©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHETANA PHYSICS (MARATHI

ENGLISH)

MAGNETISM

Exercise

1. What is magnetism?
2. What is a magnetic field?

D Watch Video Solution

3. What do you mean by uniform magnetic field?

D Watch Video Solution
4. What is magnetic flux? State its SI unit

5. Define Magnetic Induction at any point?

- Watch Video Solution

6. What is the SI unit and dimension of magnetic Induction?

7. Give the relation between SI and CGS unit of

magnetic induction?

- Watch Video Solution

8. What do you mean by magnetic lines of force?

- Watch Video Solution

9. State the properties of magnetic lines of force?

- Watch Video Solution

10. What is a Bar Magnet?

- Watch Video Solution

11. What are magnetic poles?
12. Define magnetic length (2l) for a magnetic dipole?

- Watch Video Solution

13. Define pole strength q_{m}) for a magnetic dipole?

- Watch Video Solution

14. State SI unit and dimension of pole strength?

D Watch Video Solution
15. Write the relation between Magnetic length (2l) and Geometric length?

- Watch Video Solution

16. Define magnetic dipole moment (m) and state its SI unit and dimension?

D Watch Video Solution

17. What happens if a bar magnet is cut into
two pieces transverse to its length/along its
length?

D Watch Video Solution
18. . A short bar magnet has a magnetic moment of $2 A-m^{2}$. If its magnetic length is 5 cm , calculate its pole strength?

D Watch Video Solution

19. A bar magnet of geometric length 18 cm
has pole strength 100 A-m. Find the magnetic dipole moment of a bar magnet?

- Watch Video Solution

20. Define magnetic axis and magnetic equator with respect to bar magnet?

D Watch Video Solution

21. Derive an expression for magnetic field at an arbitrary point (r) due to a short bar magnet?

- Watch Video Solution

22. Draw neat labelled diagrams to show magnetic field due to a bar magnet .

At an arial point

D Watch Video Solution

23. Draw neat labelled diagrams to show magnetic field due to a bar magnet .

At an Equitorial point
24. Write a formula for $B_{a \xi s}$ and $B_{e q u a \rightarrow r}$ for

Bar magnet?

- Watch Video Solution

25. Prove that $B_{a \xi s}=2 B_{e q u a \rightarrow r}$ for the same distances from centre of magnet.

- Watch Video Solution

26. Show Electrostatic analogue between

Electric and Magnetic field as suggested by Maxwell?

D Watch Video Solution

27. A short magnetic dipole has magnetic moment $0.5 \mathrm{Am}^{2}$. Calculate its magnetic field at a distance of 20 cm from the centre of magnetic dipole on
(i) the axis (ii) the equatorial line.
[$\mu_{o}=4 \pi \times 10^{-7}$ SI units] ?

- Watch Video Solution

28. Find the Magnetic Induction at an axial point 30 cm away from a short magnetic dipole of moment $15 A-m^{2}$. [$\mu_{o}=4 \pi \times 10^{-7}$ SI units]
29. A magnetic pole of bar magnet with pole strength of 100 A-m is 20 cm away from the centre of a bar magnet. Bar magnet has pole strength of $200 \mathrm{~A}-\mathrm{m}$ and has a length 5 cm . If the magnetic pole is on the axis of the bar magnet, find the force on the magnetic pole.

D Watch Video Solution

30. Two small and similar bar magnets have magnetic dipole moment of $1.0 A-m^{2}$ each.

They are kept in a plane in such a way that
their axes are perpendicular to each other. A
line drawn through the axis of one magnet passes through the centre. If the distance between their centres is 2 m . Find the magnitude of magnetic field at the mid point of the line joining their centres.

D Watch Video Solution

31. Calculate the magnetic Induction due to a short bar magnet at a point 20 cm from it on a
line making an angle of 30° with its axis.
Magnetic moment of the magnet $=2.4 A-m^{2}$

D Watch Video Solution
32. State the Gauss's law for magnetic field?

- Watch Video Solution

33. Explain the Gauss' law for Magnetic fields.

D Watch Video Solution
34. What could be the equation for Gauss's law of magnetism if a monopole of pole strength P is enclosed by a surface?

D Watch Video Solution

35. Draw the magnetic force lines of bar magnet?

D Watch Video Solution
36. Draw the magnetic force lines of a current carrying finite solenoid?

- Watch Video Solution

37. Write a short note on Earth's magnetic field?
(D) Watch Video Solution
38. What do you mean by Terrestrial magnetism.

D Watch Video Solution
39. What are magnetic maps of the Earth?

D Watch Video Solution

40. What is a geographic meridian? How does
the declination vary with latitude? Where is it
minimum?

- Watch Video Solution

41. Define magnetic declination of Earth's magnetic field?

- Watch Video Solution

42. Define magnetic inclination or angle of dip
(ϕ)

- Watch Video Solution

43. Write the values of $B v$ and angle of dip at equator?

D Watch Video Solution

44. Define Isomagnetic charts.

D Watch Video Solution
45. Define Isodynamic lines.

- Watch Video Solution

46. Define Isogonic lines.

- Watch Video Solution

47. Define Agonic lines.

- Watch Video Solution

48. Define Isoclinic lines

- Watch Video Solution

49. Define Aclinic lines.

- Watch Video Solution

50. Derive an expression for thin prism.

- Watch Video Solution

51. Define following terms with respect to

Earth's magnetic field magnetic meridian.

D Watch Video Solution

52. Define following terms with respect to

Earth's magnetic field magnetic axis.

- Watch Video Solution

53. Define following terms with respect to

Earth's magnetic field magnetic equator.

D Watch Video Solution

54. Draw a diagram to illustrate the magnetic lines of force between the south poles of two magnets.

D Watch Video Solution
55. Two bar magnets are placed on a horizontal surface. Draw magnetic lines around them. Mark the position of any neutral points (points where there is no resultant magnetic field) on your diagram.

D Watch Video Solution

56. The vertical and horizontal components of the earth's magnetic induction at a place are 2×10^{-5} T respectiveley. Calculate dip and
the magnitude of the earth's magnetic induction at that place.

D Watch Video Solution

57. Earth's magnetic field at the equator is approximately 4×10^{-5} tesla, $R=6.4 \times 10$ $\mathrm{m}, \mu_{o}=4 \pi \times 10^{-7}$ SI unit. Calculate Earth's dipole moment.
58. A magnet makes an angle of 45° with the horizontal in a vertical plane making an angle of 30° with the magnetic meridian. Find the true value of the dip angle at that place.

- Watch Video Solution

59. In the magnetic meridian of a certain place,
the horizontal component of earth magnetic field is $0.26 \times 10^{-4} \mathrm{~T}$ and dip angle is 60°,
what is the magnetic field of the earth at this

location?

- Watch Video Solution

60. At a given place on the earth a bar magnet of magnetic moment \vec{m} is kept horizontal in the East-West direction. P and Q are the two neutral points due to magnetic field of this magnet and $\overrightarrow{B_{H}}$ is the horizontal component of the Earth's magnetic field.

Calculate the angles between position vectors of P and Q with the direction of \vec{m}

D Watch Video Solution

61. A bar magnet has pole strength of 10 A-m and a magnetic length of 5 cm . Find the magnetic induction at a point 10 cm from either of its two poles [$\mu_{o}=4 \pi \times 10^{-7} \mathrm{XI}$ unit].

- Watch Video Solution

62. The magnetic induction at an axial point is equal to the magnetic induction at an equatorial point. Calculate the ratio of their distances from the centre of the dipole.

- Watch Video Solution

63. Calculate the magnetic moment of a short magnet which produces magnetic induction of $10^{-3} \mathrm{~T}$, at a point along its axis at a distance of 20 cm from its centre [$\mu_{o}=4 \pi \times 10^{-7} \mathrm{SI}$ unit].
64. A short magnetic dipole has magnetic moment 0.5 Am2. Calculate the magnetic induction at a distance of 20 cm from the centre of the magnetic dipole on the axis and the equitorial line

$$
\text { [} \left.\mu_{o}=4 \pi \times 10^{-7} \text { SI unit }\right] .
$$

65. Calculate the distance from the centre of a short bar magnet of moment $3 A-m^{2}$ on the equatorial line where the magnitude of magnetic induction is $1.92 \times 10^{-5} \mathrm{~T} \quad$ [$\mu_{O}=4 \pi \times 10^{-7}$ SI unit $]$.

D Watch Video Solution

66. A short bar magnet has a magnetic moment of $2 A-m^{2}$. If its geometric length is 6 cm , calculate its pole strength.
67. A magnetic needle free to rotate in a vertical plane parallel to the magnetic meridian, has its north tip pointing down at $21^{\circ} 48^{1}$ with the horizontal. If the horizontal component of the earth's magnetic induction at that place is $3.5 \times 10^{-5} \mathrm{~T}$, determine the earth's magnetic induction at that place.

D Watch Video Solution
68. A short bar magnet has magnetic moment
$20 A m^{2}$. The axis of the magnet is in the magnetic meridian with the south pole pointing north. The horizontal component of earth's magnetic field at that place is $3 \times 10^{-5} \mathrm{~T}$. Find the point on the axis of the magnet at which the resultant magnetic field is zero, [such a point is called a neutral point].

- Watch Video Solution

69. Choose the corect options.

Let r be the distance of a point on the axis of a
bar magnet from its centre. The magnetic field at r is always proportional to:
A. $1 / r^{2}$
B. $1 / r^{3}$
C. $1 / r$
D. Not necessarily $1 / r^{3}$ at all points

Answer:

70. Choose the corect options.

Magnetic meridian isthe plane
A. perpendicular to the magnetic axis of
the Earth
B. perpendicular to the geographic axis of
the Earth
C. passing through the geographic axis

D. passing through the magnetic axis of

 the Earth
Answer:

D Watch Video Solution

71. Choose the corect options.

The horizontal and vertical components of magnetic field of the Earth are same at some place on the surface of the Earth. The magnetic dip angle at this place will be:
A. 30°
B. 45°
C. 0°
D. 90°

Answer:

D Watch Video Solution

72. Choose the corect options.

Inside a bar magnet, the magnetic field lines
A. are not present
B. are parallel to the crosssectional area of the magnet
C. are in the direction from N pole to S pole.
D. are in the direction from S pole to N pole

Answer:

73. Choose the corect options.

A place where the vertical components of the earth's magnetic field is zero has the angle of dip equal to
A. 0°
B. 45^{2}
C. 60°
D. 90°

Answer:

74. Choose the corect options.

A place where the horizontal component of
Earth's magnetic is zero lies at
A. geographic equator
B. geomagnetic equator
C. one of the geographic poles
D. one of the geomagnetic poles
75. Choose the corect options.

A magnetic needle kept non-parallel to the magnetic field in a non-uniform magnetic field experiences
A. a force but not a torque
B. a torque but not a force
C. both a force and a torque
D. neither force nor a torque
A. a force but not a torque

B. a torque but not a force

C. both a force and a torque
D. neither force nor a torque

Answer:

D Watch Video Solution

76. Choose the corect options.

Magnetic equator happens to pass through

India near
A. Delhi
B. Mumbai
C. Surat
D. Thiruvananthapuram

Answer:

D Watch Video Solution
77. Choose the corect options.

Who was the first scientist to systematically
investigate the phenomenon of magnetism using scientific method?
A. Gilbert
B. Newton
C. Maxwell
D. Oersted

Answer:
(Watch Video Solution

78. Choose the corect options.

Who was the scientist who proved that electricity and magnetism represent different aspects of the same fundamental force field?
A. Maxwell
B. Oersted
C. Young

D. Einstein

Answer:

79. A bar magnet has geometric length
$4.8 \times 10^{-2} \mathrm{~m}$. The magnet moment of bar magnet, of pole strength 20 Am is?
A. $0.8 A m^{2}$
B. $0.6 A m^{2}$
C. $0.4 A m^{2}$
D. $1 A m^{2}$

Answer:
80. Choose the corect options.

The lines of force of the earth's magnetic field
will be perpendicular to earth's surface
A. at all positions
B. near the poles
C. near the equator
D. at the centre of the earth

Answer:

- Watch Video Solution

81. Choose the corect options.

The magnetic induction due to short magnetic dipole of moment 0.1 $A m^{2}$ at equitorial point

1 cm away from the centre of dipole is ? [

$$
\left.\mu_{o}=4 \pi \times 10^{-7} \mathrm{~Wb} / \mathrm{Am}\right]
$$

A. 0.1 T
B. 0.01 T
C. 0.001 T

D. 0.0001 T

Answer:

D Watch Video Solution

82. Choose the corect options.

The magnetic induction at apoint distance 15
cm on the axis of a short bar magnet moment
$0.5 A m^{2}$ is
A. $3 \times 10^{-11} \mathrm{~Wb} / \mathrm{m}^{2}$
B. $3 \times 10^{-8} W b / m^{2}$
C. $3 \times 10^{-11} \mathrm{~Wb} / \mathrm{m}^{2}$
D. $3 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$

> A. $3 \times 10^{-11} W / m^{2}$
> B. $3 \times 10^{-8} W b / m^{2}$
> C. $3 \times 10^{-11} \mathrm{~Wb} / \mathrm{m}^{2}$
> D. $4 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$

Answer:

(Watch Video Solution
83. Choose the corect options.

Magnetic lines of force are
A. continuous
B. discontinuous
C. always straight line
D. zig-zag lines

Answer:
(D) Watch Video Solution
84. The vector sum of magnetic moments of all electrons inside the atom is the
A. magnetic moment of proton
B. magnetic moment of neutron
C. magnetic moment of atom
D. average magnetic moment of electron

Answer:

- Watch Video Solution

85. Choose the corect options.

At a given place let angle of dp be 30° then
the vertical component of earth's magnetic induction is
A. $\frac{\sqrt{3}}{2} B$
B. B
C. 0
D. $\frac{B}{2}$

Answer:

86. Choose the corect options.

The magnetic induction due to a bar magnet of length $6 \times 10^{2} \mathrm{~m}$ and pole strength $5 \times 10^{-3} \mathrm{Am}$ at a point 0.1 m away from the centre and along the equator is
A. $3 \times 10^{-9} \mathrm{~N} / \mathrm{Am}$, directed from N -pole to

S-pole
B. $3 \times 10^{-8} \mathrm{~N} / \mathrm{Am}$, directed from N -pole to

S-pole
C. $3 \times 10^{-8} \mathrm{~T}$, directed from S-pole to N pole

D. $3 \times 10^{-9} \mathrm{~T}$, directed from s-pole to N - pole

Answer:

D Watch Video Solution

87. Choose the corect options.

If at a given place the earth's magnetic induction B is 5×10^{-4} tesla and the
horizontal component B_{H} is 3 gauss, the vertical component B is
A. 4×10^{-4} gauss
B. 5 gauss
C. $4 \times 10^{-4} \mathrm{~T}$
D. $3.5 \times 10-4 \mathrm{~T}$

Answer:
(Watch Video Solution
88. The magnetic induction at a point on axis
or equator is proportional to n " power of distance from centre where n is
A. 3
B. -3
C. -2
D. 2

Answer:

D Watch Video Solution
89. The direction of earth's magnetic field is
horizontal and vertical respectively at
A. magnetic equator, geographical poles
B. magnetic equator, magnetic poles
C. geographical equator, magnetic poles

Answer:

90. The study of earth's magnetic field is called

 asA. terrestrial
B. geomagnetism magnetism
C. both a and b
D. aquatic magnetism

Answer:

D Watch Video Solution
91. Choose the corect options.

The magnetic length of a dipole is
A. $\frac{5}{6} \times$ geometric length
B. $\frac{1}{2} \times$ geometric length
C. $2 \times$ geometric length
D. $\frac{6}{5} \times$ geometric length

Answer:

D Watch Video Solution
92. The magnetic fields at a distance ' d ' from a short bar transverse positions, are in the ratio magnet in longitudinal and transverse positions, are in the ratio
A. $1: 1$
B. $1: 2$
C. ${ }^{`} 2: 1$
D. $3: 1$

Answer:

93. Choose the corect options.

The magnetic field at a point A on the axis of a small bar magnet is equal to the field at a point B on the equator of same magnet. The ratio of distance of A and B from centre of magnet is
A. 2^{3}
B. $2^{-1 / 3}$
C. $2^{-2 / 3}$
D. $2^{1 / 3}$
A. 2^{3}
B. $2^{-1 / 3}$
C. $2^{-2 / 3}$
D. $2^{1 / 3}$

Answer:

D Watch Video Solution

94. Choose the corect options.

When a bar magnet is placed in a uniform magnetic field, it experiences
A. Only force
B. only torque
C. both force and torque
D. no force, no torque

Answer:

D Watch Video Solution
95. Choose the corect options.

The pole strength of a magnet is
A. vector quantity with SI unit A-m
B. scalar quantity with SI unit A/m
C. vector quantity with SI unit A / m
D. scalar quantity with SI unit A-m

Answer:

D Watch Video Solution
96. Choose the corect options.

Magnetic flux is defined as number of magnetic lines of forces passing through a
given area such that angle between the lines of forces and surface is
A. 0°
B. 45°
C. 90°
D. 120°

Answer:
(Watch Video Solution

97. Choose the corect options.

The angle of dip is zero at
A. magnetic equator
B. geographic equator
C. magnetic poles
D. geographic poles

Answer:

D Watch Video Solution
98. Choose the corect options.

A thin rod of length L is magnetized and has magnetic moment M. The rod is then bent in a semicircular arc. The magnetic moment in this case is
A. $\frac{M}{L}$

M
B. $\frac{\pi}{\pi}$
C. $\frac{M}{2 \pi}$
D. $\frac{2 M}{\pi}$
π
A. $\frac{M}{L}$
B. $\frac{M}{\pi}$
C. $\frac{M}{2 \pi}$
D. $\frac{2 M}{\pi}$

Answer:

D Watch Video Solution

99. Choose the corect options.

Let r be the distance of a point on the axis of a
bar magnet from its centre. The magnetic field at r is always proportional to:
A. $1 / r^{2}$
B. $1 / r^{3}$
C. $1 / r$
D. Not necessarily $1 / r^{3}$ at all points

Answer:

D Watch Video Solution
100. Choose the corect options.

A place where the vertical components of the
earth's magnetic field is zero has the angle of

dip equal to

A. 0°
B. 45°
C. 60°
D. 90°

Answer:
(Watch Video Solution
101. The magnetic fields at a distance ' d ' from a
short bar transverse positions, are in the ratio
magnet in longitudinal and transverse positions, are in the ratio
A. $1: 1$
B. 1: 2
C. $2: 1$
D. $3: 1$

Answer:

102. Choose the corect options.

The magnetic field at a point A on the axis of a small bar magnet is equal to the field at a point B on the equator of same magnet. The ratio of distance of A and B from centre of magnet is
A. 2^{3}
B. $2^{-1 / 3}$
C. $2^{-2 / 3}$
D. $2^{1 / 3}$
A. 23
B. $2-1 / 3$
C. $2--2 / 3$
D. $21 / 3$

Answer:

D Watch Video Solution
103. What is magnetic flux? State its SI unit

104. Define Magnetic Induction at any point?

- Watch Video Solution

105. What are magnetic poles.

D Watch Video Solution
106. What do you mean by Terrestrial magnetism.
107. Draw a diagram to illustrate the magnetic
lines of force between the south poles of two magnets.

D Watch Video Solution

108. What is Bar magnet. Draw the diagram to
represent magnetic length.
109. . A short bar magnet has a magnetic moment of $2 A-m^{2}$. If its magnetic length is 5 cm , calculate its pole strength?

D Watch Video Solution

110. Draw the magnetic force lines of a current carrying finite solenoid?

D Watch Video Solution
111. What are magnetic maps of the Earth.

- Watch Video Solution

112. A magnet makes an angle of 45° with the
horizontal in a vertical plane making an angle of 30° with the magnetic meridian. Find the true value of the dip angle at that place.

D Watch Video Solution

113. Prove that B axis $=2 B$ equator.

- Watch Video Solution

114. Derive an expression for Earth magnetic
field interns of its components.

- Watch Video Solution

115. Derive an expression for magnetic field at
an arbitrary point (r) due to a short bar
magnet?

- Watch Video Solution

116. A short magnetic dipoles has magnetic moment $0.5 \mathrm{Am}^{2}$. Calculate its magnetic field at a distance of 20 cm from the center of magnetic dipole on the axis.

- Watch Video Solution

117. A short magnetic dipoles has magnetic moment $0.5 \mathrm{Am}^{2}$. Calculate its magnetic field at a distance of 20 cm from the center of magnetic dipole on the equatorial line ($\mu_{0}=4 \pi \times 10^{-7}$ SI unit).

D Watch Video Solution

118. Earth's magnetic field at the equator is approximately 4×10^{-5} tesla, $R=6.4 \times 10$
$\mathrm{m}, \mu_{o}=4 \pi \times 10^{-7}$ SI unit. Calculate Earth's
dipole moment.

- Watch Video Solution

