©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHETANA PHYSICS (MARATHI

ENGLISH)

MOTION IN A PLANE

Exercise

1. A car travels at a speed of $50 \mathrm{~km} / \mathrm{hr}$ for 15
minute and then $70 \mathrm{~km} / \mathrm{hr}$ for next 45

- Watch Video Solution

2. A body travels from place A to place B with
uniform velocity of $10 \mathrm{~m} / \mathrm{s}$ and travels back
from place B to place A with uniform velocity
of $2 \mathrm{~m} \mathrm{~m} / \mathrm{s}$. Calculate the average velocity of
the body for the whole journey.

D Watch Video Solution
3. Separate the following in groups of scalars.
and vectors velocity, speed, displacement, work done,force power, energy acceleration, electric charge, angular velocity.

- Watch Video Solution

4. Define average velocity and instantaneous
velocity. When are they same?

5. Differentiate between

Uniform rectilinear motion and Non-Uniform rectilinear motion

D Watch Video Solution

6. What is position -time graph ? Discuss the position time graph of an object (i) at rest (ii) in uniform motion. (iii) object performing oscillatory motion. (iv) object in non-uniform rectilinear motion.
7. Explain the terms. (i) Acceleration

D Watch Video Solution

8. Explain velocity time graph of a particle having Constant velocity (ii) uniform positive acceleration (iii) uniform negative acceleration
(iv) non- uniform acceleration.

Watch Video Solution

9. A metro train runs from station A to $B C$. It
takes 4 minutes in travelling from Station A to
Station B. The train halts at station B for 20 s .
Then it starts from station B and reaches Station C in next 3 minutes. At the start, the train accelerates for 10 s to reach the constant speed of $72 \mathrm{~km} / \mathrm{hr}$. The train moving at the constant speed is brought to rest in 10 sec . At next station. (i) Plot the velocity- time graph for the train travelling from the station A to B
to C. (ii) Calculate the distance between the stations A, B and C.

D Watch Video Solution

10. Which physical quantity can be determined by the area under the velocity time curves / graphs?

- Watch Video Solution

11. Using velocity time graph, derive the equations of motion for uniform acceleration moving along a straight line.

D Watch Video Solution

12. An aeroplane has a run of 500 m to take off
from runway. It starts from rest and moves
with constant acceleration to cover the
runway in 30 s . What is the velocity of the aeroplane at the take off?
13. A car moving along a straight road with a speed of $120 \mathrm{~km} / \mathrm{hr}$ is brought to rest by applying brakes. The car covers a distance of 100 m before it stops. Calculate (i) average retradation of the car. (ii) time taken by the car to come rest.

D Watch Video Solution
14. A stone is released from the top of a tower 90 m high. At the same instant a second stone is projected vertically upwards from the ground with a velocity of $30 \mathrm{~m} / \mathrm{s}$. When and where will the two stones meet?

- Watch Video Solution

15. A body released from rest a certain height was observed to cover 78.4 m in the last two seconds before hitting the ground. Find the
height from which it was realesed.
$\left(g=9.8 m / s^{2}\right)$

D Watch Video Solution
16. Define : Free fall

D Watch Video Solution

17. Galileo's law of odd numbers : The distances traversed during equal intervals of time, by a body falling from rest, stand to one
another in the same ratio as the odd numbers beginning with unity namely $1: 3: 5: 7$.....Prove it.

D Watch Video Solution

18. Explain 'Relative velocity'.

- Watch Video Solution

19. Two parallel rail tracks run north-south.

Train A moves north with a speed of 54 km
$h r^{-1}$ aned train B moves south with a speed of $90 \mathrm{~km} \mathrm{hr}{ }^{-1}$. What is the (i) velocity of B with respect to A ? (ii) velocity of ground with respect to A ? (iii) velocity of a monkey running on the roof of $18 \mathrm{~km} / \mathrm{hr}$ with respect to train

A as observed by a man standing on the ground.

D Watch Video Solution

20. The position vector of a particle moving in

XY plane at any instant of time is
$x=4 t^{2} \hat{i}+3 t^{2} \hat{j}$. Find the instantenous speed.

- Watch Video Solution

21. If the motion of an object is described by $x=f(t)$ write formulae for instantenous velocity and acceleration.

- Watch Video Solution

22. The position of an object moving along the x axis is given by $x=a+b t^{2}$ where a $=8.5$
and $\mathrm{b}=2.5 \mathrm{~ms}^{2}$ and t is measured in second.

What is the velociity at $\mathrm{t}=0 \mathrm{~s}$ and $\mathrm{t}=2 \mathrm{~s}$? What
is the average velocity between $\mathrm{t}=2 \mathrm{~s}$ and $t=4 s$?

D Watch Video Solution

23. A train is moving east ward at $10 \mathrm{~m}^{-1}$. A
waiter is walking eastward at $1.2 \mathrm{~m} s^{-1}$ and a
fly is charging towards the north across the
waiter's tray at $2 \mathrm{~m} / \mathrm{s}$. What is the velocity of the fly relative to the earth.
24. Derive equations of motion for a particle moving in a plane and show that the motion can be resolved in two independent motions in mutually perpendicular directions.

- Watch Video Solution

25. A train is moving east ward at $10 \mathrm{~m} \mathrm{~s}^{-1}$. A
waiter is walking eastward at $1.2 \mathrm{~m} \mathrm{~s}^{-1}$ and a
fly is charging towards the north across the
waiter's tray at $2 \mathrm{~m} / \mathrm{s}$. What is the velocity of the fly relative to the earth.

D Watch Video Solution

26. Derive equations of motion for a particle moving in a plane and show that the motion
can be resolved in two independent motions in mutually perpendicular directions.
27. Define the terms : (i) projectile (ii) Velocity
of projection (iii) Angle of projection (iv)
Trajectory of projectile.

- Watch Video Solution

28. Show that the path of a projectile is a parabola.

- Watch Video Solution

29. Define (i) Times of ascent (III) Time of descent (iii) Time of flight. Deriver necessary expressions.

D Watch Video Solution

30. Define horizontal range. Derive the necessary expression for it.

D Watch Video Solution
31. A projectile is thrown at an angle of 30° to
the horizontal. What should be the range of initial velocity (u) so that its range will be betweeen 40 m and 50 m ? Assume $\mathrm{g}=10 \mathrm{~m} \mathrm{~s}$.

D Watch Video Solution

32. A man throws a ball to maximum
horizontal distance of 80 m . Calculate the maximum height reached.
33. A particle is projected with speed of u at an angle θ to the horizontal on an inclined surface making an angle $\phi(\phi<\theta)$ to the horizontal. Find an expression for its along the inclined surface.

D Watch Video Solution

34. Find a formula for maximum height attained by object
35. A stone is thrown vertically upward with a velocity of $30 \mathrm{~m} / \mathrm{s}$. How high will it rise? After how much time will it return to ground ? [Take $\left.\mathrm{g}=10 \mathrm{~m} / / \mathrm{s}^{\wedge} 2\right]$

D Watch Video Solution
36. At wich point of its trajectory does the projectile have minimum speed?
37. Show that for a given velocity of projection, there are two angles of projection which give the same range of projectile.

- Watch Video Solution

38. Derive the expression for trajectory of a
particle projected horizontally with velocity u from height H .
39. Define the terms : (i) Uniform circular motion (ii)Radius vector (iii) period (iv)

Angular speed (v) Centripetal acceleration (vi)

Centripetal force.

D Watch Video Solution

40. State the requirements for an object to perform uniform circular motion.

D Watch Video Solution

41. Find the expression for the speed and angular speed of a particle performing uniform circular motion. State SI unit of angular speed.

- Watch Video Solution

42. Show that the centripetal force on a particle undergoing uniform circular motion $-m \omega^{2} \vec{r}$
43. A particle moves in a circle with constant speed of $15 \mathrm{~m} / \mathrm{s}$. The radius of the circle is 2 m . Determine the centripetal acceleration of the particle.

- Watch Video Solution

44. What is conical pendulum? Show that its
time period is given by $2 \pi \sqrt{\frac{l \cos \theta}{g}}$, where I is
the length of the string, θ is the angle that the
string makes with the vertical and g is the acceleration due to gravity.

D Watch Video Solution

45. A car moves in a circle at the constant speed of $50 \mathrm{~m} / \mathrm{s}$ and completes 1 revolution in

40s. Determine the magnitude of acceleration of the car.

- Watch Video Solution

46. A string of length 0.5 m carries a bob at its
end. If this is to be used as a conical pendulum
of period $0.4 \pi s$. Calculate the angle of inclination of the string with the vertical.

- Watch Video Solution

47. An object thrown from a moving bus is an example of:
A. Uniform circular motion
B. Rectilinear motion

C. Projectile motion

D. Motion in one dimension

Answer:

- Watch Video Solution

48. For a particle having uniform circular motion, which is the following is constant?
A. Speed
B. Acceleration

C. Velocity

D. Displacement

Answer:

D Watch Video Solution

49. The bob of a conical pendulum undergoes
A. Rectilinear motion in horizontal plane
B. Uniform motion in horizontal circle
C. Uniform motion in a verticle circle

D. Restilinear motion in verticle circle

Answer:

D Watch Video Solution

50. For uniform acceleration in rectilinear motion which of the following is not correct?
A. Velocity- time graph is linear
B. Acceleration is the slope of velocity time
graph
C. The area under the velocity-time graph equals displacement
D. Velocity-time graphs is non linear.

Answer:

D Watch Video Solution

51. If three particles A, B and C are having velocities \vec{V}_{A}, \vec{V}_{b} and \vec{V}_{C} which of the following formula gives the relatives velocity of A with respect to B.
A. $\vec{V}_{A}+\vec{V}_{B}$
B. $\vec{V}_{A}-\vec{V}_{C}+\vec{\exists}$
C. $\vec{V}_{A}-\vec{V}_{B}$
D. $\vec{V}_{C}-\vec{V}_{A}$

Answer:

D Watch Video Solution
52. The actual distance travelled by the particle during its motion is called
A. Speed
B. displacement
C. path length
D. position

Answer:

D Watch Video Solution

53. When a car moves towards east 50 m then
towards south 50 m later on towards west

50m, finally towards north 50, the displacement of the car in magnitude is
A. 200 m
B. 100 m
C. 50m
D. zero

Answer:

D Watch Video Solution
54. A body covers one-half of its journey at 40
$\mathrm{m} s^{-1}$ and the next half at $50 \mathrm{~m} s^{-1}$. Its
average velocity is.
A. $44.4 \mathrm{~m}^{-1}$
B. $50 \mathrm{~m}^{-1}$
C. $45 \mathrm{~m}^{-1}$
D. $40 \mathrm{~m}^{-1}$

Answer:

- Watch Video Solution

55. A bus travel its onward journey with a constant speed of $30 \mathrm{~km} / \mathrm{hr}$ and its return journey with a constant speed of $60 \mathrm{~km} / \mathrm{hr}$.the average speed for its entire journey is
A. $90 \mathrm{~km} / \mathrm{hr}$
B. $45 \mathrm{~km} / \mathrm{h} \mathrm{r}$
C. $40 \mathrm{~km} / \mathrm{h} \mathrm{r}$
D. $15 \mathrm{~km} / \mathrm{hr}$
A. A. $90 \mathrm{~km} / \mathrm{hr}$
B. B. $45 \mathrm{~km} / \mathrm{hr}$
C. C. $40 \mathrm{~km} / \mathrm{hr}$

D. D. $15 \mathrm{~km} / \mathrm{hr}$

Answer:

D Watch Video Solution

56. A particle oscillates along a straight line 1 m
long, if it completes one oscillation in 0.1 s , then the distance covered by it and its average speed in one oscillation is,
A. $1 \mathrm{~m}, 20 \mathrm{~m} / \mathrm{s}$
B. $2 \mathrm{~m}, 20 \mathrm{~m} / \mathrm{s}$
C. $2 \mathrm{~m}, 15 \mathrm{~m} / \mathrm{s}$
D. $1 \mathrm{~m}, 15 \mathrm{~m} / \mathrm{s}$
A. A. $1 \mathrm{~m}, 20 \mathrm{~m} / \mathrm{s}$
B. B. $2 \mathrm{~m}, 20 \mathrm{~m} / \mathrm{s}$
C. C. $2 \mathrm{~m}, 15 \mathrm{~m} / \mathrm{s}$
D. D. $1 m, 15 m / s$

Answer:

D Watch Video Solution
57. The position of an object movinfg along X axis is given by $x=a+b t^{2}$ where $\mathrm{a}=8.5 \mathrm{~m}$ and $b=2.5 \mathrm{~m}$ and t is measured in second. If the object starts from $t=0$, the velocity at $t=$ 2 s is
A. $18.5 m / s$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $9.25 \mathrm{~m} / \mathrm{s}$
D. $1.5 \mathrm{~m} / \mathrm{s}$
58. A car accelerates on a straight road from rest to a speed of $180 \mathrm{~km} / \mathrm{hr}$ in 25 second.

Assuming Unifrom acceleration of the car out, the distance covered in this is
A. 625 m
B. 600 m
C. 144 m
D. 72 m

Answer:

D Watch Video Solution

59. A body has initial velocity of $3 \mathrm{~m} / \mathrm{s}$ and has an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$. The distance travelled by it in 5 s and its velocity is
A. $40 \mathrm{~m}, 13 \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m}, \mathrm{~m} / \mathrm{s}$
C. $40 \mathrm{~m}, 10 \mathrm{~m} / \mathrm{s}$
D. $10 \mathrm{~m}, 10 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

60. An electron travelling with a speed of $5 \times 10^{3} \mathrm{~m} / \mathrm{s}$ passes through an electric field with an acceleration of $10^{12} \mathrm{~ms}^{-2}$. How long will it take for electron to double its speed?
A. $0.5 \times 10^{-9} \mathrm{~S}$
B. $0.5 \times 10^{1}-10$ s
C. $5 \times 10^{-9} \mathrm{~s}$

$$
\text { D. } 5 \times 10^{-12} \mathrm{~s}
$$

Answer:

D Watch Video Solution

61. A stone is thrown vertically upwards with
initial velocity of $14 \mathrm{~m}^{-1}$. The maximum
height it will reach is $\left[g=9.8 m s^{-2}\right]$
A. $60 m$
B. $30.4 m$
C. $29.4 m$
D. $10 m$

Answer:

D Watch Video Solution

62. A swimmer's speed in the direction of flow
of rivers is $16 \mathrm{~km} \mathrm{~h} h^{-1}$. The swimmer's speed in
still water and the velocity of flow of the river respectively are.
A. $4 \mathrm{~km} h^{-1}, 12 \mathrm{~km} h^{-1}$
B. $12 \mathrm{~km}^{\wedge}-1{ }^{`}$
C. $12 \mathrm{~km} h^{-1}, 12 \mathrm{~km} h^{-1}$
D. $4 \mathrm{~km} h^{-1}, 4 \mathrm{~km} h^{-1}$

Answer: $12 \mathrm{~km} h^{-1}, 4 \mathrm{~km} h^{-1}$

D Watch Video Solution

63. Figures shows the displacement-time graph of a particle moving along x-axis.

A. The particle is continously going in positive x-direction

B. The particle is at rest

C. The velocity increases upto time t_{0} and
then becomes constant.

D. The particle moves at a constant velocity

upto a time t_{0} and then stops

Answer:

- Watch Video Solution

64. Area under the curved of velocity-time graph of a particle moving with constant velocity is
A. acceleration of the particle
B. distance travelled by the particle
C. constant speed of the particle
D. variable speed of the particle

Answer:

D Watch Video Solution

65. The v-t graph of an athelets is shown below. The distance travelled by him between
$\mathrm{t}=0$ and $\mathrm{t}=12 \mathrm{~s}$ is

A. 36 m
B. 46 m
C. 66 m
D. 78 m
66. The $v-t$ graph below represents

A. Constant positive acceleration

C. constant positive acceleration with non-

zero initial velocity
D. constant negative acceleration

Answer:

D Watch Video Solution

67. The velocity-time graph of a body is shown
in the following graph. At point C
A. the force acting on the body is zero
B. only gravitational force is present
C. the force opposes the motion of the body

D. the force is maximum

A. A. the force acting on the body is zero
B. B. only gravitational force is present
C. C. the force opposes the motion of the
D. D. the force is maximum

Answer:

D Watch Video Solution

68. The two dimensional motion of a body in
which a vertical motion with constant
acceleration (g) and a horizontal motion with
constant velocity acts, such a motion is
A. Curved motion
B. circular motion
C. sinusoidal motion
D. projectile motion

Answer:

D Watch Video Solution
69. Whic of the following is NOT an example of a projectile?
A. Aeroplane in flight
B. A bullet fired from the gun
C. A hammer thrown by an athlete
D. A stone thrown from, the top of the building

Answer:

D Watch Video Solution
70. In a projectile motion, the velocity vector of the projectile is
A. always perpendicular to the acceleration
B. never perpendicular to acceleration
C. perpendicular to acceleration two times
during its flight
D. perpendicular to acceleration only once
during its flight

Answer:

D Watch Video Solution

71. The trajectory of particle is symmetrical about the perpendicular drawn form the highest point on x-axis, if the particle performs projectile motion in xy plane.This is due to
A. velocity of projection of projectile
B. air resistance while performing
projectile motion
C. gravitional acceleration which is same
for upward and downward motion
D. angle of projeection of projectile

Answer:

- Watch Video Solution

72. A shell is fired at an angle of 30° to the
horizontal with velocity $196 \mathrm{~m} / \mathrm{s}$. The time of flight is
A. 6.5 s
B. 10 s
C. 16.5 s
D. 20 s

Answer:

D Watch Video Solution

73. A projectile can have the same range R for two angles of projection. If t_{1} and t_{2} are the times of flight in the two cases, then the product of the two time of flight is proportional to
A. R^{2}
B. $\frac{1}{R^{2}}$
C. $\frac{1}{R}$
D. R
A. A. R^{2}
B. B. $\frac{1}{R^{2}}$
C. C. $\frac{1}{R}$
D. D. R

Answer:

- Watch Video Solution

74. When a body is projected vertically up
from the ground, its velocity is reduced to $\left(\frac{1}{3}\right)^{r d}$ of its initial value at height y above
the ground. The maximum height reached by
the body is

> A. $\frac{3}{4 y}$
> B. $\frac{8 y}{9}$
> C. $\frac{9}{8} y$
D. $9 y$

- Watch Video Solution

75. A body is projected with a vertical velocity of $30 \mathrm{~m} / \mathrm{s}$ at an angle of 30° with the horizontal, the maximum height and horizontal range are respectively

A. $79.53 \mathrm{~m}, 1148 \mathrm{~m}$

B. $11.48 \mathrm{~m}, 79.53 \mathrm{~m}$
C. $159.06 \mathrm{~m}, 11.48 \mathrm{~m}$
D. $22.96 \mathrm{~m}, 79.53 \mathrm{~m}$

Answer:

D Watch Video Solution

76. The angle between velocity and acceleration of a particles describing uniform circularmotion is.
A. 180°
B. 45°
C. 90°
D. 60°

Answer:

D Watch Video Solution

77. A particles moves with a uniform speed v and time period T in a circular path of radius r.

If the speed of the particle is doubled, its new time periods is
A. T
B. $T / 2$
C. 2T

D. $T / 4$

Answer:

D Watch Video Solution

78. In uniform circular motion, the centripetal acceleration is
A. towards the centre of the circular path
and perpendicular to the instantenous
velocity
B. A constant acceleration
C. away from the centre of the circular path and perpendicular to the instantenous

velocity

D. a variable acceleration, parallel to the instantenous velocity

Answer:

D Watch Video Solution
79. An aeroplane is flying with a uniform speed
of $150 \mathrm{~km} / \mathrm{h}$ along the circumference of a circle. The change in its velocity in half the revolution (in km / h) is:
A. 150

B. 100

C. 200
D. 300
A. A. 150
B. B. 100
C. C. 200
D. D. 300

Answer:

D Watch Video Solution

80. The ratio of angular speed of a second
hand to the hour of a watch is
A. $60: 1$
B. $72: 1$
C. $720: 1$
D. $3600: 1$

Answer:

D Watch Video Solution

81. What is approximately the centripetal acceleration (in units of acceleration due to gravity on earth $g=10 \mathrm{~ms}^{-2}$) of an aircraft flying at a speed of $400 \mathrm{~ms}^{-1}$ through a circular are of radius 0.6 km .
A. 26.7
B. 16.9
C. 13.5
D. 30.2

Answer:

D Watch Video Solution

82. Two cars of masses m_{1} and m_{2} are moving in circles of radii r_{1} and r_{2} respectively. Their speeds are such that they make complete
circles in the same time t. The ratio of their

centripetal acceleration

A. $m_{1}: m_{2}$
B. $r_{1}: r_{2}$
C. 1:1
D. $m_{1} r_{1}: m_{2} r_{2}$

Answer:

D Watch Video Solution
83. A body moves in a circle covers equal
distance in equal intervals to time. Which of
the following remains constant?
A. Velocity
B. Acceleration
C. Speed
D. Displacement

Answer:

- Watch Video Solution

84. The acceleration of an object moving in a
circle of radius R with uniform speed v is
A. $\frac{v^{2}}{R}$
B. $\frac{v^{2}}{2 R}$
C. $\frac{2 v^{2}}{R}$
D. $\frac{3 v^{2}}{2 R}$

Answer:

85. A particle is moving with a constant speed
' v ' in a circle what is the magnitude of average velocity after half rotation?
A. 2 v
B. $\frac{2 v}{\pi}$
c. $\frac{v}{2}$
D. $\frac{v}{2 \pi}$

Answer:

86. The earth moves round the sun in a near circular orbit of radius $1.5 \times 10^{11} \mathrm{~m}$. Its centripetal acceleration is
A. $1.5 \times 10^{\wedge}-3 \mathrm{~m} \mathrm{~s}^{\wedge}-2^{`}$
B. $6 \times 10^{-3} \mathrm{~ms}^{-2}$
C. $3 \times 10^{-3} m s^{-2}$
D. $12 \times 10^{-3} \mathrm{~ms}^{-2}$

Answer:

D Watch Video Solution
87. Which one of the folowing statements is not correct in uniform circular motion?
A. Te speed of the particle remains
constant
B. The acceleration always points towards
the centre
C. The angular speed remains constant
D. The velocity remains constant.

Answer:

Watch Video Solution

88. A body moving along a circular path of radius r with velocity V , has centripetal acceleration 'a'. If its velocity is made equal to 2 V , then its centripetal acceleration is.
A. 4 a
B. 2a
C. $a / 4$
D. $a / 2$

Answer:

D Watch Video Solution

89. A body of mass 2 kg is rotating with angular speed 2π rad s^{-1} in a circular path of
radius 1 m . The centripetal force acting on the body is.
A. $2 \pi^{2}$
B. $4 \pi^{2}$
C. $6 \pi^{2}$
D. $8 \pi^{2}$

Answer:

D Watch Video Solution

90. Parabola is the locus of the points which
are equidistance form
A. focus
B. directrix
C. latus rectum
D. focus as well as directrix

Answer:

D Watch Video Solution

91. What does the slope of X-t graph at any point give?

D Watch Video Solution
92. What does the slope of X-t graph at any point give ?

- Watch Video Solution

93. What does the slope of X-t graph at any point give?

- Watch Video Solution

94. What does the slope of X-t graph at any point give ?

- Watch Video Solution

95. When a body moves along a straight line, it is called
A. Rectilinear motion
B. Circular motion
C. Projectile motion
D. Oscillatory motion
A. A. Rectilinear motion
B. B. Circular motion
C. C. Projectile motion
D. D. Oscillatory motion

Answer:

D Watch Video Solution

96. When a body moves along a straight line, it is called
A. Rectilinear motion
B. Circular motion
C. Projectile motion
D. Oscillatory motion

D Watch Video Solution

97. When a body moves along a straight line, it
is called
A. Rectilinear motion
B. Circular motion
C. Projectile motion
D. Oscillatory motion

Watch Video Solution

98. When a body moves along a straight line, it is called
A. Rectilinear motion
B. Circular motion
C. Projectile motion
D. Oscillatory motion

- Watch Video Solution

99. A body is thrown with velocity of $49 \mathrm{~m} \mathrm{~s}^{-1}$
at an angle of 30° with the horizontal, the time required to attained maximum height is ,
A. 5 s
B. 4 s
C. 3 s
D. 2 s
A. A. 5 s
B. B. 4 s
C. C. 3 s
D. D. 2 s

Answer:

D Watch Video Solution

100. A body is thrown with velocity of 49 m
s^{-1} at an angle of 45° with the horizontal,
the time required to attained maximum height is,
A. 5.05 s
B. 6.06 s
C. 7.07 s
D. 8.08 s

D Watch Video Solution

101. A body is thrown with velocity of $49 \mathrm{~m}^{-1}$ at an angle of 90° with the horizontal, the
time required to attained maximum height is,
A. 5 s
B. 10 s
C. 15 s
D. 20 s

Watch Video Solution

102. A body is thrown with velocity of 49 m s^{-1} at an angle of 30° with the horizontal, what is maximum height attained by body?,
A. 20.625
B. 61.25
C. 30.625

D. 41.25

A. A. 20.625
B. B. 61.25
C. C. 30.625
D. D. 41.25

Answer:

D Watch Video Solution
103. At which point of the trajectory does projectile have minimum velocity?

D Watch Video Solution
104. State the SI unit of angular speed.

D Watch Video Solution

105. State the factors on which time period of
a conical pendulum depend

- Watch Video Solution

106. Discuss the velocity time graph for an object with constant negative acceleration.

- Watch Video Solution

107. Explain the term :

Relative velocity.
108. If the position vector of a body performing rectilinear motion is given by $\vec{r}=3 t^{2} \hat{i}+4 t^{2} \hat{j} \mathrm{~m}$. Find the velocity and acceleration of the particle at $\mathrm{t}=1 \mathrm{sec}$.

D Watch Video Solution

109. Define: Horizontal Range and Time of flight.
110. A car movies at a constant speed of 60 km
$h r^{-1}$ for half of the journey and $80 \mathrm{~km} \mathrm{hr}{ }^{-1}$
for remaining half of the journey. Find the average speed of the car in one hour.

D Watch Video Solution

111. State the requirements for a particle to perform uniform circular motion.

- Watch Video Solution

112. Derive the equation of the trajection of a projectile.

- Watch Video Solution

113. Derive the equation of motion from the velocity-time graph.
(D) Watch Video Solution
114. Starting from rest, a car movies with uniform acceleration and attains a velocity of
$72 \mathrm{~km} \mathrm{hr}{ }^{-1}$ in 20 s . It then moves with uniform speed for 25 s and is brought to rest
in 10 s under uniform retardation. Find the total distance travelled using velocity-time graph.

D Watch Video Solution

115. A particle of mass 200 g completes one rotation of a circular track of radius 2 m in 20
second. Calculate angular speed.

D Watch Video Solution

116. A particle of mass 200 g completes one rotation of a circular track of radius 2 m in 21 second. Calculate centripetal acceleration .
117. Define angular velocity. Show that the centripetal force on a particle performing uniform circular motion is $\frac{-m v^{2} \vec{r}}{r^{2}}$

D Watch Video Solution

118. A man throws a ball to a maximum
horizontal distance of 120 m . Find the maximum height reached by the ball.

D Watch Video Solution

