©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHETANA PHYSICS (MARATHI

ENGLISH)

SEMICONDUCTORS

Exercise
1.What do you mean by semiconductor?

- Watch Video Solution

2. On what basis was electrical properties of materials classified before the discovery of semiconductors.

- Watch Video Solution

3. On what factors do the electrical conduction
in solids depend upon?
4. What are the different types of electric conductors?

D Watch Video Solution
5. Explain the term 'conductors' with examples.

D Watch Video Solution

6. What do you mean by insulators? Give examples.

Watch Video Solution

7. What do you mean by semiconductor? Give examples.

D Watch Video Solution

8. State the uses of semiconductor in modern
times.

- Watch Video Solution

9. Give the classification of materials depending upon conductivity.

D Watch Video Solution

10. Explain the term Mobility of a charge carrier. State factors on which it depends.

- Watch Video Solution

11. Draw suitable graphs to show temperature dependence of electric conductivity of metals
interpretation.

D Watch Video Solution

12. Give the types of semiconductors with examples.

D Watch Video Solution

13. Why are the electrical properties of semiconductors different from metals and

insulators

- Watch Video Solution

14. State Pauli's Exclusion principle.

D Watch Video Solution
15. Define energy band in a solid crystal.

- Watch Video Solution

16. Define Valence band in a solid crystal.

- Watch Video Solution

17. What is forbidden gap in a solid crystal?

D Watch Video Solution
18. What is conduction band in solid crystal?
19. What is Fermi level in a solid crystal?

D Watch Video Solution

20. Compare valence band and conduction band.

- Watch Video Solution

21. Define and explain the concept of energy
band.

D Watch Video Solution
22. Distinguish between insulator, conductor and semiconductor on the basis of energy band structure

D Watch Video Solution

23. Explain the electrical conductivitiesof conductor, semiconductor and insulator

D Watch Video Solution

24. What do you mean by Intrinsic Semiconductor.

- Watch Video Solution

25. At absolute zero temperature, what does
an Intrinsic semiconductor behave like?
(Watch Video Solution
26. What is the relation between number of
holes and number of electrons in intrinsic
semiconductor.

D Watch Video Solution

27. What is a hole in semiconductor?

- Watch Video Solution

28. Explain the behaviour of intrinsic semiconductor at absolute temperature and at room temperature.

D Watch Video Solution

29. What is doping in semiconductors.
(Watch Video Solution
30. State the different types of extrinsic semiconductors.

- Watch Video Solution

31. What is extrinsic semiconductor?

- Watch Video Solution

32. Why holes do not exist in a conductor.
33. What is the charge om N-type semiconductor p-type semiconductor?

D Watch Video Solution

34. Define Donor impurity and Acceptor impurity.

D Watch Video Solution
35. Define and Explain formation of N-type semiconductor.

- Watch Video Solution

36. Explain the structure of n-type semiconductor and draw energy level diagram.
37. Explain the structure of P-type semiconductor.

D Watch Video Solution
38. Give three examples of donor impurity and
three examples of acceptor impurity.

- Watch Video Solution

39. Distinguish between N-type and P-type semiconductors.

D Watch Video Solution
40. What are electron current and hole current?

D Watch Video Solution
41. What are trivalent and pentavalent impurities?

D Watch Video Solution

42. Why is the conductivity of N-type semiconductor greater than that of P-type semiconductor even when both of these have same level of doping?
43. Distinguish between intrinsic semiconductors and extrinsic semiconductors.

- Watch Video Solution

44. A pure silicon crystal has 4×10^{28} atoms
m^{-3}. It is droped by 1ppm concentration of antimony. Calculate the number of electrons and holes $n_{i}=1.2 \times 10^{16} / \mathrm{m}^{3}$
45. A pure silicon crystal at temperature of

300 K has electron and hole concentration
$1.5 \times 10^{16} m^{-3}$ each $\left(n_{c}=n_{h}\right)$. Doping by indium increase $\left(n_{e}=n_{h}\right)$ to $4.5 \times 10^{22} m^{-3}$.

Calculate n_{e} for the doped silicon crystal.

D Watch Video Solution

46. What is $\mathrm{P}-\mathrm{N}$ Junction

D Watch Video Solution

47. Define Depletion layer

D Watch Video Solution

48. Define Barrier potential

- Watch Video Solution

49. What is P-N Junction ? Explain construction and working of P-N Junction.
50. Explain the importance of the depletion region in a P-N junction diode.

- Watch Video Solution

51. Distinguish between forward bias and reverse

- Watch Video Solution

52. What causes a larger current through a P-N
junction diode when forward biased?

D Watch Video Solution
53. How is a P-N junction diode fabricated?

D Watch Video Solution

54. What do you mean by P-N junction diode?
55. Draw the labelled symbol for a Junction diode.

D Watch Video Solution

56. Explain different ways of connecting a P-N junction diode with cell.

D Watch Video Solution
57. What happenstopotential barrier and depletion layer in forward biased connection and reverse biased connection.

- Watch Video Solution

58. With a neat labelled diagram Explain V-I characteristics of P-N junction diode.

- Watch Video Solution

59. What is avalanche breakdown for a P-N junction diode in reversed biased mode.

D Watch Video Solution

60. Explain the concept of zero biased junction diode and dynamic equilibrium
61. What is knee voltage in $\mathrm{P}-\mathrm{N}$ junction forward biased divide?

- Watch Video Solution

62. What will be the value of resistance in ideal diode?

- Watch Video Solution

63. Explain Static (DC) resistance and Dynamic (AC) resistance

D Watch Video Solution
64. State few advantages of semiconductor devices.

D Watch Video Solution
65. State few disadvantage of semiconductor devices

D Watch Video Solution
66. What is solar cell? Draw the symbol and State its use.
67. What is photo resistor? Draw the symbol, state the uses

D Watch Video Solution
68. Explain Bi-Polar Junction transistor with symbol and uses

- Watch Video Solution

69. What is photo diode? Draw the symbol and state uses.

D Watch Video Solution
70. What is Light Emitting diode (LED)? Draw the symbol and state the uses?

- Watch Video Solution

71. What is solid state laser?

- Watch Video Solution

72. What is Integrated Circuit (1C)?

- Watch Video Solution

73. What are electric and electronic devices.

Give suitable examples.

- Watch Video Solution

74. Write a short note on thermistor

- Watch Video Solution

75. What types of materials are used for making thermistor?

D Watch Video Solution
76. Draw the symbol of thermistor

77. State the uses of thermistor

- Watch Video Solution

78. State relation between temperature and resistance in NTC and PTC thermistor.

79. Electric conduction through semiconductor

 is due toA. electrons
B. holes
C. none of these
D.

Answer:

D Watch Video Solution
80. The energy levels of holes are
A. in the valence bond
B. in the conduction bond
C. on the bond gap but dose to conduction
band
D. in the bond gap but close to valence band
A. in the valence bond
B. in the conduction bond
C. on the bond gap but dose to conduction
band

D. in the bond gap but close to valence

 band
Answer:

D Watch Video Solution

81. Current through a reverse biased p-n

Junction, increase abruptly at
A. break down voltage
B. 0.0 Volt
C. 0.3 V
D. 0.7 Volt

Answer:

D Watch Video Solution

82. A reverse biased diode, is equivalent to
A. an off switch
B. an on switch
C. a low resistance

D. none of the above

Answer:

D Watch Video Solution

83. The potential barrier in P-N diode is due to
A. depletion of positive charges near the

Junction
B. accumulation of positive charges near
the Junction
C. depletion of negative charges near the

Junction

D. accumulation of positive and negative
charges near the Junction

Answer:

D Watch Video Solution
84. The electrical behaviour of a solid is determined by
A. number of electrons in the inner most orbit.
B. width of valence bond.
C. width of forbidden energy gap.
D. width of conduction band

Answer:

- Watch Video Solution

85. Most widely used semiconductor material is
A. Si
B. Ga As
C. Diamond
D. Sulphur

Answer:
(D) Watch Video Solution
86. A pure silicon crystal at absolute zero temperature behaves as
A. conductor
B. insulator
C. semiconductor
D. superconductor

Answer:

- Watch Video Solution

87. The charge carriers in semiconductor are
A. only electron

B. only hole

C. hole and electron
D. ions

Answer:

88. In N-type semiconductor

A. fermi level lies close to conduction band
B. fermi level lies dose to valence band
C. fermi energy level lies in conduction
band
D. fermi energy level liesin valence band.

Answer:

89. In P-type semiconductor majority charge

carriers are

A. electrons
B. electrons and holes
C. holes
D. ions

Answer:

D Watch Video Solution

90. Symbolically LED is represented as

A.
B.

D.

Answer:

- Watch Video Solution

91. The materials most commonly used for solar cells are
A. silicon and gallium arsenide
B. gallium arsenide
C. cadmium sulphide
D. all of these

Answer:

92. In semiconductor, acceptor impurity is....

A. antimony
B. indium
C. phosphorous
D. arsenic

Answer:

93. The width of depletion region....

A. becomessmall in forward bias of diode
B. becomes large in forward bias of diode
C. is not affected upon by the bias
D. becomessmall in reverse bias of diode.

Answer:

D Watch Video Solution

94. When a hole is produced in P-type semiconductor, there is.
A. extra electron in valence band.
B. extra electron in conduction band
C. missing electron in valence band
D. missing electron in conduction band.

Answer:
(D) Watch Video Solution

95. For an extrinsic semiconductor, the valency

 of acceptor impurity isA. 3
B. 4
C. 5
D. 1

Answer:

- Watch Video Solution

96. A photo diode is used in

A. regulated power supply
B. an indicator
C. an optocoupler
D. logic gate

Answer:
97. In any type of transistor, one part of the transistor which supplies majority charge carrier is
A. emitter
B. base
C. collector
D. base and collector

Answer:

D Watch Video Solution
98. Depletion layer of unbiased p-n junction diode contains.....
A. $+v e$ ions and $-v e$ ions
B. no $+v e$ ions and $-v e$ ions
C. only $+v e$ ions
D. only-ve ions

Answer:

(Watch Video Solution

99. Number of electrons = Number of holes in

conduction band and valence band. So that solid is
A. insulator
B. conductor
C. semiconductor
D. ohmic

Answer:

100. Colour of the radiation emitted by LED
containing silicon carbide and zinc selenide is
A. red
B. blue
C. orange
D. yellow

Answer:
(Watch Video Solution

101. Function of limiting resistance in LED is

A. to control current through LED
B. to control intensity of light
C. to control wavelength of light
D. (a) and (b) both

Answer:

102. The approximate ratio of resistances in
the forward and reverse bias of the P-N junction diode is
A. $10^{2}: 1$
B. $10^{-2}: 1$
C. $1: 10^{-4}$
D. $1: 10^{4}$

Answer:

- Watch Video Solution

103. The resistance of $\mathrm{P}-\mathrm{N}$-junction diode in

forward bias is

A. high
B. 2
C. infinity

D. a few ohms

Answer:
(D) Watch Video Solution
104. In P type semiconductor, there are
A. no majority carriers
B. immobile $-v e$ ions
C. immobile $+v e$ ions
D. none of these

Answer:

- Watch Video Solution

105. In N-type semiconductor, there are
A. no majority carriers
B. immobile -ve ions
C. immobile $+v e$ ions
D. none of these

Answer:

D Watch Video Solution
106. A solar cell converts solar energy into
A. heat energy

B. chemical energy

C. electric energy
D. light energy

Answer:

D Watch Video Solution
107. GaAs is used to prepare
A. Zener diode
B. Transistor

C. LED

D. full wave rectifier

Answer:

D Watch Video Solution

108. Current through a reverse biased p-n

Junction, increase abruptly at
A. break down voltage
B. 0.0 Volt
C. 0.3 V
D. 0.7 Volt

Answer:

D Watch Video Solution

109. For an extrinsic semiconductor, the
valency of acceptor impurity is
A. 3
B. 4
C. 5
D. 1

Answer:

D Watch Video Solution

110. In any type of transistor, one part of the transistor which supplies majority charge carrier is
A. emitter
B. base
C. collector
D. base and collector

Answer:

- Watch Video Solution

111. The resistance of $\mathrm{P}-\mathrm{N}$-junction diode in

forward bias is

A. high
B. 2
C. infinity
D. a few ohms

Answer:

D Watch Video Solution
112. Name the three types of electrical

conductors?

(Watch Video Solution
113. State Pauli's Exclusion principle.

D Watch Video Solution

114. What is P-N Junction

D Watch Video Solution
115. What is a solar cell?

- Watch Video Solution

116. What is bi-polar junction transistor? Draw
the symbol.

D Watch Video Solution
117. Explain dynamic and static resistance of a diode.

D Watch Video Solution
118. State few advantages of semiconductor devices.

D Watch Video Solution
119. What is thermistor? State its uses.

- Watch Video Solution

120. Explain intrinsic semiconduction with example.

- Watch Video Solution

121. Explain valence bond and conduction bond.

- Watch Video Solution

122. Draw a labelled diagram of forward biased

P-N junciton diode.

- Watch Video Solution

123. Define and Explain formation of N-type semiconductor.

- Watch Video Solution

124. Explain the P-type semicondutors.

D Watch Video Solution

125. Explain forward biasing in P-N junction diode with diagram.
126. Explain the importance of the depletion region in a P-N junction diode.

- Watch Video Solution

127. The dimension for Torque is
A. $M^{2} L^{1} T^{3}$
B. $M^{2} L^{2} T^{-2}$
C. $M^{2} L^{1} T-2$
D. $M^{-1} L^{3} T^{-2}$

Answer:

D Watch Video Solution

128. $\bar{A}=2 \hat{i}+3 \hat{j}$ and $\bar{b}=3 \hat{i}+5 \hat{j}$ Then $\bar{a} \times \bar{b}$ is
A. $1 \hat{k}$
B. $2 \hat{k}$
C. $3 \hat{k}$
D. $4 \hat{k}$

Answer:

D Watch Video Solution

129. The equation of time of light is

$$
\begin{aligned}
& \text { A. } \frac{u \sin \theta}{g} \\
& \text { B. } \frac{2 u \sin \theta}{g} \\
& \text { C. } \frac{u^{2} \sin 2 \theta}{g} \\
& \text { D. } \frac{u^{2} \sin ^{2} \theta}{g}
\end{aligned}
$$

Answer:

- Watch Video Solution

130. State the work energy theorem.

D Watch Video Solution

131. At what angle will the horizontal range be maximum?
132. Find a vector, which is parallel to $\vec{v}=\vec{i}-2 \vec{j}$ and has a magnitude 10 .

D Watch Video Solution

133. Show that $1 J=10^{7}$ erges.

D Watch Video Solution

134. If a force of $2 \bar{i}-5 \bar{j}+\bar{k}$ (N) acts on a
body and displaces it to a distance of
$4 \bar{i}-3 \bar{j}-2 \bar{k}$ metres. Calculate the work done.

- Watch Video Solution

135. In a case of a projectile, derive an expression for time of ascent.

D Watch Video Solution

136. Differentiate between real and pseudo
force.

D Watch Video Solution
137. State two characteristics of dot product.

- Watch Video Solution

138. Show that the equation $V=u+a t$ is dimensionally correct.

- Watch Video Solution

139. The time period, for the oscillation, of a simple pendulum were recorded, 5 readings were taken they were 2.00 sec., $2.02 \mathrm{sec} ., 1.96$ sec., $2.03 \mathrm{sec}, 1.99 \mathrm{sec}$

Find the Most Probable value

D Watch Video Solution

140. The time period, for the oscillation, of a simple pendulum were recorded, 5 readings were taken they were $2.00 \mathrm{sec} ., 2.02 \mathrm{sec} ., 1.96$
sec., $2.03 \mathrm{sec}, 1.100 \mathrm{sec}$

Find the Final absolute error

D Watch Video Solution

141. The time period ,for the oscillation, of a simple pendulum were recorded, 5 readings
were taken they were 2.00 sec., 2.02 sec., 1.96 sec., $2.03 \mathrm{sec}, 1.101 \mathrm{sec}$

Find the Percentage error.
142. Show that the trajectory of a projectile is
a parabola, which can be expressed as

$$
y=b x-c x^{2}
$$

- Watch Video Solution

143. Show that $P=\frac{1}{3} \rho c^{2}$ is dimensionally correct where $\mathrm{P}=$ Pressure, $\mathrm{C}=$ speed,

$$
\rho=\text { density }
$$

144. What is a conical pendulum? Derive an expression for a time period of a conical pendulum.

- Watch Video Solution

145. Derive expression for final velocities v_{1} and v_{2} for an Elastic collsion.

- Watch Video Solution

146. The magnitude of scaler product of two unit vectors perpendicular to each other is.
A. zero
B. 1
C. (-1)
D. 2

Answer:
(D) Watch Video Solution
147. Light year is a unit of
A. Time
B. Mass
C. Distance
D. Luminosity

Answer:
(Watch Video Solution
148. For a particle having a uniform circular motion, which of the following is constant.
A. Speed
B. Acceleration
C. Velocity
D. Displacement

Answer:
(Watch Video Solution
149. The dimension for Torque is

$$
\begin{aligned}
& \text { A. }\left[M^{1} L^{1} T^{-2}\right] \\
& \text { B. }\left[M^{1} L^{2} T^{-2}\right] \\
& \text { C. }\left[M^{0} L^{1} T^{-1}\right] \\
& \text { D. }\left[M^{1} L^{1} T^{1}\right]
\end{aligned}
$$

Answer:
(Watch Video Solution
150. The weight of a particle at the centre of the earth is
A. infinite
B. zero
C. same as that at other places
D. greater than at the pole

Answer:

D Watch Video Solution
151. The ability of a material to resist
fracturing when force is applied to it, is called
A. toughness
B. hardness
C. elasticity
D. plasticity

Answer:

D Watch Video Solution
152. If α, beta, and gamma` are coefficients of linear, area I and volume expansion of a solid then
A. $\alpha: \beta: \gamma 1: 3: 2$
B. $\alpha: \beta: \gamma 3: 1: 2$
C. $\alpha: \beta: \gamma 2: 3: 1$
D. $\alpha: \beta: \gamma 3: 2: 1$

Answer:

D Watch Video Solution

153. What is thermal stress?

D Watch Video Solution

154. Define Poisson's ratio.

D Watch Video Solution

155. Draw a graph showing the variation of gravitational acceleration due to depth from
the earth's surface.

- Watch Video Solution

156. Define coefficient of restitution

- Watch Video Solution

157. Define : Free fall

- Watch Video Solution

158.

$$
\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k} \quad \text { and }
$$

$\vec{B}=\hat{i}-2 \hat{j}+3 \hat{k}$ find $\vec{A} \cdot \vec{B}$

D Watch Video Solution

159. Write the dimension value of power \& pressure.
(D) Watch Video Solution
160. The diameter of a sphere is 2.14 cm , calculate the volume of the sphere to the correct number of significant figures.

D Watch Video Solution

161. Show that vectors $\vec{a}=2 \hat{i}+5 \hat{j}+6 \hat{k}$ and $\vec{b}=\hat{i}+\frac{5}{2} \hat{j}+3 \hat{k}$ are parallel

D Watch Video Solution

162. If the motion of an object is described by
$x=f(t)$. Write formula for instantaneous
velocity and acceleration.

D Watch Video Solution

163. Justify the statement, "Work and energy
are the two sides of a coin."

D Watch Video Solution
164. Calculate the speed of a satellite in an orbit at a height of 1000 km from the Earth's
surface.
$M_{E}=6 \times 10^{24} \mathrm{~kg} R_{E}=6.410^{6} \mathrm{~m}$

- Watch Video Solution

165. State any four methods to reduce friction

- Watch Video Solution

166. Which materials can be used asthermal insulates and why?

D Watch Video Solution
167. How a thermometer is calibrated?

D Watch Video Solution

168. A rubber band originally 30 cm . long is
stretched to a length of 32 cm by a certain
load. What is the strain produced?

- Watch Video Solution

169. Why does an astronaut in an orbiting satellite have a feeling of weight lessness?

D Watch Video Solution

170. Four uniform solid cubes of edges 10 cm ,
$20 \mathrm{~cm}, 30 \mathrm{~cm}$ and 40 cm are kept on the
ground, touching each other in order. Locate centre of mass of their system.

D Watch Video Solution

171. In Ohm's experiments, the values of the unknown resistances were found to be 6.12Ω,
$6.09 \Omega, 6.22,6.15 \Omega$. Calculate the absolute error, relative error and percentage error in these measurements.

D Watch Video Solution

172. State any six properties of scalar product.

D Watch Video Solution

173. Show that the path of a projectile is a parabola

- Watch Video Solution

174. Discuss the variation of acceleration due to gravity with altitude.
175. What is the stress in a wire which is 50 meter long and 0.01 cm 2 in crosssection, if the wire bears a load of 100 kg ?

- Watch Video Solution

176. The thermal conductivity of steel is 0.026 k $\mathrm{cal} / \mathrm{ms}$ K. Find the temperature diference between two sides of a steel plate 4 cm thick, when heat is transmitted through the plate at
the rate of 400 k cal per minute per squar metre of steady state.

D Watch Video Solution

177. Define Sublimation and Triple point. In a random temperature scale X, water boils at $200^{\circ} \mathrm{X}$ and freezes at $20^{\circ} \mathrm{X}$. Find the boiling point of a liquid in this scale if it boils at $62^{\circ} C$

D Watch Video Solution

178. Derive an expression for strain energy per unit volume of the material of a wire.

D Watch Video Solution

179. Derive an expression for critical velocity of satellite. Calculate the acceleration due to gravity at a height of 300 km from the surface of the earth. $M=6 \times 10^{24} \mathrm{~kg} \mathrm{R}=6400 \mathrm{~km}$.
180. State and prove the law of conservation of linear momentum.

- Watch Video Solution

181. The branch of Physics which deals with the production of transmission and reception of sound is called
A. reverberation
B. Acoustics
C. Pitch

D. Doppler effect

Answer:

D Watch Video Solution

182. The equation shown below is

$$
\frac{n_{2}-n_{1}}{R}=\frac{n_{2}}{v}-\frac{n_{1}}{u}
$$

A. Prism formula
B. Dispersive power
C. Dispersion at a spherical surface

D. Lens makers equation

Answer:

D Watch Video Solution

183. What is the magnitude of charge on an electron?
A. $1.6 \times 10^{-9} C$
B. $9.1 \times 10^{-31} C$
C. $1.732 \times 10^{-11} C$
D. $6.67 \times 10^{-11} C$

Answer:

D Watch Video Solution

184. The product of the magnitude of the charge and the distance between the two charges on a dipole, is called
A. Electric dipole
B. Electric pole strength
C. Electric dipole moment

D. Electric intensity

A. Electric dipole
B. Electric pole strength
C. Electric dipole moment
D. Electric intensity

Answer:
(Watch Video Solution

185. State Gauss Law

D Watch Video Solution

186. Define Dispersive Power.

D Watch Video Solution

187. Calculate the velocity of sound if the frequency of the wave is 4 Hz and the wavelength of the wave is 80 meters.

- Watch Video Solution

188. Define Total internal reflection

- Watch Video Solution

189. Define Mirage

- Watch Video Solution

190. Write a note on periscope. (Diagram essential)

D Watch Video Solution

191. A man shouts loudly close to a high wall.

He hears an echo. If the man is at 40 m from
the wall, how long after the shout will the echo be heard? (speed of sound in air $=330$ $m / s)$

192. State law of characteristics of electric lines

 of force.- Watch Video Solution

193. Draw a well labelled diagram for magnifying power of a simple microscope.

- Watch Video Solution

194. State Coulombs Law and Define relative permitivity.

D Watch Video Solution

195. For a dense flint glass prism of refracting angle 10^{0}, Findthe anangular deviation for extreme colours and the dispersive ppower for dense flint glass. $\left(n_{\text {red }}=1.712\right.$,
$\left.n_{v i o \leq t}=1.792\right)$
196. Derive an expression for couple acting on an electric dipole kept in a uniform electric field.

D Watch Video Solution

197. Explain the effect of change in temperature on the speed of sound in air.
198. Derive an expression for electric field intensity of a point on the equatorial line.

- Watch Video Solution

199. Derive an expression for magnifying power of a compound microscope.

D Watch Video Solution

200. Derive an expression for apparent
frequency when the source is moving and
listener is stationery

- Watch Video Solution

201. Light year is a unit of
A. Time
B. Mass
C. Distance
D. Luminous intensity

Answer:
202. Two plane mirrors are inclined at an angle of 40° between them. Number of images seen of a tiny object kept between them is
A. only 8
B. only 9
C. 8 or 9
D. 9 or 10

203. The value of acceleration due to gravity is

zero at
A. the equator of the earth
B. the centre of the earth
C. the pole of the earth

D. slightly above the surface of the earth

Answer:

204. Change in dimensions is known as

A. deformation
B. formation
C. contraction
D. strain

Answer:
(Watch Video Solution
205. When sound waves travel from air to glass, which of these remain constant?
A. velocity
B. frequency
C. wavelength
D. all of above

Answer:

D Watch Video Solution

206. Earth's atmosphere is richest in

A. Intra red
B. Ultra violet
C. X-ray
D. Microwaves

Answer:

- Watch Video Solution

207. Which of the following is an Ohmic conductor?
A. Transistor
B. Diode
C. Electrolyte
D. copper wwire

Answer:

D Watch Video Solution
208. Range of temperature in a clinical thermometer, which m
temperature of human body, is
A. $70^{\circ} C$ to $100^{\circ} C$
B. $34^{\circ} C$ to $42^{\circ} C$
C. $0^{\circ} F$ to $100^{\circ} F$
D. $34^{\circ} F$ to $80^{\circ} F$

Answer:

209. An object of mass 100 gm moves uniformly along a circular orbit with an angular speed of $25 \mathrm{rad} / \mathrm{sec}$. If the linearspeed of particle is $25 m / s$ then the radius of circle is
A. 1 m
B. 2 m
C. 4 m
D. 5 m

Answer:

- Watch Video Solution

210. A mass $2 m$ moving with some speed is
directly approaching another mass moving
with double speed. After some time, they collide with coefficient of restitution 0.5 Ratio of their respective speeds after collision is
A. $1 / 2$
B. $2 / 3$
C. $3 / 2$
D. 2

Answer:

D Watch Video Solution

211. The speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$.

Calculate the frequency of red light of wavelength of $6.5 \times 10^{-7} \mathrm{~m}$.

D Watch Video Solution

212. Find the magnitude of a vector

$$
\vec{a}=\frac{\hat{i}-\hat{j}}{\sqrt{2}}
$$

- Watch Video Solution

213. State Newton's law of gravitation.
(D) Watch Video Solution
214. Define uniform circular motion.
215. Write the formula for coefficient of linear expansion of a solid.

- Watch Video Solution

216. What is position vector?

- Watch Video Solution

217. Define Dimensional formula for any physical quantity.

D Watch Video Solution
218. Define one Coulomb.

D Watch Video Solution

219. Show that the path of a projectile is a parabola

- Watch Video Solution

220. Derive dimensions for power.

- Watch Video Solution

221. As I was standing on a weighing machine
inside a lift it recorded 50 kg -wt. Suddenly for
few seconds it is recorded 42 kg -wt. What must have happened during that time? Explain with complete numerical analysis.
222. State any four characteristics of vector product of vectors.

D Watch Video Solution

223. A metal cube of side Im is subjected to a
force. The force acts normally on the whole surface of cube and its volume changes by $1.5 \times 10^{-5} \mathrm{~m}^{3}$. The bulk modulus of metal is
$8 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$. Calculate the change in pressure.

D Watch Video Solution

224. At what temperature will the speed of sound in air be 2 times its speed at NTP?

D Watch Video Solution

225. Derive an expression for couple acting on
an electric dipole kept in a uniform electric
field.

- Watch Video Solution

226. Define temperature coefficient of
resistivity. State its S.I unit.

D Watch Video Solution

227. Explain term : Convection.

- Watch Video Solution

228. Two satellites A and B are revolving round
a planet. Their periods of revolution are 1 hour and 27 hour respectively. The radius of orbit of satellite A is $8 \times 104 \mathrm{~km}$., find radius of orbit of satellite B.

D Watch Video Solution

229. A convex lens held some distance above a

10 cm long pencil produces its image of some size. On shifting the lens by a distance equal
to its focal length, it again produces the image of the same size as earlier. Determine the image size.

D Watch Video Solution

230. Explain the N-type semicondutors.

D Watch Video Solution

231. Obtain an expression for binding energy
of a satellite revolving in a circular orbit
around earth.

D Watch Video Solution

$$
\begin{align*}
& \text { 232. If } \vec{A}=2 \hat{i}+2 \hat{j}-\hat{k} \quad \text { and } \\
& \vec{B}=\hat{i}+4 \hat{j}-3 \hat{k} \text { then find (a) } \vec{A} \cdot \vec{B} \text { (b) } \tag{b}\\
& \vec{A} \times \vec{B}
\end{align*}
$$

- Watch Video Solution

233. Explain forward biasing in P-N junction
diode with diagram.
234. Name three basic units of communication
system. Draw the labelled block diagram of the
basic elements of a communication system

- Watch Video Solution

235. Derive an expression for strain energy of the material of wire.
236. A metal sphere cools at the rate of $1.6^{\circ} \mathrm{C} / \mathrm{min}$ when itstemperature is $60^{\circ} \mathrm{C}$.

At what rate will it cool when its temperature is $50^{\circ} \mathrm{C}$? The temperature of surroundings is $30^{\circ} C$.

- Watch Video Solution

237. Explain fundamental forces in nature.

- Watch Video Solution

238. Derive an expression for refraction at single spherical surface.

D Watch Video Solution

239. Derive formula for kinetic energy of a body having mass M and velocity V using dimensional analysis.

D Watch Video Solution
240. Derive expression for Magnetic induction due to a bar Magnet at a point along the axis.

D Watch Video Solution

241. State any six properties of magnetic lines of force.

D Watch Video Solution
242. Draw the diagram showing two cells connected in series. State advantages and disadvantages of cell connected in series

D Watch Video Solution

243. State the expression for apparent
frequency when source of sound and listener are moving towards each other
244. State the expression for apparent frequency:
i. when source of sound and listener are moving away from each other.

- Watch Video Solution

245. State the expression for apparent frequency:
i. when source is stationary and listener is moving away from stationary source.
246. Derive an expression for apparent
frequency when source is moving and listener is stationary.

D Watch Video Solution

247. Define elastic collision

D Watch Video Solution
248. Define in elastic collision. Derive an expression for velocities for head-on elastic collision.

- Watch Video Solution

249. State the formula and unit of electric dipole moment.

A charge of $50 \mu C$ is kept at the centre of a sphere of radius 0.1m. What is the flux through the sphere?
250. From given data set, determine angular dispersion by the prism for extreme colours.
$n_{R}=1.622, n_{V}=1.656$ and $\delta_{R}=2.1^{\circ}$

State two conditions for total internal reflection.

- Watch Video Solution

251. Distinguish between average velocity and instantaneous velocity. (Any two points) A man
throws a ball to maximum horizontal distance
of 160 m . Calculate the maximum height reached.
