©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHETANA PHYSICS (MARATHI

ENGLISH)

THERMAL PROPERTIES OF MATTER

Exercise

1. Which is the fundamental quantity related
to heat?
2. Explain why solids have definite shape and volume?

- Watch Video Solution

3. Explain, liquids have a definite volume whereas gases do not have shape or volume.
4. Which physical quantity determines
whether system isin thermal equilibrium or not?

D Watch Video Solution

5. Define temperature.
(D) Watch Video Solution
6. Explain thermal equilibrium with suitable example.

D Watch Video Solution
7. What is the difference between temperature and heat?

D Watch Video Solution
8. What is thermometry?

- Watch Video Solution

9. What is Thermistor?

- Watch Video Solution

10. What is Thermocouple?

- Watch Video Solution

11. What is thermocouple used for?

- Watch Video Solution

12. What are the important characteristics of a thermometer?

- Watch Video Solution

13. For calibrating a thermometer, which points are taken as fixed points?
14. On heating, what is colour variation in zinc oxide.

- Watch Video Solution

15. Explain adiabatic wall and diathermic wall.

D Watch Video Solution

16. Are freezing point and melting point same
with respect to change of state? Comment
17. Define melting point of ice and boiling point of water?

D Watch Video Solution

18. State Zeroth law of thermodynamics.

- Watch Video Solution

19. How a thermometer is calibrated?

D Watch Video Solution

20. What is thermometry? Explain different types of thermometers.

D Watch Video Solution

21. What is ice point and steam point?

22. Explain theCelsiusscale and

Fahrenheitscale of temperature. Derive the relation between them.

OR

What are the different scales of thermometer?

What is the relation between them?

- Watch Video Solution

23. Show the relation between Kelvin, Celsius and Fahrenheit temperature scales.

D Watch Video Solution

24. Average room temperature on a normal day is $27^{\circ} \mathrm{C}$. What isthe room temperature in
$\wedge \circ F$?

- Watch Video Solution

25. Normal human body temperature in fehrenheit is $98.4{ }^{\wedge} \circ F$. What is the body temperature in ^ $\circ C$?

D Watch Video Solution

26. The length of a mercury column in a mercury-in-glass thermometer is 25 mm at the ice point and 180 mm at the steam point.

What is the temperature when the length is

60 mm ?
27. A resistance thermometer has resistance 95.20 mega at the ice point and 138.6Ω at the steam point. What resistance would be obtained if the actual temperature is 27 $\wedge \quad \circ C$?

- Watch Video Solution

28. The volume of a gas varied linearly with absolute temperature if its pressure is held
constant. Suppose the gas does not liquify even at very low temperatures, at what temperature the volume of the gas will be ideally zero?

D Watch Video Solution

29. In a random temperature scale X, water boils at $200 \wedge \circ X$ and freezes at $20 \circ X$.

Find the boiling point of a liquid in this scale if it boils at $62 \wedge \circ C$.
30. Comparison of Kelvin, Celcius and Farenheit Scale diagram.

D Watch Video Solution

31. Calculate the temperature which has the same value on Fahrenheit scale and Kelvin scale
32. Define: triple point of a substance.

- Watch Video Solution

33. State Boyle's law and give its equation.

- Watch Video Solution

34. State Charle's Law and give its equation.
35. State Gay Lussac's law and give its equation.

- Watch Video Solution

36. Write a short note on absolute scale of temperature.

- Watch Video Solution

37. Define triple point of water.Give itssignificance.
38. Derive Ideal Gas Equation.

OR

Define Ideal Gas Equation.

D Watch Video Solution
39. Write a short note on absolute zero temperature?

D Watch Video Solution
40. Express $\mathrm{T}=24.57 \mathrm{~K}$ in Celsius and fahrenheit.

- Watch Video Solution

41. The pressure reading in a thermometer at steam point is $1.367 \times 10^{3} \mathrm{~Pa}$. What is pressure reading at triple point knowing the linear relationship between temperature and pressure?
42. A gas at $900^{\circ} \mathrm{C}$ is cooled until both its pressure and volume are halved. Calculate its final temperature.

D Watch Video Solution
43. Name the types of thermal expansion.
44. Name the two substances which expand on freezing besides water.

D Watch Video Solution

45. How is a steel wheel mounted on an axle to
fit exactly.

- Watch Video Solution

46. Why is a railway track not a continuous
piece but is made up of segments separated by the gaps?

- Watch Video Solution

47. What is thermal expansion?

- Watch Video Solution

48. Derive the necessary expression for coefficient of linear expansion. Hence define it.

D Watch Video Solution
49. Derive the necessary expression for coefficient of volume expansion. Hence define it.

- Watch Video Solution

50. Why does a balloon burstssometimes when we are trying to fill air inside?

- Watch Video Solution

51. Explain the anomalous behaviour of water

- Watch Video Solution

52. Why do lakes freeze first at the surface.
53. Why does a metal wire used for electrical transmission sag?

D Watch Video Solution

54. Derive the relation between α, β, and γ for a solid.

D Watch Video Solution
55. An aluminium rod and iron rod show 1.5 m
difference in their lengths when heated at all temperature. What are their lengths at 0

- $\circ C$ if coefficient of linear expansion for aluminium is $24.5 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and for iron is $11.9 \times 10^{-6} /{ }^{\circ} C$

D Watch Video Solution

56. Which substance has the highest heat capacity.
57. State the relation between Principal and Molar specific heat capacities.

- Watch Video Solution

58. Write heat equation and state its formula.
(Watch Video Solution
59. Define and explain specific heat.

- Watch Video Solution

60. Why do we consider two specific heats of a gas?

OR

Why specific heat at constant pressure is greater than specific heat at constant volume?

D Watch Video Solution

61. Define Principal Specific heat capacities of gases

- Watch Video Solution

62. Define Molar specific heat capacities of gases.

D Watch Video Solution

63. Explain heat capacity
64. If the temperature of 4 kg mass of a material of specific heat capacity $300 \mathrm{~J} / \mathrm{kg}$
${ }^{\wedge} \circ C$ rises from $20^{\circ} C$ to $30{ }^{\wedge} \circ C$. Find the heat received.

D Watch Video Solution

65. Find thermal capacity for a copper block of mass 0.2 kg , if specific heat capacity of copper is $290 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$
66. Which will require more energy, heating a 2.0 kg block of lead by 30 K or heating a 4.0 kg
block of copper by $5 \quad$ K?
$\left(S_{\leq} a d=128 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}\right.$,
S_{c} opper $\left.=387 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}\right)$

- Watch Video Solution

67. Specific latent heat of vaporization of water is $2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$. Calculate the energy needed to change 5.0 g of water into steam at $100^{\circ} \mathrm{C}$

D Watch Video Solution

68. What is the specific heat of a metal if 50 cal of heat is needed to raise 6 kg of the metal from $20^{\circ} C$ to $62^{\circ} C$?
69. (a) What is the Principle of calorimetry?

OR
What is the principle of "method of mixtures"?
OR
(b) On which law is the above principle based

- Watch Video Solution

70. What is a calorimeter? What isits use?

OR
Explain the construction of a calorimeter.
71. Explain the technique of "Method of mixtures", to determine specific heat of a substance.

- Watch Video Solution

72. A calorimeter of mass 50 gm and specific
heat capacity $0.42 \mathrm{~J} \mathrm{~g}^{-1} \wedge C^{-1}$ contains some water at $20^{\circ} \mathrm{C}$.

A metal piece of mass 20 gm at $100^{\circ} \mathrm{C}$ is dropped into the calorimeter. After stirring, the final temperature of the mixture is found to be $22^{\circ} C$.Find the mass of water used.
(specific heat of metal piece=
$0.3 J g^{-1} \wedge C^{-1}$ specific heat of water $=$ $\left.4.2 J g^{-1} \wedge \circ C^{-1}\right)$

D Watch Video Solution

73. 40 gm of water at $70^{\circ} \mathrm{C}$ is poured into a calorimeter of mass 160 gm , which is at $20^{\circ} \mathrm{C}$.

If the final temperature of the contents is
$40^{\circ} C$, what is the specific heat of the calorimeter? Specific heat of water $=4200 \mathrm{~J}$ /kg/C

D Watch Video Solution

74. What is meant by 'Change of State'?

D Watch Video Solution

75. Describe the process of change of state for

 water (from its solid state to vapour state) by means of a temperature - time graph.
D Watch Video Solution

76. What is normal boiling point?

D Watch Video Solution

77. What happens after point D in temperature

- time graph? Can steam be hotter than $100^{\circ} \mathrm{C}$?

- Watch Video Solution

78. Why does steam at $100^{\circ} \mathrm{C}$ cause more harm to the skin than water at $100^{\circ} \mathrm{C}$?

- Watch Video Solution

79. What is sublimation?

D Watch Video Solution

80. What is a 'phase diagram'? What is its use?

- Watch Video Solution

81. What is meant by phase of a substance?
82. Explain a phase diagram.

- Watch Video Solution

83. Draw temperature v / s heat graph for water at one standard atmospheric pressure

- Watch Video Solution

84. What is "critical temperature"?

85. What is meant by Latent heat ?

D Watch Video Solution

86. Define : Latent heat of fusion $\left(L_{f}\right)$

Latent heat of vapourisation $\left(L_{y}\right)$

D Watch Video Solution
87. When 0.1 kg of ice at $0^{\wedge} \circ C$ is mixed with
0.32 kg of water at $35^{\circ} \mathrm{C}$ in a container. The resulting temperature of the mixture is $7.8^{\circ} \mathrm{C}$.

Calculate the heat of fusion of ice $\left(S_{w}\right.$ ater $\left.=4186 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}\right)$

D Watch Video Solution

88. Why is latent heat of vaporisation much larger than latent heat of fusion?
89. An electric kettle takes 20 min . to heat a certain quantity of water from $0^{\circ} \mathrm{C}$ to boiling point. It requires 90 minutes to turn all the water at $100^{\circ} C$ into steam. Find the latest heat of vaporisation.
(specific heat of water $=1 \mathrm{cal} / \mathrm{gm} /{ }^{\circ} \mathrm{C}$)

D Watch Video Solution

90. What are the three modes of heat transfer? Describe each in brief.

91. What is thermal conductivity?

- Watch Video Solution

92. What is meant by "steady state"?

- Watch Video Solution

93. Define temperature gradient.
94. Derive an expression for coefficient of thermal conductivity of a material.

- Watch Video Solution

95. Define coefficient of thermal conductivity.

State its MKS unit

-

96. What ismeant by "thermal resistance"?

Explain. State its SI unit and dimensions

(Watch Video Solution
97. Describe three applications of thermal conductivity

- Watch Video Solution

98. Give reason, why
(i)Cooking is difficult at high altitude.

D Watch Video Solution
99. Give reason, why
(ii)Cooking is faster in a pressure cooker.
100. Find the temperature difference between
two sides of a steel plate 4 cm thick, when
heat is transmitted through the plate at the rate of 400 kcal per minute per square metre at steady rate. Thermal conductivity of steel is $0.026 \mathrm{kcal} / \mathrm{m} . \mathrm{s} . \mathrm{k}$.

D Watch Video Solution

101. What is the difference between boiling and evaporation?
102. Explain the process of heat transfer by convection.

D Watch Video Solution

103. Explain the following application of convection.
(1) Heating and cooling of rooms.
104. Explain the following application of convection.
(2) Cooling of transformers.

D Watch Video Solution

105. State some applications of convection.
(D) Watch Video Solution
106. What is meant by " free convection" and " forced convection".

D Watch Video Solution

107. What is "radiation"? Explain "heat transfer by radiation".

- Watch Video Solution

108. What is "Newton's law of cooling"? Explain.
109. A metal sphere cools from $80^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in 6 minutes. How much time will it take to cool from $60^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ if the room temperature is $30^{\circ} \mathrm{C}$?

- Watch Video Solution

110. If 50 gm of water at $0^{\circ} C$ is added to 250 gm of water at $90^{\circ} C$. Find the final
temperature

- Watch Video Solution

111. 30 gm of ice at $0^{\circ} \mathrm{C}$ is placed in a calorimeter of mass 20 gm also at $0^{\circ} C .100$ gm of water at $90^{\circ} C$ is poured into the calorimeter. Find the final temperature. (specific heat of calorimeter $=0.4 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}$, Specific heat of water $=0.42 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}$ Latent heat of fusion of ice $=80 \mathrm{calg}$)
112. How many grams of ice at $0^{\circ} C$ should be added to 200 gm . of coffee at $90^{\circ} \mathrm{C}$ to cool it to $60^{\circ} C$? (Assume that coffee-cup is not heated) specific heat of water $=1 \mathrm{c}$ a I $/ \mathrm{g} \mathrm{m} \circ \mathrm{C}$, Specific heat of coffee $=1.4 \mathrm{c} \mathrm{a} \mathrm{I} / \mathrm{g} \mathrm{m} \circ \mathrm{C}$

D Watch Video Solution

113. The door of a refrigerator is 150 cm . high, 80 cm wide and 6 cm thick. If the coefficient of thermal conductivity is $5 \times 10^{-4} \mathrm{cal} / \mathrm{cm}$. s.
^ $\circ C$ and the inner and outer surfaces are at $0^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ respectively. Calculate heat loss through the door in 1 minute.

D Watch Video Solution

114. When holes are dug into the Earth, it is
found that for a depth of every 30 m , the temperature rises by $1^{\circ} C$.

If the coefficient of conductivity of Earth's
crust is $0.8 w a / m^{\circ} k$, calculate the amount of
heat flowing through an area of 1 sq . metre on
surface of earth, per minute

- Watch Video Solution

115. Calculate the thermal resistance of 1 square metre of window glass pane that is 0.5
cm thick $\left(k=0.6 \frac{W}{m^{\circ} C}\right)$

D Watch Video Solution

116. A body cools at the rate of $4^{\circ} C$ per minute when its temperature is $70^{\circ} \mathrm{C}$.

What will be its rate of cooling when its temperature is $50^{\circ} C$? (Assume temperature of surrounding to be $30^{\circ} \mathrm{C}$)

D Watch Video Solution

117. A steel tyre is 100 cm in diameter at $25^{\circ} C$.

To what temperature must it be heated so
that it will just slip on a cartwheel 100.3 cm in diameter? (alpha_(steel)=1.2 xx 10^-5//^@C')

D Watch Video Solution

118. The length of an iron rod at $100^{\circ} \mathrm{C}$ is
300.36 cm and at $150^{\circ} \mathrm{C}$ it is 300.54 cm . find
the coefficient of linear expansion of its material and the length of rod at $0^{\circ} C$.

D Watch Video Solution
119. By how much will a steel bar one metre long expand when heated from $25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
? The coefficient of volume expansion of steel is $3 \times 10^{-5} /{ }^{\circ} C$.

- Watch Video Solution

120. At $20^{\circ} C$, the gap between the rails each

50 m in length is observed to be 1.65 cm . If the lines are made of steel $\left(\alpha=11 \times 10^{-6} /{ }^{\circ} C\right)$, at what temperature will the lines just touch?
121. Railway lines are laid with gaps to allow
for expansion. If each line is 10 m long at $20^{\circ} C$, what should be the length of the gap to be kept between two rails to allow for expansion if the maximum temperature that can be reached is $50^{\circ} \mathrm{C}$?
$\left(\alpha_{\text {steel }}=1.2 \times 10^{-6} /{ }^{\circ} C\right)$

- Watch Video Solution

122. A steel tyre of 1.2 m inner diameter at $20^{\circ} C$ is to be fitted on a cartwheel of 120.33
cm diameter of the tyre. Calculate the temperature to which the steel tyre is to be raised so that it will just slip on the wheel. $\left(\alpha_{\text {Steel }}=11 \times 10^{-6} /{ }^{\circ} C\right)$

D Watch Video Solution

123. The volume of a metal block increases by
0.15% when its temperature isincreased by
$200^{\circ} \mathrm{C}$. Find the coefficient of its linear expansion.

D Watch Video Solution

124. If the temperature in a room is $20^{\circ} C$, what s its temperature in degree Fahrenheit?

D Watch Video Solution

125. How much heat is required to raise temperature of 500 gm of kerosene from
$10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ if the specific heat of kerosene is $0.51 \mathrm{kal} / \mathrm{kg}^{\circ} \mathrm{C}$?

D Watch Video Solution

126. The difference between the lengths of steel rod and a brass rod is 0.6 at all temperatures. What are their lengths at $0^{\circ} C$?
$\left(\alpha_{S}\right.$ teel $=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$,
$\left(\alpha_{\text {brass }}=18 \times 10^{-6} /{ }^{\circ} C\right)$

D Watch Video Solution

127. Choose the correct option.

Range of temperature in a clinical
thermometer,
which
measures
the
temperature of human body is
A. $70^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
B. $34^{\circ} \mathrm{C}$ to $42^{\circ} \mathrm{C}$
C. $0^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}$
D. $34^{\circ} \mathrm{F}$ to $80^{\circ} \mathrm{F}$

Answer:

128. A glass bottle completely filled with water
is kept in the freezer. Why does it crack?
A. Bottle gets contracted
B. Bottle is expanded
C. Water expands on freezing
D. Water contracts on freezing
A. A. Bottle gets contracted
B. B. Bottle is expanded
C. C. Water expands on freezing

D. D. Water contracts on freezing

Answer:

D Watch Video Solution

129. If two temperatures differ by $25^{\circ} C$ on

Celsius scale, the difference in temperature on

Fahrenheit scale is
A. 65°
B. 45°

C. 38°

D. 25°

Answer:

D Watch Video Solution

130. If α, beta, and gamma` are coefficients of linear, area I and volume expansion of a solid then A. \(\alpha: \beta: \gamma 1: 3: 2^{`}\)
B. $\alpha: \beta: \gamma 3: 1: 2^{`}$
C. $\alpha: \beta: \gamma 1: 3: 1^{`}$
D. $\alpha: \beta: \gamma 1: 2: 3^{\prime}$

Answer:

D Watch Video Solution

131. Consider the following statements-
(I) The coefficient of linear expansion has
dimension K^{-1}
(I) The coefficient of Volume expansion has
dimension K^{-1}
A. I and II are both correct
B. I is correct II is wrong
C. II is correct but I is wrong
D. I and II are both wrong
A. A. I and II are both correct
B. B. I is correct II is wrong
C. C. II is correct but I is wrong
D. D. I and II are both wrong

Answer:
132. Consider the following statements-
(I) The coefficient of linear expansion has
dimension K^{-1}
(I) The coefficient of Volume expansion has
dimension K^{-1}
A. I and II are both correct
B. I is correct II is wrong
C. II is correct but I is wrong
D. I and II are both wrong
A. I and II are both correct
B. I is correct II is wrong
C. II is correct but I is wrong

D.

Answer:

D Watch Video Solution

133. Water falls from a height of 200 m . What
is the difference in temperature between the
water at the top and bottom of a water fall given that specific heat of water is 4200 J
$k g^{-1} \wedge \circ C^{-1} ?$
A. $0.96^{\circ} C$

B. $1.02^{\circ} C$

C. 0.46^{C}

D. $1.16^{\circ} C$

A. A. $0.96^{\circ} C$
B. B. $1.02^{\circ} C$
C. C. 0.46^{C}
D. D. $1.16^{\circ} \mathrm{C}$

Answer:

134. Thermal radiations are

A. Mechanical waves
B. Electrical waves
C. Electromechanical wave
D. Electromagnetic wave

Answer:

135. By increasing temperature of liquid it's

A. Volume and density both decreases
B. Volume and density both increases
C. Volume increases and density decreases
D. Volume decreases and density increases

Answer:

- Watch Video Solution

136. When water is heated from $0^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$,
it's volume
A. Decreases continuously
B. First decreases then increases
C. First increases then decreases
D. Increases continuously

Answer:

(D) Watch Video Solution
137. Two rods of same material, equal in length
but one has cross-sectional area double of the other. If they are heated through same temperature then which rod expands more?
A. Thick
B. Thin
C. Both expand equally
D. None of these
A. A. Thick
B. B. Thin
C. C. Both expand equally

D. D. None of these

Answer:

D Watch Video Solution

138. The relation between α and β is
A. $\alpha=1 / 2 \beta$
B. $\beta=1 / 2 \alpha$
C. $\beta=\alpha$
D. $2 \alpha=3 \beta$

Answer:

D Watch Video Solution

139. Two holes are made in copper plate. The
plate is heated. The distance between the holes
A. Increases
B. Decreases
C. Remains same
D. None of these

Answer:

D Watch Video Solution

140. In cold countries water pipes sometimes
burst, because
A. Pipe contracts
B. Water expands on freezing
C. Pressure is greater outside
D. Water freezes, pressure increases

Answer:

D Watch Video Solution

141. Eskimos build double walled houses of the blocks of ice because
A. Heat can't flow outside from inside
B. Ice is available in plenty
C. To make the house appear spacious
D. None of the above

Answer:

- Watch Video Solution

142. The sum of all energies of all molecules in
a body is called
A. Kinetic energy
B. potential energy
C. thermal energy
D. vibrational energy
A. A. Kinetic energy

B. B. potential energy

C. C. thermal energy
D. D. vibrational energy

Answer:

D Watch Video Solution
143. Cubical expansion is undergone by
A. Solids alone
B. Solids and liquids

C. Solids, liquids and gases

D. Only liquids and gases

Answer:

D Watch Video Solution

144. There is a hole in a metal plate. Upon
heating the plate, the diameter of the hole
A. Will increase
B. Will decrease
C. Will not change
D. Increase or decrease depending upon
the coefficient of surface expansion of
the plate

Answer:

D Watch Video Solution
145. Coefficient of areal expansion for a solid is
A. 3 times the coefficient of itslinear expansion
B. $3 / 2$ times the coefficient of its volume
expansion
C. $\frac{2}{3}$ times the coefficient of its volume
expansion
D. More than its coefficient of apparent
expansion

Answer:

146. In a lake, when it cools to the point where
it is about to freeze, at $4^{\circ} C$ water settles to bottom because it is
A. less dense
B. more dense
C. very cold
D. very hot

Answer:

D Watch Video Solution
147. The volume of metal block changes by 0.18% when it is heated through $20^{\circ} C$ then its coefficient of cubical expansion will be
A. $9 \times 10^{-5} /{ }^{\circ} C$
B. $3 \times 10^{-5} /{ }^{\circ} C$
C. $6 \times 10^{-5} /{ }^{\circ} C$
D. $4 \times 10^{-5} /{ }^{\circ} \mathrm{C}$

Answer:

Watch Video Solution

148. Two metal rods has lengths in the ratio
$3: 2$ and coefficient of linear expansion are in
the ratio $2: 3$. If they are heated from $35^{\circ} C$ to
$95^{\circ} C$, then ratio of their linear expansion is
A. $1: 2$
B. $2: 1$
C. $1: 1$
D. $1: 3$

Answer:

D Watch Video Solution

149. Iron sheet $50 \mathrm{~cm} \times 20 \mathrm{~cm}$ is heated
through $100^{\circ} C$. If $\propto=12 \times 10^{-6} /{ }^{\circ} C$ then chnage in area is
A. $2.4 \mathrm{~cm}^{2}$
B. $3.4 \mathrm{~cm}^{2}$
C. $4.4 \mathrm{~cm}^{2}$
D. $5.4 \mathrm{~cm}^{2}$

Answer:

D Watch Video Solution

150. Railway tracks are laid with gaps for expansion. The gap between the steel rails 20 m long is 1.2 cm at $10^{\circ} \mathrm{C}$. The temperature at which the steel rails just touch each other is

$$
\left(\propto \text { steel }=12 \times 10^{-6} /{ }^{\circ} C\right)
$$

A. $50^{\circ} \mathrm{C}$
B. $40^{\circ} \mathrm{C}$
C. $60^{\circ} \mathrm{C}$
D. $30^{\circ} \mathrm{C}$

Answer:

- Watch Video Solution

151. An iron ball is heated. Then percentage
increase will be largest in
A. diameter
B. surface area

C. volume

D. density

Answer:

D Watch Video Solution

152. A copper wire of length 1 increases in
length by 0.2% on heating from $20^{\circ} \mathrm{C}$ to
$40^{\circ} \mathrm{C}$. Then percentage change in area of copper plate of dimension 31×21 on heating from $20^{\circ} C$ to $40^{\circ} C$ is
A. 0.1%
B. 0.2%
C. 0.4%
D. 0.6%

Answer:

D Watch Video Solution

153. Celsiusscale is calibrated according to
A. Thermometer range of mercury
B. Melting point of mercury
C. Melting point of ice and boiling point of

water

D. Triple point of water

Answer:

D Watch Video Solution
154. A constant temperature volume of given mass of gas is inversely proportional to its pressure is
A. Charles law
B. Boyle's law

C. Gay-Lussac's law

D. None

Answer:

- Watch Video Solution

155. Specific heat of water is
A. $2.4 \mathrm{~J} k g^{-1} c^{-1}$

$$
\begin{aligned}
& \text { B. } 4.2 \mathrm{~J} k g^{-1} c^{-1} \\
& \text { C. } 3.4 \mathrm{~J} k g^{-1} c^{-1} \\
& \text { D. } 4.2 \mathrm{~J} g m^{-1} c^{-1}
\end{aligned}
$$

Answer:

- Watch Video Solution

156. For measurement of heat,.....is used.
A. Thermometer
B. Calorimeter

C. Multimeter

D. Pressure gauge

Answer:

- Watch Video Solution

157. Quantity of heat required to change state
of unit masssubstance without change in
temperature is......
A. Specific heat
B. Latent heat
C. Thermal expansion
D. None

Answer:

D Watch Video Solution
158. $32^{\circ} \mathrm{F}$ is equal to
A. 212 K
B. $212^{\circ} \mathrm{C}$
C. $273.15^{\circ} \mathrm{C}$

D. 273.15 K

Answer:

- Watch Video Solution

159. The temperature and pressure at the triple point of water are
A. $273.15 \mathrm{~K}, 4.58 \mathrm{~mm}$ of mercury
B. $273.16 \mathrm{~K}, 4.58 \mathrm{~mm}$ of mercury

C. $273.15 \mathrm{~K}, 4.58 \mathrm{~cm}$ of mercury

D. $273.16 \mathrm{~K}, 4.58 \mathrm{~cm}$ of mercury

Answer:

D Watch Video Solution

160. The melting point of pure ice is
A. 273.15 K
B. 373.15 K
C. 10 K

D. 0 K

Answer:

D Watch Video Solution

161. The boiling point of pure water is
A. 273.15 K
B. $273.15^{\circ} C$
C. $100^{\circ} \mathrm{C}$
D. 100 K

Answer:

D Watch Video Solution

162. Specific heat capacity is expressed as
A. $J / k g^{\circ} C$
B. $J / k g$
C. $K g / J$
D. $K g / J^{\circ} C$
163. Latent Heat of fusion of ice is
A. $80 \mathrm{Cal} / \mathrm{g}$
B. $90 \mathrm{Cal} / \mathrm{g}$
C. $100 \mathrm{Cal} / \mathrm{g}$
D. $110 \mathrm{Cal} / \mathrm{g}$

Answer:
164. The temperature gradient of a rod of
length 1 m is $60^{\circ} \mathrm{C} / \mathrm{m}$. If the temperature of
the hot end is $30^{\circ} \mathrm{C}$ the temperature at the other end is
A. $-60^{\circ} C$
B. 60°
C. 90°
D. $-30^{\circ} C$

Watch Video Solution

165. The thermal conductivity of a metal plate is $80 \mathrm{w} / \mathrm{mk}$. If the thickness of the plate is 0.5 cm and heat is conducted at the rate of $2.5 \times 10^{6} W / M^{2}$. The temperature difference across the two faces of the plate is about
A. $156^{\circ} \mathrm{C}$
B. $60^{\circ} \mathrm{C}$
C. $30^{\circ} \mathrm{C}$
D. $10^{\circ} \mathrm{C}$

Answer:

- Watch Video Solution

166. A wall of a room has dimensions of
$6 m \times 4 m$. It is 60 cm thick. Its thermal conductivity is is 2 . If the temperature inside and outside is $20^{\circ} \mathrm{C}$ and $-5^{\circ} \mathrm{C}$ respectively
the amount of heat conducted every hour is
about
A. 2000 J

B. 1700 kcal

C. 2000 cal

D. 1500 cal

Answer:

- Watch Video Solution

167. A body cools from $62^{\circ} C$ to $50^{\circ} C$ in 10
minutes. If the surrounding temperature is
$26^{\circ} C$ the temperature at the end of next 10
A. $38^{\circ} \mathrm{C}$
B. $45^{\circ} \mathrm{C}$
C. $42^{\circ} C$
D. $40^{\circ} \mathrm{c}$
A. A. $38^{\circ} C$
B. B. $45^{\circ} C$
C. C. $42^{\circ} C$
D. D. $40^{\circ} \mathrm{c}$

Answer:
168. A body cools from $51^{\circ} \mathrm{C}$ to $50.9^{\circ} \mathrm{C}$ in 10
sec. If surrounding temperature is $31^{\circ} \mathrm{C}$. The
time taken to cool from $41^{\circ} \mathrm{C}$ to $40.9^{\circ} \mathrm{C}$ will be
A. 15 sec
B. 5 sec
C. 20 sec
D. 10 sec
169. The cooling curve is represented by graph..........

A. A

B. B
time $\underbrace{\text { temp }}_{1, \quad \mathrm{~B}}$

C. C

D. D

Answer:

- Watch Video Solution

170. Gravitation plays a role in.....
A. conduction B. convection C. radiation D. evaporation
A. A. conduction
B. B. convection
C. C. radiation
D. D. evaporation

Answer:

D Watch Video Solution
171. Three different liduid A , B, C of equal masses have temperatures of $12^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$. The temperature When A and B are mixed is $16^{\circ} C$ and When B and C are mixed is $23^{\circ} \mathrm{C}$. What will be the temperature when A and C are mixed?
A. $19^{\circ} C$
B. $20^{\circ} \mathrm{C}$
C. $21^{\circ} \mathrm{C}$
D. $22^{\circ} \mathrm{C}$
A. $19^{\circ} C$
B. $20^{\circ} \mathrm{C}$
C. $21^{\circ} C$
D. $22^{\circ} \mathrm{C}$

Answer:

- Watch Video Solution

172. The MKS unit of thermal resistance is
A. $\frac{\wedge \circ K}{J s}$
B. $\frac{J}{\wedge} \circ K . s$

> C. $\frac{\wedge \circ K \cdot s}{J}$
> D. $\frac{\wedge \circ K}{J}$

Answer:

- Watch Video Solution

173. A 10° temperature difference is maintained across the two faces of a slab. If

120 joule of heat is conducted in 1 minute. The thermal resistance of the material in MKS unit is
A. 2.5
B. 05
C. 10
D. 20
A. 2.5
B. 5
C. 10
D. 20

Answer:
174. The dimension of thermal resistance are.............
A. $M^{1} L^{2} T^{-3} K^{1}$
B. $M^{-1} L^{-2} T^{3} K^{1}$
C. $M^{-1} L^{2} T^{1} K^{3}$
D. $M^{-2} L^{-1} T^{3} K^{-1}$

Answer:
(Watch Video Solution

175. The relation between α and β is

$$
\begin{aligned}
& \text { A. } \alpha=\frac{1}{2} \beta \\
& \text { B. } \beta=\frac{1}{2} \alpha \\
& \text { C. } b r t a=\alpha \\
& \text { D. } 2 \alpha=3 \beta
\end{aligned}
$$

Answer:

D Watch Video Solution
176. The temperature and pressure at the triple point of water are
A. $273.15 \mathrm{~K}, 4.58 \mathrm{~mm}$ of mercury
B. $273.16 \mathrm{~K}, 4.58 \mathrm{~mm}$ of mercury
C. $273.15 \mathrm{~K}, 4.58 \mathrm{~cm}$ of mercury

D. $273.16 \mathrm{~K}, 4.58 \mathrm{~cm}$ of mercury

Answer:

D Watch Video Solution
177. Iron sheet $50 \mathrm{~cm} \times 20 \mathrm{~cm}$ is heated through $100^{\circ} C$. If $\propto=12 \times 10^{-6} /{ }^{\circ} C$ then chnage in area is
A. $2.4 \mathrm{~cm}^{2}$
B. $3.4 \mathrm{~cm}^{2}$
C. $4.4 \mathrm{~cm}^{2}$
D. $5.4 \mathrm{~cm}^{2}$

Answer:

D Watch Video Solution

178. What are the important characteristics of a thermometer?

D Watch Video Solution

179. Define thermal capacity?

- Watch Video Solution

180. State Newton's law of cooling?
(Watch Video Solution

181. Define (i) Sublimation

- Watch Video Solution

182. Define(ii) Triple point

D Watch Video Solution

183. Give any four applications of thermal conductivity in everyday life.
184. Why do we consider two specific heats heat for a gas?

- Watch Video Solution

185. In a random temperature scale, water boils at $200^{\circ} \mathrm{X}$ and freezes at $20^{\circ} \mathrm{X}$. Find the boiling point of liquid of a liquid in this scale at $62^{\circ} \mathrm{C}$.
186. A sheet of brass 50 cm long and 8 cm broad at $0^{\circ} C$. If the surface area at $100^{\circ} C$ is $401.57 \mathrm{~cm}^{2}$, find the coefficient of linear expansion of brass

D Watch Video Solution

187. Distinguish between:

What is the difference between heat and temperature?

Watch Video Solution

188. The difference in temperature between two sides of a glass plate 0.3 mm thick is $25^{\circ} \mathrm{C}$. If the area of one side surface is $10 \mathrm{~m}^{2}$, calculate the heat conducted per second through the plate. The thermal conductivity of glass is $0.84 J / s \mathrm{~m} \mathrm{~K}$.
189. Define molar specific heats of a gas? State
their relation with principal specific heats.

D Watch Video Solution

190. A metal sphere cools from $80^{\circ} C$ to $60^{\circ} C$
in 6 minutes. How much time will it take to
cool from $60^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ if the room temperature is $30^{\circ} C$?
