©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHETANA PHYSICS (MARATHI

ENGLISH)

MATHEMATICAL METHODS

Exercise

1. Define scalar and vector quantities. Give 2
examples of each
2. Define the following vectors:

D Watch Video Solution

3. What are the dimensions and units of a unit vector?
(D) Watch Video Solution
4. How can a vector be represented?

- Watch Video Solution

5. Explain what is meant by 'scalar multiple of a vector'. Give 2 examples.
(D) Watch Video Solution
6. Distinguish between the scalars \& vectors.

Watch Video Solution

7. Is it correct to add two vectors representing physical quantities having different dimensions?

D Watch Video Solution

8. Explain addition and substraction of vectors.

D Watch Video Solution

9. State and explain the "triangle law of vector addition".
10. With the help of diagrams explain the properties of vector addition.

- Watch Video Solution

11. State the law of parallelogram of vectors.
(i) Obtain an expression for the magnitude of the resultant.
(ii) Obtain an expression for the direction of the resultant.
12. Explain the polygon law of vectors.

OR

What is law of polygon of vector?

(D) Watch Video Solution

13. Two vectors of equal magnitude acting at a point, produce a resultant, also of the same magnitude. Find the angle between the vectors.
14. Two vectors \vec{a} and \vec{b} intersecting at a point, make an angle of 60° between them.If the magnitude of a is 8 units, and the magnitude of the resultant is 10 units, calculate the magnitude of \vec{b}. Also determine the direction of the resultant.

(Watch Video Solution

15. What is meant by 'resolution of a vector'?

What are "rectangular components"?
16. Explain how the rectangular components of a

2-dimensional vector, convey the complete information about the vector.(i.e its magnitude and direction.)

(D) Watch Video Solution

17. How can the concept of components of a vector be extended to a 3-dimension vector?
18. Show that $\vec{a}=\frac{\vec{i}-\vec{j}}{\sqrt{2}}$ is a unit vector.

D Watch Video Solution

19. If $\vec{v}_{1}=3 \hat{i}+4 \hat{j}+\hat{k}$ and $\vec{v}_{2}=\hat{i}-\hat{j}-\hat{k}$ determine the magnitude of $\vec{v}_{1}+\vec{v}_{2}$

(D) Watch Video Solution

20. For $\vec{v}_{1}=2 \hat{i}-3 \hat{j}$ and $\vec{v}(2)=-6 \hat{i}+5 \hat{j}$
determine the magnitude and directon of $\vec{v}_{1}+$

- Watch Video Solution

21. Find a vector which is parallel to $\vec{v}=\hat{i}-2 \hat{j}$ and has magnitude 10 .

- Watch Video Solution

22. Show that $\vec{a}=2 \hat{i}+5 \hat{j}-6 \hat{k} \quad$ and $\vec{b}=\hat{i}+\frac{5}{2} \hat{j}-3 \hat{k}$ are parallel.
23. Define scalar product of 2 vectors. State any 2 of its properties.

D Watch Video Solution

24. Derive the expression for the scalar product of two vectors in "component form".

- Watch Video Solution

25. Give 2 examples of scalar product of vectors.

- Watch Video Solution

26. Define vector product (or cross product) of two vectors. Also state the characteristics ofcross product.

D Watch Video Solution

27. Derive the expression for the vector product of two vectors in the "component form".
28. Give 2 examples of vector product of two vectors.

(D) Watch Video Solution

29. Explain the physical significance of the magnitude of the cross product.

(D) Watch Video Solution

30. Distinguish between dot product and cross product.

- Watch Video Solution

31. Determine $\vec{a} \times \vec{b}$, given $\vec{a}=2 \hat{i}+3 \hat{j}$ and $\vec{b}=3 \hat{i}+5 \hat{j}$.

- Watch Video Solution

32. Show that vectors $\vec{a}=2 \hat{i}+3 \hat{j}+6 \hat{k}$,
$\vec{b}=3 \hat{i}-6 \hat{j}+2 \hat{k}$ and $\vec{c}=6 \hat{i}+2 \hat{j}-3 \hat{k}$ are mutually perpenducalar.
33. Determine the vector product of $\vec{v}_{1}=2$ hati +

3hatj-hatk and oversetrarrvunderset(2)
$=\hat{i}+2 \hat{j}-3 \hat{k}$

(D) Watch Video Solution

34. Given $\vec{v}_{1}=5$ hati $+\quad$ hatj and
oversetrarrvunderset(2) $=a \hat{i}-6 \hat{j}$
perpenducalar to each other, determine the value of 'a'.
35. Find, $\vec{P} \cdot \vec{Q}$ where $\vec{P}=2 \hat{i}+2 \hat{j}+\hat{k}$ and $\vec{Q}=\hat{i}-\hat{j}+2 \hat{k}$

D Watch Video Solution

36. Show that the vectors $\vec{A}=4 \hat{i}+2 \hat{j}-4 \hat{k}$ and $\vec{B}=\hat{i}+4 \hat{j}+3 \widehat{K}$ are perpenducular to each other.
37. Find a if $\vec{A}=3 \hat{i}-2 \hat{j}+4 \hat{k}$ and $\vec{B}=a \hat{i}+2 \hat{j}-\hat{k}$ are perpendicular to one another.

(D) Watch Video Solution

38. Find unit vectors perpendicular to the plane of the vectors. $\vec{A}=\hat{i}-2 \hat{j}+\hat{k}$ and $\vec{B}=2 i-k$
39. Find the cosine of the angle between the given vectors: $\quad \vec{P}=3 \hat{i}+12 \hat{j}-4 \hat{k} \quad$ and $\vec{Q}=2 \hat{i}+2 \hat{j}+\hat{k}$

(D) Watch Video Solution

40. Find the angle between the vectors
$\vec{A}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ and $\vec{B}=\hat{i}-\hat{j}+3 \hat{k}$
(D) Watch Video Solution
41. If $\vec{P}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{Q}=3 \hat{i}+\hat{j}+2 \hat{k}$.

Find the angle between \vec{P} and \vec{Q}

- Watch Video Solution

42. A particle has a displacement represented by
$\vec{r}=(\hat{i}+2 \hat{j}+\hat{k}) \mathrm{m}$ when under the action of
two forces $\vec{F}_{1}=(2 h a t i-3$ hatj +2 hatk $) N q$ and
oversetrarrFunderset(2) $=(\hat{i}+\hat{j}+3 \hat{k}) \mathrm{N}$. Find the work done.
43. Find $\vec{A} \times \vec{B}$, where $\vec{A}=2 \hat{i}-5 \hat{j}+3 \hat{k}$ and $\vec{B}=3 \hat{i}+4 \hat{j}-9 \hat{k}$

- Watch Video Solution

44. If $\vec{A}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{B}=\hat{i}+\hat{j}-\hat{k}$, determine the unit vector parallel to $\vec{A} \times \vec{B}$.

- Watch Video Solution

45. A force $\vec{F}=(4 \hat{i}+2 \hat{j}-\hat{k}) \mathrm{N}$ acts on a body at a distance of $\vec{r}=(-\hat{i}-3 \hat{j}+\hat{k}) \mathrm{m}$
from the origin of an inertial reference frame.
Find the torque acting on the body.

D Watch Video Solution

46. Find the area of the triangle formed by
$\vec{A}=3 \hat{i}-4 \hat{j}+2 \hat{k} \mathrm{~m}$ and $\vec{B}=\hat{i}+\hat{j}-2 \hat{k}$ as
adjacent sides.

(D) Watch Video Solution

47. Find the area of the parallelogram with adjacent sides formed by \vec{P} and \vec{Q}

- Watch Video Solution

48. If $|\bar{A}+\bar{B}|=|\bar{A}-\bar{B}|$ then what can be the angle between \bar{A} and \bar{B} ?

- Watch Video Solution

49. Using the rule for different for quotient of two functions,prove that $\frac{d}{d x}\left(\frac{\sin x}{\cos x}\right)=\sec ^{2} x$.
50. Chose the correct option

The angle made by $2 \hat{i}+3 \hat{j}$ with Z axis is
A. 30°
B. $\tan ^{-1}\left(\frac{2}{3}\right)$
C. $\tan ^{-1}\left(\frac{3}{2}\right)$
D. 90°

Answer:

(Watch Video Solution
51. Chose the correct option

The magnitude of (hati + hatj +hatk) ${ }^{\text {' }}$ is
A. 1
B. 3
C. $\sqrt{3}$
D. $\frac{1}{3}$

Answer:

- Watch Video Solution

52. Chose the correct option
vector $2 \hat{i}+3 \hat{j}-7 \hat{k}$ and $\hat{i}+m \hat{j}-2 \hat{k}$ are perpendicular vectors. The value of m is
A. $-\frac{1}{3}$
B. -3
C. $\frac{16}{3}$
D. $-\frac{16}{3}$

Answer:

53. Chose the correct option

If $(\vec{a}+\vec{b})$ is maximum, the angle between \vec{a}
and \vec{b} must be
A. 45°
B. 0°
C. 90°
D. 180°

Answer:
(D) Watch Video Solution

54. Chose the correct option

If the vector $\vec{a} \hat{i}+0.8 \hat{j}+0.06 \hat{k}$ is said to be unit vector, the value of a is.
A. 1
B. -1.4
C. 0
D. $\frac{1}{2}$

Answer:
(D) Watch Video Solution

55. Chose the correct option

When 2 vectors \vec{a} and \vec{b} are added, the magnitude of the resultant is always
A. greater than (a+b)
B. less than (a+b)
C. never greater than (a+b)
D. equal to $(a+b)$

Answer:

O
56. Chose the correct option

If a vector has magnitude5, its components have magnitude
A. 2 and 3
B. 2.5 and 3.5
C. 1 and 4
D. 3 and 4

Answer:

57. Chose the correct option

Two forces of magnitude 7 N and 5 N act on a particle. The minimum magnitude of the resultant is
A. 1 N
B. 2 N
C. 6 N
D. 5 N

Answer:

- Watch Video Solution

58. Chose the correct option

A force $\vec{F}=(2 \hat{i}-10 \hat{j}+12 \hat{k}) \mathrm{N}$ acts as a particle which moves along the positive Z axis. If it covers a distance of 10 m , the work done is
A. 40 J
B. 100 J
C. 120 J
D. $-100 J$

Answer:
59. Chose the correct option

The force acting on a body of mass m, produces
acceleration a ,given by the equation $\mathrm{F}=\mathrm{ma}$. If
$\vec{F}=(8 \hat{i}+6 \hat{j}-10 \hat{k}) \mathrm{N}$ and acceleration is 1
m / s^{2}, the mass of the body is
A. 4 kg
B. 20 kg
C. 200 kg
D. $10 \sqrt{2} \mathrm{~kg}$

- Watch Video Solution

60. Chose the correct option

The value of $(\vec{A}+\vec{B}) \times(\vec{A}-\vec{B})$ is
A. 0
B. $A^{2}-B^{2}$
C. $\vec{B} \times \vec{A}$
D. $2(\vec{B} \times \vec{A})$

Answer:
61. Chose the correct option

The angle between $(\hat{i}+\hat{j})$ and $(\hat{j}+\hat{k})$ is
A. 0°
B. 90°
C. 30°
D. 60°

Answer:

(D) Watch Video Solution
62. Chose the correct option

The resultant of two vectors \vec{p} and \vec{q} make 45° angle with both the magnitude of the resultant is
A. $p+q$
B. $\frac{p+q}{\sqrt{2}}$
C. $\frac{\sqrt{p^{2}+q^{2}}}{\sqrt{2}}$
D. $\sqrt{p^{2}+q^{2}}$

Answer:
63. Chose the correct option

The angle between \vec{a} and the resultant of $(2 \vec{a}+\vec{b})$ and $(2 \vec{a}-\vec{b})$ is
A. 0°
B. 90°
C. $\tan ^{-1}\left(\frac{1}{2}\right)$
D. 45°

Answer:
64. Chose the correct option
\vec{p} and \vec{q} are two vectors. Then $\vec{P} \cdot(\vec{p} \times \vec{q})$ is
A. pq
B. $p^{2} q$
C. zero
D. $2 p q$

Answer:

- Watch Video Solution

65. Chose the correct option

If $y=x^{2}+2 x$, then $\frac{d y}{d x}$ at $\mathrm{x}=4$ is
A. 4
B. 6
C. 8
D. 10

Answer:

(D) Watch Video Solution
66. Chose the correct option

The displacement s of a particle is expressed by the relation $s=\left(6 t^{2}-3 t+6\right)$ metres and t is in seconds. The velocity of the particle at $t=2$
seconds is ... m / s.
A. 9
B. 81
C. 4.5
D. 21

Answer:
67. Chose the correct option

The value of the integral $\int_{2}^{3} x^{2} d x$ is
A. 5
B. 19
C. $\frac{19}{3}$
D. $\frac{5}{3}$

Answer:

- Watch Video Solution

68. Chose the correct option
$\int_{0}^{\pi / 2} \sin \theta d \theta$ is equal to
A. 0
B. -1
C. 1
D. $\frac{1}{2}$

Answer:

- Watch Video Solution

69. Chose the correct option
$\int_{0}^{\pi / 2} \vec{a} \cdot \vec{b} \mathrm{~d}$ theta' is equal to
A. $a b$
B. $-a b$
C. 0
D. $\frac{a b}{2}$

Answer:
(D) Watch Video Solution
70. Chose the correct option

The resultant of 2 forces 10 N and 15 N acting along $+x$ and $-x$ axes respectively is
A. 25 N along $+x$ axis
B. 25 N along -x axis
C. 5 N along +x axis
D. 5 N along - x axis
71. Chose the correct option

For 2 vectors to be equal, they should have
A. Same magnitude
B. Same direction
C. Same magnitude and direction
D. Same magnitude but opposite direction

Answer:

- Watch Video Solution

72. Chose the correct option

The magnitude of scalar product of two unit vectors perpendicular to each other is
A. Zero
B. 1
C. -1
D. 2

Answer:
73. Chose the correct option

The magnitude of vector product of two unit vectors making an angle of 60° with each other is
A. 1
B. 2
C. $\frac{3}{2}$
D. $\operatorname{frac}(\mathrm{sqrt} 3)(2)^{\prime}$

Answer:
74. Chose the correct option

If \vec{a}, \vec{b}, and \vec{C} are 3 vectors, then which of the following is not correct?
A. $\vec{A} \cdot(\vec{B}+\vec{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C}$
B. $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$
C. $\vec{A} \times \vec{B}=\vec{B} \times \vec{A}$
D.

$$
\vec{A} \times(\vec{B}+\vec{C})=(\vec{A} \times \vec{B})+(\vec{A} \times \vec{C})
$$

Answer:

Watch Video Solution

75. The magnitude of the sum of 2 vectors is \qquad
A. Always equal to sum of magnitude of 2 vectors
B. Never equal to the sum of magnitude of 2
vectors
C. May be equal to the sum of magnitude of 2
vectors
D. Always less than sum of magnitude of 2 vectors
A. A. Always equal to sum of magnitude of 2
B. B. Never equal to the sum of magnitude of

2 vectors
C. C. May be equal to the sum of magnitude of

2 vectors
D. D. Always less than sum of magnitude of 2
vectors

Answer:

(D) Watch Video Solution
76. State True/False:

The magnitude of the sum of 2 vectors is always equal to the sum of magnitude of 2 vector.

(D) Watch Video Solution

77. State True/False:

The magnitude of the sum of 2 vectors is never equal to the sum of magnitude of 2 vector.
78. State True/False:

The magnitude of the sum of 2 vectors is may be equal to the sum of magnitude of 2 vector.

(D) Watch Video Solution

79. State True/False:

If \vec{a} and \vec{b} are 2 vectors of same magnitude
than $(\vec{a}+\vec{b})$ is
(a) at an angle 45° with both vectors.
80. State True/False:

If \vec{a} and \vec{b} are 3 vectors of same magnitude
than $(\vec{a}+\vec{b})$ is
(b) at an angle of 45° with any vector

(Watch Video Solution

81. State True/False:

If \vec{a} and \vec{b} are 4 vectors of same magnitude
than $(\vec{a}+\vec{b})$ is
c. in a plain containing the 2 vectors
82. If \hat{i} and \hat{j} are unit vectors, then $(\hat{i}+\hat{j})$ may be a unit vector

- Watch Video Solution

83. If \hat{i} and \hat{j} are unit vectors, then $(\hat{i}+\hat{j})$
is a unit vector
84. If \hat{i} and \hat{j} are unit vectors, then $(\hat{i}+\hat{j})$
is not a unit vector

- Watch Video Solution

85. If \hat{i} and \hat{j} are unit vectors, then $(\hat{i}+\hat{j})$
is a vector of magnitude2
(D) Watch Video Solution
86. Pressure is Vector or Scalar Quantity ?

87. velocity is Vector or Scalar Quantity ?

(D) Watch Video Solution

88. Time is Vector or Scalar Quantity?

- Watch Video Solution

89. Distance is Scalar or vector quantity ?
90. What is meant by 'resolution of a vector'?

(D) Watch Video Solution

91. State the triangle law of vectors. State any 2 of its properties.

D Watch Video Solution

92. Define scalar product of 2 vectors. State any 2
of its properties.

- Watch Video Solution

93. Explain the physical significance of the magnitude of the cross product.

(D) Watch Video Solution

94. Explain addition and substraction of vectors.
(D) Watch Video Solution
95. Two forces of magnitude 10 N and 15 N act at a point making angle of 60° between them. Find the magnitude of the resultant and the angle made by it with the 10 N force.

D Watch Video Solution

96. Determine the area of the parallelogram
formed by the 2 vectors . $\hat{i}+3 \hat{j}-4 \hat{k}$ and
$3 \hat{i}-2 \hat{j}-\hat{k}$
97. State the law of parallelogram of vectors.Obtain an expression for the magnitude of the resultant.

(D) Watch Video Solution

98. A dimensionally correct equation need not be actually correct, but a dimensionally incorrect equation is necessarily wrong. Justify.

Watch Video Solution

