©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHETANA PHYSICS (MARATHI

ENGLISH)

GRAVITATION

Exercise

1. State Kepler's Laws of planetary motion.

OR

State kepler's law of orbit and law of equal areas.

OR

Any one law can be asked for

OR

State Kepler's law of equal areas.

OR

State Kepler's Law of period.

- Watch Video Solution

2. Explain Kepler's law of orbit

Watch Video Solution

3. State Kepler's Laws of planetary motion.

OR

State kepler's law of orbit and law of equal areas.

OR

Any one law can be asked for

OR

State Kepler's law of equal areas.

OR

State Kepler's Law of period.

- Watch Video Solution

4. State and explain Newton's law of gravition.

- Watch Video Solution

5. Express Newton's law of gravition in vector
form.

- Watch Video Solution

6. State S.I. unit and obtain dimension of universal gravitational constant?

OR

What is gravitional constant?

OR

What are dimension of Universal constant?

D Watch Video Solution

7. Three 5 kg masses are kept at the vertices of an equilateral triangle each side of 0.25 m .

Find resultant gravitational force on any one mass. $G=6.67 \times 10^{-11}$ S.l. units.

D Watch Video Solution

8. Explain the method of measuring

Gravitional constant G using Cavendish balance.

- Watch Video Solution

9. Derive the relation between the universal gravitational constant and the gravitional acceleration on the surface of the earth.

D Watch Video Solution

10. What is the variation in acceleration due to gravity with altitude?

OR

Derive an expression for the gravitational acceleration at an altitude h above the earth.

OR

Show that the gravitional acceleration at a height h above the surface of the earth is (in
usual notations) $g_{h}=g\left(\frac{R}{R+h}^{2}\right)$

D Watch Video Solution

11. Discuss the variation of g with depth and derive the necessary formula.

OR

Show that the gravitational acceleration due to the earth at a depth d from its surface is
$g_{d}=g\left[1-\frac{d}{R}\right]$, where R is the radius of the
earth and g is the gravitional acceleration at
the earth's surface.

OR

Discus the variation of acceleration due to gravity with depth 'd' below the surface of the earth

OR

Derive an expression for acceleration due to gravity at depth 'd' below the surface of earth
12. Derive an expression for the gravitational acceleration on the earth's surface at a latitude λ

OR
Explain the variation of acceleration due to gravity due to the rotational motion of the earth

OR
Explain the effect of latitude on the value of acceleration due to gravity

13. At which place on the earths surface in the

 gravitational acceleration maximum? Why?
D Watch Video Solution

14. At which place on the earth's surface the gravitational acceleration in minimum? Why?

- Watch Video Solution

15. As we go from equator to pole, what happens to value of 'g'?

D Watch Video Solution

16. Draw the graph showing variation of gravitational acceleration due is depth and altitude from the earth's surface

D Watch Video Solution

17. If the earth were a perfect sphere of radius
$6.4 \times 10^{6} \mathrm{~m}$ rotating its axis with the perod of one day $\left(8.64 \times 10^{4} s\right)$. What is the difference in accelaration due to gravity from poles to equator?

D Watch Video Solution

18. State the formula for acceleration due to gravity at depth 'd' and altitude 'h'. Hence,
show that their ratio in equal to

$$
\left[\frac{R-d}{R-2 h}\right]
$$ by assuming $h\langle R \rightarrow$ radius of earth.

D Watch Video Solution

19. Calculate the K.E, P.E, Total energy and Binding energy of an artificial satellite of mass

2000 kg orbiting at a height of 3600 km above
the surface of the earth
Given: G $=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}$
$\mathrm{R}=6400 \mathrm{~km}=6.4 \times 10^{6} \mathrm{~m}$
$\mathrm{M}=6 \times 10^{24} \mathrm{~kg}$
$\mathrm{m}=2000 \mathrm{~kg}$
$\mathrm{h}=3600 \mathrm{~km}=3.6 \times 10^{6} \mathrm{~m}$

D Watch Video Solution

20. Define escape velocity. Derive an expression for the escape velocity of an object from the surface of the earth.

OR

Define escape velocity of a body at rest on the earth's surface. Obtain an expression for the
same and show that it is independent of the
mass of the body.

OR

Define escape velocity of the body. Obtain an expression for the escape velocity when the body is at rest on the surface of the earth and show that it is independent of the mass of the body.

- Watch Video Solution

21. Obtain the relation between escape
velocity and critical velocity when satellite is
orbiting very close to earth.

OR

Show//prove that the escape velocity of a satellite orbiting round the earth is equal to
$\sqrt{2}$ time its critical velocity.

OR

Show that $V_{e}=\sqrt{2} . V_{c}$ for a satellite orbiting round the earth.
22. On which factors does the escape speed of
a body from the surface of the earth depend?

D Watch Video Solution

23. Show that the escape velocity of a body
from the surface of a planet of radius R and mean density ρ is $R \frac{\sqrt{8} \pi \rho G}{3}$

OR

Show that the escape velocity of a body from
the surface of the earth is $2 R \frac{\sqrt{2} \pi \rho G}{3}$, where
R is the radius of the earth and 'rho is the mean density of the earth.

OR

Obtain formula of escape velocity of a body at rest on the earth's surface in terms of mean density of erth.

D Watch Video Solution

24. What do you mean by geostationary satellite ?
25. What is a geostationary satellite? State its two uses.

OR

What is a communication satellite? Give any two of its uses.

D Watch Video Solution

26. State uses of geostationary
(communication) satellite.

27. What is a polar Satellite?

- Watch Video Solution

28. Draw a neat labelled diagram to show
different trajectories depending upon the tangential projection speed
29. Discus different causes of projection of satellite

OR

State the conditions for various possible orbits of satellite depending upon horizontal speed of projection.

D Watch Video Solution

30. Why is it necessary to have a minimum two
stage launching system to put a satellite into

desired circular orbit?

- Watch Video Solution

31. What is time period of polar satellite?

D Watch Video Solution

32. Define critical velocity and derive an expression for the same.

OR

What is critical velocity? Derive an expression
for critical velocity of a satellite orbiting at a certain height. Also discuss the formula when satellite is very close to the earth's surface.

D Watch Video Solution

33. Prove that the critical velocity or Orbital
velocity for a satellite orbiting. each in terms
of density of the earth is $2 R \sqrt{\frac{2 \pi \rho G}{3}}$, where ρ
is the density and R is radius of earth and G is
gravitational constant.
34. Find the gravitational force between the Sun and the Earth.

D Watch Video Solution

35. Why is weightlessness caused in a spaceraft?

D Watch Video Solution
36. As we go from one planet to another planet, how will the mass and weight of body change?

D Watch Video Solution

37. Obtain an expression for the period of a satellite in a circular orbit round the earth

OR

Show that the square of the period of revolution of satellite is directly proportional
to the cube of the orbital radius.

OR

Show that period of the satellite revolving around the earth depends upon mass of the earth

- Watch Video Solution

38. Derive an expression for time period of a satellite orbiting very close to earth's surface
in terms of mean density

OR

A satellite is in a low-altitude circular orbit around a spherical planet of mean density ρ.

Show that the period of revolution of the satellites is $\sqrt{3 \pi / \rho G}$

- Watch Video Solution

39. Define binding energy. State its units and dimensions.

- Watch Video Solution

40. Derive an expression for binding energy of a body at rest on the earth's surface.

D Watch Video Solution

41. Define binding energy and obtainan expression for binding energy of a satellite revolving in a circular orbit round the earth.

D Watch Video Solution

42. Where Binding Energy of a satellite will be maximum?

- Watch Video Solution

43. How much will be the work done to keep
the satellite in orbit?

- Watch Video Solution

44. What happens to K.E. of satellite as it moves away from the surface of the earth?

D Watch Video Solution
45. Define Latitude.

D Watch Video Solution

46. Calculate the speed and period of revolution of a satellite orbiting at a height of

700 km above the earth's surface. Assume the orbit to be circular. Take radius of earth as 6400 km and g at the centre of earth to be $9.8 m / s^{2}$

D Watch Video Solution

47. An artificial satellite makes two revolutions
per day around the earth. If the acceleration due to gravity on the surface of the earth is
$9.8 \mathrm{~m} / \mathrm{s}^{2}$ and the radius of the earth is 6400
km , calculate the distance of satellite from the surface of the earth

D Watch Video Solution

48. A satellite is going in a circular orbit of radius $4 \times 10^{4} \mathrm{~km}$ around the earth has a certain speed.
(a) What will be the radius of a circular orbit of
the same satellite when it moves around the
planet Mars with the same speed?

The masses of earth and Mars are in the ratio
$10: 1$ and their radii are in the ratio $2: 1$

D Watch Video Solution

49. A satellite is going in a circular orbit of radius $4 \times 10^{5} \mathrm{~km}$ around the earth has a certain speed.
(b) What will be the ratio of the weight of a body on the surface of Mars to tyhe weight of the same body on the surface of the earth?

The masses of earth and Mars are in the ratio
$10: 1$ and their radii are in the ratio $2: 1$

D Watch Video Solution
50. A satellite is revolving in a circular orbit very close to the surface of earth. Find the period of revolution of the satellite

D Watch Video Solution
51. Determine the binding energy of satellite of mass 1000 kg revolving in a circular orbit around the earth. Hence, find kinetic energy and potential energy of the satellite,[mass of earth $=6 x l O^{24} \mathrm{~kg}$, radius of earth $=6400 \mathrm{~km}$, gravitational constant G = 6.67xlO ${ }^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$]

- Watch Video Solution

52. According to Kepler's Law, the areal velocity of planet around the Sun, always
A. Increases
B. decreases
C. remains constant
D. first increases then decreases

Answer:

(Watch Video Solution
53. Choose the incorrect statement about gravitational force
A. It forms action- reaction pair.
B. It is a central force.
C. It is conservative force.
D. It depends upon nature of medium
between the masses.

Answer:

D Watch Video Solution
54. Two bodies of different masses reach simultaneously on ground from height h in vacuum because
A. acceleration of both bodies is same
B. acceleration is independent of mass
C. in vaccum there is no frictional force
D. statement itself wrong

Answer:

55. A satellite of the earth is revolving in a circular orbit with uniform speed V. If the gravitational force suddenly disappears, the satellite will
A. continue to move with velocity V along
the original orbit.
B. move with a velocity, tangentially to the
original orbit
C. fall down with increasing velocity

D. ultimately come to rest somewhere on

 the original orbit.
Answer:

D Watch Video Solution

56. If a small part separatesfrom an orbiting satellite, the part will
A. fall on the earth directly
B. move in a spiral and reach the earth
after a few rotations
C. continue to move in the same orbit as
the satellite.
D. move further away from the earth
gradually.

Answer:

- Watch Video Solution

57. Two satellites Aand B move round the earth
in the same orbit. The mass of B^{\prime} is twice the mass of A
A. Speed of A and B are equal.
B. The potential energy of earth $+A$ is
same as that of earth + B
C. The kinetic energy of A and B are equal.
D. The kinetic energy of earth $+A$ is same
as that of earth + B

Answer:

D Watch Video Solution

58. The earth (mass=6 $\times 10^{24} \mathrm{~kg}$) revolves around the Sun with angular velocity $2 \times 10^{-7} \mathrm{rad} / \mathrm{s}$ in a circular orbit of radius
$1.5 \times 10^{8} \mathrm{~km}$. The force exerted by the Sun on the earth in Newton is
A. zero
B. 18×10^{25}
C. 27×10^{39}
D. 36×10^{21}

Answer:

D Watch Video Solution

59. For a satellite orbiting close to earth's
surface, expression for period is
A. $T=2 \pi \sqrt{\frac{G M}{R}}$
B. $T=2 \pi \sqrt{R} / g$

$$
\begin{aligned}
& \text { C. } T=2 \pi \frac{R}{\sqrt{R}^{3} / G M} \\
& \text { D. } T=2 \pi \sqrt{g} / R
\end{aligned}
$$

Answer:

D Watch Video Solution

60. The height of a communication satellite
from the earth's surface is about
A. $3.6 \times 10^{4} \mathrm{~m}$
B. $3.6 \times 10^{6} \mathrm{~m}$
C. $3.6 \times 10^{7} \mathrm{~m}$
D. $306 \times 10^{8} \mathrm{~m}$

Answer:

D Watch Video Solution

61. Persons sitting in an artificial satellite
orbiting around the earth have
A. zero mass
B. zero weight

C. infinite weight

D. infinite mass

Answer:

D Watch Video Solution

62. A geostationary satellite has an orbital period of
A. 2 hours
B. 6 hours

C. 12 hours

D. 24 hours

Answer:

- Watch Video Solution

63. The value of acceleration due to gravity is
maximum at
A. the equator of the earth
B. the centre of the earth

C. the pole of the earth

D. slightly above the surace of the earth

Answer:

- Watch Video Solution

64. The gravitational potential due to the earth is minimum at
A. centre of the earth
B. surface of the earth

C. a point inside the earth

D. infinite distance but not at the centre

Answer:

D Watch Video Solution

65. Dimensions of gravitional potential are
A. $\left[M^{1} T^{-2}\right]$
B. $\left[L^{1} T^{-2}\right]$
C. $\left[L^{2} T^{-2}\right]$

$$
\text { D. }\left[M^{1} L^{2} T^{-1}\right]
$$

Answer:

D Watch Video Solution

66. Select and write the most appropriate answer from the given alternatives for each subquestion

The masses and radii of two planets A and B are both in the ratio $1: 2$. The ratio g_{A} / g_{B} of the gravitational acceleration on the planets is
(a) $1: 8$
(b) $1: 2$
(c) $2: 1$
(d) $8: 1$

- Watch Video Solution

67. Select and write the most appropriate answer from the given alternatives for each subquestion

A satellite in a circular orbit around the earth
has a total energy $\mathrm{E}(\mathrm{E}<0)$. Its potential
energy is
(a)-2E
(b) $-E$
(c) E
(d) 2 E

D Watch Video Solution
68. Draw a diagram showing different stages of projection for an artificialsatellite.

D Watch Video Solution
69. The escape velocity of a body from the surface of the earth is $11.2 \mathrm{~km} / \mathrm{s}$. If a satellite were to orbit close to the earth's surface, what would be its critical velocity?

- Watch Video Solution

70. State Kepler's law of orbit and law of equal areas.

D Watch Video Solution

71. Derive an expression for binding energy of a body at rest on the earth's surface.

D Watch Video Solution
72. State the SI unit and obtain the dimensions of the universal gravitational constant.

D Watch Video Solution
73. Derive an expression for the acceleration due to gravity at a depth d below the earth'ssurface

D Watch Video Solution

74. What is a geostationary satellite? State its two uses.

D Watch Video Solution

75. Obtain an expression for critical speed of a

 satelliteD Watch Video Solution
76. State the factors on which escape speed of a satellite depend
(D) Watch Video Solution

