

PHYSICS

BOOKS - CHETANA PHYSICS (MARATHI ENGLISH)

Unit Test 1

1. The dimension for Torque is

A. $M^2 L^1 T^3$

B. $M^1L^2T^{-2}$

C.
$$M^2 L^1 T - 2$$

D.
$$M^{\,-1}L^3T^{\,-2}$$

Answer:

Watch Video Solution

2.
$$\overline{A}=2\hat{i}+3\hat{j}$$
 and $ar{b}=3\hat{i}+5\hat{j}$ Then $ar{a} imesar{b}$

A. $1\hat{k}$

 $\mathsf{B}.\,2\hat{k}$

C. $3\hat{k}$

D. $4\hat{k}$

Answer:

Watch Video Solution

3. The equation of time of light is

A.
$$\frac{u\sin\theta}{g}$$

B.
$$\frac{2u\sin\theta}{g}$$
C.
$$\frac{u^2\sin2\theta}{g}$$
D.
$$\frac{u^2\sin^2\theta}{g}$$

Answer:

4. State the work energy theorem.

Watch Video Solution

maximum?

7. Show that $1J = 10^7$ erges.

8. If a force of $2\overline{i} - 5\overline{j} + \overline{k}$ (N) acts on a body and displaces it to a distance of $4\overline{i} - 3\overline{j} - 2\overline{k}$ metres. Calculate the work done.

Watch Video Solution

9. In a case of a projectile, derive an expression

for time of ascent.

correct.

13. The time period ,for the oscillation , of a simple pendulum were recorded, 5 readings were taken they were 2.00 sec., 2.02 sec., 1.96 sec., 2.03 sec, 1.99 sec

Find the Most Probable value

Watch Video Solution

14. The time period ,for the oscillation , of a simple pendulum were recorded, 5 readings

were taken they were 2.00 sec., 2.02 sec., 1.96

sec., 2.03 sec, 1.100 sec

Find the Final absolute error

Watch Video Solution

15. The time period ,for the oscillation , of a simple pendulum were recorded, 5 readings were taken they were 2.00 sec., 2.02 sec., 1.96 sec., 2.03 sec, 1.101 sec

Find the Percentage error.

16. Show that the trajectory of a projectile is a parabola, which can be expressed as $y=bx-cx^2$

Watch Video Solution

17. Show that
$$P=rac{1}{3}
ho c^2$$
 is dimensionally correct where P= Pressure, C = speed, $ho=density.$

18. What is a conical pendulum? Derive an expression for a time period of a conical pendulum.

