitudes are in the ratio 3:2 repel each other with a force $135 \times 10^{14} \mathrm{~N}$ when they are 4 cm apart in air. Find the magnitude of each charge.

D Watch Video Solution

87. Two small insulated metal spheres placed 5
cm apart in air carry charges of 5 and 0.5 micro- coulomb respectively. Find the force between them. What would the force be if the
spheres are in a medium of dielectric constant
$3 ?$

D Watch Video Solution

88. The mutual force of repulsion between two
point charges kept a fixed distance apart is
$9 \times 10^{-5} \mathrm{~N}$ when in vacuum and $4 \times 10^{-5} \mathrm{~N}$ when placed in a dielectric medium. What is
the value of dielectric constant of the medium?
89. The force exerted by an electric field on a charge of 5 micro-coulomb is $10 \times 10^{-4} \mathrm{~N}$. What is the electric intensity of the field at the point?

D Watch Video Solution

90. The potential at a point A is -160 volt and
the potential at a point B is +240 volt. How much work is done by an external force to move a charge of $-25 \mu C$ from B to A ?
91. Two positive charges of $20 \mu C$ and $8 \mu C$ are 20 cm apart, find the work done in bringing them 5 cm closer

- Watch Video Solution

92. Three Charge of $+10,-10$ and $+5 \mu C$ are placed at the corners A, B and C of an equilateral triangle $A B C$ having each side $1 m$
long. Find the resultant force on the charge at C.

D Watch Video Solution

93. A positively charged glass rod is brought
close to a metallic rod isolated from ground,
the charge on the side of the metallic rod away from the glass rod will be
A. same as that on the glass rod and equal in quantity
B. opposite to that on the glass of and equal
in quantity
C. same as that on the glass rod but lesser in quantity
D. same as that on the glass rod but more in quantity
A. same as that on the glass rod and equal in quantity
B. opposite to that on the glass of and
equal in quantity
C. same as that on the glass rod but lesser

D. same as that on the glass rod but more

 in quantity
Answer:

D Watch Video Solution

94. An electron is placed between two parallel
plates connected to a battery. If the battery is
switched on, the electron will
A. be attracted to the + ve plate
B. be attracted to the -ve plate
C. remain stationary
D. move parallel to the plates

Answer:

D Watch Video Solution

95. A charge of $+7 \mu C$ is placed at the centre of two concentric spheres with radius 2.0 cm and 4.0 cm respectively. The ratio of the flux through them will be.
A. $1: 4$
B. 1:2
C. 1:1
D. 1: 16

Answer:

D Watch Video Solution
96. Two charges of 1.0 C each are placed one
meter apart in free space.The force between
them will be.
A. 1.0 N
B. $9 \times 10^{9} \mathrm{~N}$
C. $9 \times 10^{-9} \mathrm{~N}$
D. 10 N

Answer:

D Watch Video Solution

97. Two point charges of $+5 \mu C$ are so placed
that they experience a force of $8 \times 10^{-3} \mathrm{~N}$.

They are then moved apart, so that the force is
now $2 \times 10^{-3} \mathrm{~N}$. The distance between them
is now
A. $1 / 4$ the previous distance
B. double the previous distance
C. four times the previous distance
D. half the previous distance

Answer:

(Watch Video Solution
98. A metallic sphere A isolated from ground is
charged to $+50 \mu C$. This sphere is brought in contact with other isolated metallics sphere B of half the radius of sphere A.The charge on the two sphere will be now in the ratio.
A. 1:2
B. 2:1
C. $4: 1$
D. 1:1
99. Which of the following produces uniform electric field?
A. point charge
B. linear charge
C. two parallel plates
D. charge distributed an circular any

Answer:
100. Two point charges of $A=+5.0 \mu C$ and
$B=-5.0 \mu C$ are separated by 5.0 cm . A
point charge $C=1.0 \mu C$ is placed at 3.0 cm away from the centre on the perpendicular bisector of the line joining the two point charges. The charge at C will experience a force directed towards
A. point A
B. point B
C. a direction parallel to line $A B$
D. a direction along the perpendicular bisector
A. point A
B. point B
C. a directtion parallel to line $A B$
D. a direction along the perpendicular bisector

Answer:

101. The number of electrons removed from a
body in order to produce positive charge of 5×10^{-19} coulomb on it, will be
A. 3
B. 5
C. 7
D. 9

Answer:

102. On being negatively charged, a soap bubble
A. expands
B. contracts
C. neither expands nor contracts
D. none of these

Answer:
(Watch Video Solution
103. The Coulomb's repulsive force between two point charges placed at distance d apart, is F. If the distance is increased to $2 d$ then the repulsive force between the charges as compared to its previous value, will become
A. $1 / 4$ the previous distance
B. $1 / 2$
C. $3 / 4$
D. same
A. $1 / 4$ the previous distance
B. $1 / 2$

C. $3 / 4$

D. same

Answer:

D Watch Video Solution

104. When a glass rod is rubbed with silk it gains positive charge, because
A. electrons are removed from it
B. protons are removed from it
C. protons are added to it
D. electron are added to it

Answer:

D Watch Video Solution

105. An electric dipole consists of two equal and opposite charges of magnitude $2 \mu C$ placed 0.03 m apart. It is lying in an electric field of intensity $2 \times 10^{5} \mathrm{~N} / \mathrm{C}$. The maximum torque acting on the dipole will be
A. 2.4 Nm
B. 1.2 Nm
C. $1.2 \times 10^{-2} \mathrm{Nm}$
D. $2.4 \times 10^{-2} \mathrm{Nm}$

Answer:

D Watch Video Solution

106. Which of the following quantities is a vector quantity?
A. intensity of electric field
B. electric charge density
C. electric charge
D. electric potential
A. intensity of electric field
B. electric charge density
C. electric charge
D. electric potential

Answer:

D Watch Video Solution
107. Two point charges of 2 coulomb and 6 coulomb repel each other with a force of 12 newton. If each charge is given an additional charge of -2 coulomb then the force between them will become
A. 4 N attractive
B. 4 N repulsive
C. 8 N attractive
D. zero

108. Static electricity can be produced by

A. only induction
B. only friction
C. only chemical reaction
D. induction and friction

Answer:

109. The electric potential while moving along the lines of force
A. decreases
B. increases
C. remain same
D. becomes infinite

Answer:
(D) Watch Video Solution
110. The Coulomb's law is valid for the charges

which are

A. stationary and point charges
B. moving and point charges
C. both 'a' and 'b'
D. none of these

Answer:

D Watch Video Solution
111. The unit of intensity of electric field is
A. newton // coulomb
B. joule // coulomb
C. coulomb // newton
D. none of these

Answer:
(Watch Video Solution

112. Dielectric constant is

A. dimensionless quantity

B. universal constant
C. conversion factor

D. none of these

Answer:

113. If a dielectric is placed between two
charges in place of vacuum or air, then the
force between the charges will
A. decrease
B. increase
C. remain unchanged
D. none of these

Answer:

D Watch Video Solution
114. If a body is charged by rubbing, its weight
A. decreases slightly
B. increases slightly
C. Remains constant
D. may increase or decrease slightly

Answer:

115. The unit of dipole moment is

A. coulomb-m

B. coulomb- m^{2}
C. metre // coulomb

D. coulomb//m

Answer:

116. Two positive charges of same magnitude are kept 20 cm apart. A point between the charges will have zero intensity is at
A. 5 cm from first charge
B. 5 cm from second charge
C. midway between two charges
D. can not be predicted

Answer:

- Watch Video Solution

117. The electric intensity at a point at 10 cm
from point charge is $5 N / C$. The potential atsame point will be
A. 5 volt
B. 1 volt
C. 0.5 volt
D. 0.05 volt

Answer:

D Watch Video Solution
118. Coulomb's force between two point charges separated by certain distance in air is
F. If the charges are situated in medium at same place then Coulomb's force reduces to
$F / 4$. The dielectric constant of medium will be
A. 2
B. 4
C. 5
D. 6

Answer:

D Watch Video Solution

119. The permittivity of medium is $26.55 \times 10^{-12} C^{2} / \mathrm{Nm}^{2} . \quad$ The dielectric constant of medium will be
A. 2
B. 3
C. 4
D. 5

Answer:

- Watch Video Solution

120. The charge on conductor is +1.6 Coulomb, then it has
A. excess of 10^{19} electrons
B. shortage of 10^{19} electrons
C. excess of 10^{20} electrons
D. shortage of 10^{20} electrons

Answer:

D Watch Video Solution

121. If the distance between two point charges
is doubled and magnitude of charges are also
doubled, the Coulomb's force between them
will be
A. same
B. half
C. two-times

D. four times

Answer:

D Watch Video Solution

122. Two identical metallic spheres A and B of exactly equal masses m are taken. A is given a
+ve charge of q coulomb and B is given an equal negative charge. If m_{A} and m_{B} are the mass of A and B after charging then

$$
\text { A. } m_{A}=m_{B}
$$

B. $m_{B}>m_{A}$
C. $m_{B}<m_{A}$
D. none of these

Answer:

D Watch Video Solution

123. A charged spherical conductor of radius R
carries a charge +Q . A point test charge $+q_{0}$
is placed at a distance x from the surface of
the sphere. The force experienced by the test change will be proportional to
A. X^{2}
B. $(R+X)^{2}$
C. $\frac{1}{(R-X)^{2}}$
D. $\frac{1}{(R+X)^{2}}$

Answer:

D Watch Video Solution

124. An electric dipole consisting of two opposite charges of 2×10^{-6} each separated by a distance of 3 cm is placed in all electric field of 2×10^{5} newton/coulomb. The maximum torque acting on the dipole in S.I. unit will be
A. 12×10^{-1}
B. 12×10^{-2}
C. 12×10^{-3}
D. 24×10^{-3}

Answer: 24×10^{-3}

D Watch Video Solution

125. Electric lines of force about a negative point charge are
A. circular, clockwise
B. circular, anticlockwise
C. radial, inward
D. radial, outward

Answer:

- Watch Video Solution

126. Which of the following is inverse square law?
A. Newton'slaw of universal gravitation
B. Ohm's law
C. Coulomb's law
D. both (a) and (c)

Answer:

D Watch Video Solution

127. SI unit of electric intensity is
A. A.m
B. ${ }^{`} / / / m$.
C. $N m^{2} / C^{2}$
D. $C^{2} / N . m^{2}$
128. A charge of 6 pCexperiencesforce of 0.24 N
in an electric field. The potential gradient at this point is

A. $4 \times 10^{5} \mathrm{~V} / \mathrm{m}$
B. $4 \times 10^{6} \mathrm{~V} / \mathrm{m}$
C. $4 \times 10^{4} \mathrm{~V} / \mathrm{m}$
D. $4 \times 10^{3} \mathrm{~V} / \mathrm{m}$

129. A p.d.of 200 volt ismaintained acrosstwo parallel plates of a parallel plate capacitor.

Distance between the two platesis 4 mm.Calculate electric field intensity between the two plates
A. $5 \times 10^{5} \mathrm{~V} / \mathrm{m}$
B. $5 \times 10^{4} \mathrm{~V} / \mathrm{m}$
C. zero

D. $2 \times 10^{4} V / m$

Answer:

D Watch Video Solution

130. Static electricity is produced due to
A. conduction
B. radiation
C. convection
D. friction and induction

Answer:

D Watch Video Solution

131. Every charge q that exists on the surface of a body can be represented by (where $n=1,2$,
3...) e \rightarrow electric charge
A. n^{2} / e
B. n.e
C. e / n
D. n / e

Answer:

- Watch Video Solution

132. If ' R ' is radius of a sphere and Q is charge
supplied to it, then the surface charge density
(σ) is given by

$$
\begin{aligned}
& \text { A. } \sigma=\frac{Q}{2 \pi R} \\
& \text { B. } \sigma=\frac{Q}{\left(\frac{4}{3} \pi R^{2}\right)} \\
& \text { C. } \sigma=\frac{Q}{4 \pi R^{2}}
\end{aligned}
$$

D. $\sigma=\frac{Q}{\pi R^{2}}$

Answer:

D Watch Video Solution

133. The branch of physics which deals with
the study of static chargesis
A. Current electricity
B. Electronics
C. Electrostatics

D. Modem physics

Answer:

D Watch Video Solution

134. The bodies get charged when rubbed with
each other due to transfer of
A. atoms
B. molecules
C. electrons

D. protons

Answer:

D Watch Video Solution

135. If an isolated metallic conductor is positively bcharged then its mass will
A. decrease
B. increase
C. remains the same
D. become double

Answer:

D Watch Video Solution

136. Two equal and opposite charges
separated by a short distance is called an
A. electric pole
B. electric dipole
C. electric dipole moment

D. electric torque

Answer:

D Watch Video Solution

137. What is the electric of force?
A. are parallel lines of force
B. are perpendicular to each other
C. are intersecting lines
D. do not cross each other

Answer:

- Watch Video Solution

138. To charge a body to +1 C
A. one electron has to be removed from it
B. one electron has to be added to it
C. 6.25×10^{18} electrons are to be added to
it

D. $\frac{1}{1.6 \times 10^{-19}}$ electrons are to be

 removed from it
Answer:

D Watch Video Solution

139. An electric line of force is the path followed by
A. An electron
B. A neutron

C. A unit positive charge

D. A unit negative charge

Answer:

D Watch Video Solution

140. The SI unit of linear charge density is
A. C / cm
B. C / m
C. C / m^{2}
D. C / m^{3}

Answer:

D Watch Video Solution

141. The SI unit of surface charge density is
A. C / cm^{2}
B. C / m
C. C / m^{3}
D. C / m^{4}

Answer:

- Watch Video Solution

142. The SI unit of volume charge density is
A. C / cm^{3}
B. C / m
C. C / m^{2}
D. C / m^{3}
143. The uniform charge distribution along the
length of the thin rod or wire is called the
A. Linear charge density
B. Surface charge density
C. Volume charge density
D. Superficial charge density

Answer:
144. The uniform charge distribution over the entire area of a plane is called the
A. Linear charge density
B. Surface charge density
C. Volume charge density
D. Cubical charge density

Answer:

- Watch Video Solution

145. The permittivity of medium is $26.55 \times 10^{-12} C^{2} / N^{2}$. The dielectric constant of the medium will be
A. 2
B. 3
C. 4
D. 5

Answer:

146. Two protons in a nucleus of U^{238} are $6 \times 10^{-15} \mathrm{~m}$ apart. Their mutual electrostatic potential energy is
A. $3.4 \times 10^{5} \mathrm{eV}$
B. $2.4 \times 10^{5} \mathrm{eV}$
C. $3.84 \times 10^{-14} \mathrm{eV}$
D. $3.84 \times 10^{5} \mathrm{eV}$
147. An electric dipole of length 2 cm is placed with its axis making angle of 30° to a uniform electric field of $10^{5} N / C$. It experiences a torque of 17.32 Nm . The magnitude of charge on the dipole is
A. $1.732 \times 10^{-3} C$
B. $1.414 \times 10^{-2} \mathrm{C}$
C. $1.732 \times 10^{-2} \mathrm{C}$
D. $10^{-2} \mathrm{C}$

Answer:

- Watch Video Solution

148. An electric dipole consist of two opposite charges each of magnitude $1 \mu C$ separated by distance 2 cm . The dipole is placed in an external field of $10^{5} N / C$. The maximum torque acting on the dipole is
A. $2 \times 10^{-3} \mathrm{Nm}$
B. $5 \times 10^{-3} \mathrm{Nm}$
C. $3 \times 10^{-3} \mathrm{Nm}$
D. $4 \times 10^{-3} \mathrm{Nm}$

Answer:

- Watch Video Solution

149. Select and write the most appropriate answer from the given alternative for questions 1, 2, 3

Two positive charges are placed a certain distance apart.A slab of dielectric medium

repulsion between two charges

A. decreases
B. remains constant
C. increases
D. changes to attraction

Answer:

D Watch Video Solution

150. Two identical metallic spheres A and B of exactly equal masses m are taken. A is given a
+ve charge of q coulomb and B is given an equal negative charge. If m_{A} and m_{B} are the mass of A and B after charging then
A. $m_{A}<m_{B}$
B. $m_{A}=m_{B}$
C. $m_{A}>m_{B}$
D. none of the above

Answer:

- Watch Video Solution

151. Two point charges of 2 coulomb and 6 coulomb repel each other with a force of 12 newton. If each charge is given an additional charge of -2 coulomb then the force between them will become
A. zero
B. 4 N repulsive
C. 4 N attractive
D. 8 N attractive

Answer:

- Watch Video Solution

152. State the law of conservation of charge.

D Watch Video Solution

153. Name the fundamental law governing
interaction between charges on any body
154. What will be the no. of electrons removed from a body in order to produce a positive charge of 48×10^{-20} coulomb on it?

- Watch Video Solution

155. Define Surface charge density. State its formula and unit.

- Watch Video Solution

156. State the characteristics of lines of force.

- Watch Video Solution

157. Distinguish between polar molecules and non polar molecules (Any 2 points)

- Watch Video Solution

158. State one similarity and one difference between gravitational force and electrostatic force

D Watch Video Solution

159. What charge placed at 9 cm from a charge
of $100 \mu c$ will experience a force of $\frac{1}{9} \mathrm{~N}$ in air?

D Watch Video Solution

160. Derive an expression for torque acting on an electric dipole in uniform electric field.

D Watch Video Solution

161. Show that the total flux passing through a sphere is independent of the radius of sphere.

D Watch Video Solution

162. Three Charge of $+10,-10$ and $+5 \mu C$ are placed at the corners A, B and C of an equilateral triangle $A B C$ having each side $1 m$ long. Find the resultant force on the charge at C.

D Watch Video Solution

163. Derive an expression for the electric intensity due to an electric dipole at a point on the axis of dipole. When a point charge of
$5 \times 10^{-9} \mathrm{C}$ is taken from point A to point B ,
the work done is $10^{-6} \mathrm{~J}$. Find the potential difference between points A and points B.

- Watch Video Solution

