©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHETANA PHYSICS (MARATHI

ENGLISH)

UNITS AND MEASUREMENTS

Exercise

1. Explain the need for making measurement.
2. What is the need for measurement of a physical quantity?

D Watch Video Solution
3. Define physical quantity and give a few examples.

- Watch Video Solution

4. Define units and state the factors to be taken into consideration while selecting a unit

D Watch Video Solution

5. Define unit and state the characteristics of a unit.

D Watch Video Solution
6. Explain system of units and state and some system of units.

D Watch Video Solution
7. Define physical quantities and give a few examples.

D Watch Video Solution
8. Define fundamental quantity and state them with SI units.

- Watch Video Solution

9. Define derived quantities and state examples.

- Watch Video Solution

10. State the relation betwwen radian and degree and vice-versa.

- Watch Video Solution

11. What are the conventions to be followed while writing S.I. units?

D Watch Video Solution
12. What is the difference between mN, Nm and $n m ?$

D Watch Video Solution

13. What do A° and AU stand for?

D Watch Video Solution

14. Does the magnitude of a physical quantity depend upon the system of units chosen?

- Watch Video Solution

15. What is a light year?

- Watch Video Solution

16. Star A is father than star B. Which star will
have a large parallax angle?

- Watch Video Solution

17. A large ball 2 m in radius is made up of a rope of square cross section with edge length

4 mm . Negleting the air gaps in the balol, what is total length of the rope to the nearest order of magnitude?

- Watch Video Solution

18. Nuclear radius R has a dependemce on the mass number (A) as $R=1.3 \times 10^{-6} A^{1 / 3} \mathrm{~m}$.

For a nucleus of mass number $A=125$. Obtain
the order of magnitude of R expressed in metre.

- Watch Video Solution

19. Find the order of magnitude of the following quantities: Universal gravitional constant $G=6.673 \times 10^{-11} N-m^{2} / k g^{2}$

D Watch Video Solution
20. Find the order of magnitude of the following quantities: Mass of electron= $9.1 \times 10^{31} \mathrm{~kg}$

D Watch Video Solution

21. Find the order of magnitude of the following quantities: Speed of light in vaccum
$=299792458 \mathrm{~m} / \mathrm{s}$
22. Find the order of magnitude of the following quantities: Acceleration due to gravity $=9.80665 \mathrm{~m} / \mathrm{s}^{2}$

D Watch Video Solution

23. Find the order of magnitude of the following quantities: Period of rotation of the

Earth about its own axis $=24 \mathrm{~h}=$ $24 \times 60 \times 60 s=86,400$ s.
24. State the order of magnitude of duration of a day.

- Watch Video Solution

25. What is order of magnitude? Explain with some examples.
26. Why is parallax method not useful for measuring distance of stars more than 100 light years away?

- Watch Video Solution

27. Fill in the blanks with suitable conventions.
(1) 1 micron $=$............ m

- Watch Video Solution

28. Fill in the blanks with suitable conventions.

D Watch Video Solution
29. Fill in the blanks with suitable conventions.
(3) $5896 A^{\circ}=\ldots \mathrm{cm}$

D Watch Video Solution

30. Fill in the blanks with suitable conventions.

(4) 1 fermi $=. m$

D Watch Video Solution
31. Fill in the blanks with suitable conventions.
(5) $1 \mathrm{~m}=. l i g h t ~ y e a r . ~$

- Watch Video Solution

32. Fill in the blanks with suitable conventions.
(6) 1 parsec $=. m=. l i g h t ~ y e a r . ~$

D Watch Video Solution
33. Fill in the blanks with suitable conventions.
(7) $1 \mathrm{AU}=. \mathrm{m}$.

- Watch Video Solution

34. Explain method of measurement of time.
35. When the planet Jupiter is at a distance of 824.7 million kilometer from the earth, its angular diameter is measured to be 35.72 " of arc. Calcutate the diameter of the Jupiter.

- Watch Video Solution

36. Define dimensions and state uses of dimensional analysis.
37. What are the dimensions of the quantity $l \sqrt{l / g} \quad \mathrm{l}$ - beng the length and the acceleration due to gravity.

- Watch Video Solution

38. Explain with example how is dimensional analysis used to verify the correctness of physical equation.
39. Name three physical quantities which are dimensionless.

- Watch Video Solution

40. Explain with example, how is dimensional
analysis used to convert the unit of a physical
quantity from one system to another system of units.
41. Explain with example, how dimensional analysis is used to derive the relation,
$n=\frac{1}{2 L} \sqrt{\frac{T}{m}}$ where
$\mathrm{n} \rightarrow$ Frequency, $\mathrm{T} \rightarrow$ Tension, $\mathrm{L} \rightarrow$ Length, $\mathrm{m} \rightarrow$ mass per unit length.

- Watch Video Solution

42. Derive the formula for K.E of a particle having mass m and velocity v using dimensional analysis.
43. List the limitation of analysis.

- Watch Video Solution

44. Can two different physical quantities have same dimensions?
45. A dimensionally correct equation need not be actually correct, but a dimensionally incorrect equation is necessarily wrong. Justify.

D Watch Video Solution

46. If two physical quantities have the same
dimensions, do they represent the same physical content?
47. Show that production of pressure (P) and volume (V) has dimensions of energy.

- Watch Video Solution

48. Force experienced by charge ' q ' moving with velocity ' v ' in a magnetic field ' B ' is given by $F=q \vee B$. Find the dimensions of magnetic field.
49. $v=a t+\frac{b}{t+c}+v_{0}$ is dimensionally
valid equation Obtain the dimensional formula
for $\mathrm{a}, \mathrm{b}, \mathrm{c}$ where v is velocity, t is time and v_{0} is initial velocity.

D Watch Video Solution

50. Check weather the equation is dimensionally correct $v^{2}=u^{2}+2 a s^{2}$.

D Watch Video Solution

51. Consider a small sphere falling through a medium. The viscous force acting on the sphere depends upon the radius (r) of the sphere, velocity (V) of the sphere and the coefficient of viscosity (η) of the medium. Use dimensional analysis and show that the viscous force is directly proportional to $\eta r v$.
(Given : Dimensions of $\eta=\left[M^{1} L^{-1} T^{-1}\right]$).

Watch Video Solution

52. Assume that the speed (v) of sound in air depends upon the pressure (P) and density ρ of the air and use dimensional analysis to obtain an expression for the speed of sound.

D Watch Video Solution

53. If length 'L', force ' F ' and ' T ' are taken as
fundamental quantities, what would be the dimensional equation of (i)mass (ii) density?
54. The density of mercury is $13.6 \mathrm{~g} / \mathrm{cm}^{3}$ using dimensional analysis express it in $\mathrm{kg} / \mathrm{m}^{3}$

D Watch Video Solution

55. An object is falling freely under the gravitational force. Its velocity after travelling
a distance h is v. If v depend upon gravitational acceleration g and distance h, prove with dimensional analysis $v=k$ sqrt(gh)’, where k is constant.
56. Find dimensions of permittivity of vacuum,
if $F=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}$

- Watch Video Solution

57. List the reasons for arising uncertainties in observations.
58. What is an error explain types of error.

- Watch Video Solution

59. What are the methods to minimise errors?

- Watch Video Solution

60. Define.
(i) Most probable value. (ii) Absolute error.
(iii) Relative error.
(iv) percentage error.

- Watch Video Solution

61. The masses of two bodies are measured to
be $15.7 \pm 0.2 \mathrm{~kg}$ and $27.3 \pm 0.3 \mathrm{~kg}$. What is
the total mass of the two and error in it.

D Watch Video Solution
62. The side of an object measured by means
of a vernier callipers is 3.52 cm . If the least
count of the vernier is 0.01 cm ,estimate the percentage error in the measurement.

- Watch Video Solution

63. The distance travelled by an object in time
$(100 \pm 1) \mathrm{s}$ is $(5.2 \pm 0.1) \mathrm{m}$. What is the speed and its error.
64. In a workshop a worker measures the length of a steel plate with a Vernier callipers having a least count 0.01 cm . Four such measurements of the length yielded the following values $3.11 \mathrm{~cm}, 3.13 \mathrm{~cm}, 3.14 \mathrm{~cm}, 3.14$ cm . Find the mean length, the mean absolute error and percentage error in the measured value of the length.

D Watch Video Solution

65. If the measured values of two quantities
are $A \pm \Delta A$ and $B \pm \Delta B$, and ΔA and ΔB
being the mean absolute errors. What is the maximum possible error in $A+B$? Show that if $Z=\frac{A}{B}$ then $\frac{\Delta Z}{Z}=\frac{\Delta A}{A}+\frac{\Delta B}{B}$

D Watch Video Solution

66. Find the percentage error in kinetic energy
of a body having mass $60.0 \pm 0.3 \mathrm{~g}$ moving with velocity $25.0 \pm 0.1 \mathrm{~cm} / \mathrm{s}$.
67. In ohm's experiment, the values of unknown resistances were found to be 6.12Ω, 6.15 Ω, calculate the mean absolute error, relative error and percentage error in these measurements.

D Watch Video Solution

68. If the length of a cylinder is
$l=(4.00 \pm 0.001) \quad$ cm, \quad radius
$r=(0.025 \pm 0.001) \quad \mathrm{cm} \quad$ and \quad mass
$m=(6.25 \pm 0.01) \quad$ gm. Calculate the percentage error in the determination of density.

- Watch Video Solution

69. State the rules for writing significant figures.
70. If the formula for a physical quantity is
$X=\frac{a^{4} b^{3}}{c^{\frac{1}{3}} d^{\frac{1}{2}}}$ and if the percentage error in the measurements of a,b,c and d are $2 \%, 3 \%, 3 \%$ and 4\% respectively. Calculate percentage error in X .

- Watch Video Solution

71. A dimensionally correct equation need not be actually correct, but a dimensionally incorrect equation is necessarily wrong. Justify.

Watch Video Solution

72. Can two different physical quantities have same dimensions?

D Watch Video Solution

73. A dimensionally correct equation need not be actually correct, but a dimensionally incorrect equation is necessarily wrong. Justify.
74. What is order of magnitude? Explain with some examples.

D Watch Video Solution
75. Define significant figures and state the rules for determining significant figures.

- Watch Video Solution

76. What is an error explain types of error.

- Watch Video Solution

77. What are the methods to minimise errors?

- Watch Video Solution

78. The length, breadth, and thickness of a rectangular sheet of metal are $4.234 \mathrm{~m}, 1.005$ mand 2.01 cm respectively. Give the area and volumes of the sheet to correct significant figures.
79. The diameter of a sphere is 2.14 cm .

Calculate the volume of the sphere to the correct number of significant figures.

- Watch Video Solution

80. Find the dimensions of Coefficient of viscosity (η)
81. Find the dimensions of Resistance of a wire $\frac{d v}{d x^{2}}=$ velocity gradient

D Watch Video Solution

82. Using method of dimensional analysis
show that $1 J=10^{7}$ erg.

D Watch Video Solution
83. Express a pressure of $50 \mathrm{~N} / \mathrm{m}^{2}$ in terms of
$d y \neq / \mathrm{cm}^{2}$

D Watch Video Solution
84. Density of water is $1 \mathrm{gm} /$ in the CGS units.

Express it in S.I units
(Watch Video Solution
85. Show that the equation $V=u+a t$ is dimensionally correct.

D Watch Video Solution

86. The pressure (P) of a liquid column dependsonits height h, the density ρ, acceleration due to gravity g. Show that $\mathrm{P}=\mathrm{h} \rho$ g by dimensional method. (Given: constant $\mathrm{k}=$
1)
87. What is order of magnitude of one year in terms of seconds?

- Watch Video Solution

88. The radius of a nucleus of mass number ' A '
is given by $R=1.3 \times 10^{-16} \times A^{1 / 3}$.

Find the order of magnitude of radius for a nucleus with $A=216$.
89. State the order of magnitude of radius of the earth. Given $\mathrm{R}=6400 \mathrm{~km}$

D Watch Video Solution

90. The thickness of a glass sheet is measured at six different places and the following readings are obtained : $1.21 \mathrm{~mm}, 1.24 \mathrm{~mm}, 1.19$ $\mathrm{mm}, 1.15 \mathrm{~mm}, 1.22 \mathrm{~mm}, 1.25 \mathrm{~mm}$. Find the most probable value of the thickness and percentage error in measurement.
91. The volume of a solid cylinder of length 10
cm and radius 4 cm is measured using a vernier calliper which has a least count 0.01
cm . Find the percentage error in the measurement.

D Watch Video Solution

92. The radius of a sphere measured is
$4.68 \pm 0.01 \mathrm{~cm}$. Estimate the percentage error
in the measurement of the volume of the sphere.

- Watch Video Solution

93. Successive measurements of the period of oscillation of a simple pendulum come out to
be $2.63 \mathrm{~s}, 2.56 \mathrm{~s}, 2.71 \mathrm{~s}$ and 2.81 s . Calculate

Mean absolute error and Percentage error
94. Two resistors have resistances
$R_{1}=(37 \pm 3) \Omega$ and $R_{2}=(54 \pm 5) \Omega$. Find
the equivalent resistance of their series
combination.

D Watch Video Solution

95. Choose the correct option.
[$\left.L^{1} M^{1} T^{-2}\right]$ is dimensional formula for
A. Velocity
B. Acceleration

C. Force

D. Work

Answer:

D Watch Video Solution

96. Choose the correct option.

Light year is a unit of
A. Time
B. Mass

C. Distance

D. Luminosity

Answer:

D Watch Video Solution

97. Choose the correct option.

Distance travelled by a particle at any instant
't' can be represented as
$S=A(t+B)+C t^{2}$ Dimension of B are.
A. $\left[M^{\wedge} O L^{\wedge} 1 T^{\wedge}-1\right]^{\wedge}$
B. $\left[\mathrm{M}^{\wedge} \mathrm{OL}^{\wedge} \mathrm{OT}^{\wedge} 1\right]$
C. $\left[M^{\wedge} O L^{\wedge} 1 T^{\wedge}-2\right]$
D. $\left[\mathrm{M}^{\wedge} \mathrm{OL}^{\wedge} 2 \mathrm{~T}^{\wedge}-2\right]$

Answer:

D Watch Video Solution
98. Choose the correct option.
$\left[L^{-1} M^{1} T^{-2}\right]$ is the dimensional formula for
A. joules constant
B. gravitational constant
C. pressure
D. force

Answer:

D Watch Video Solution
99. Choose the correct option.

Whiceh of the following equation is
dimensionally correct?
A. pressure =energy per unit volume
B. pressure= energy per unit area
C. pressure $=$ momentum $x x$ volume $x x$ time
D. pressure= force $x x$ area

Answer:

- Watch Video Solution

100. Choose the correct option.

If the unit of length and force are increased to
four times, How many times the unit of energy will increase?
A. 2 times
B. 4 times
C. 8 times
D. 16 times

Answer:

D Watch Video Solution
101. Choose the correct option.

The dimensional formula for impulse is the same as dimensional formula for
A. acceleration
B. force
C. momentum
D. rate of change in momentum

Answer:

D Watch Video Solution
102. Choose the correct option.

A unitless quantity
A. always has a non-zero dimension
B. may have a non-zero dimension
C. never has a zero dimension
D. has no dimensions

Answer:
(D) Watch Video Solution
103. Choose the correct option.

Which of the following is NOT a dimensionless

quantity?

A. angle
B. strain
C. specific gravity
D. density

Answer:

104. Choose the correct option.

Dimensional analysis CANNOT be used
A. to check the correctness of a physical
quantity
B. to derive the relation between different
physical quantities
C. to find out constant of proportionality
which may be pure number
D. to change from one sustem of units to
another

Answer:

- Watch Video Solution

105. Choose the correct option.

The value of acceleration due to gravity is 980
$c m s^{-2}$. If the unit of length is kilometer and
that of time is in minute. the value of acceleration due to gravity is
A. $980 \mathrm{~km} \mathrm{~min}^{-2}$
B. $98 \mathrm{~km} \mathrm{~min}^{-2}$
C. 35.28 km min
D. 28.35 km min

Answer:

D Watch Video Solution

106. Choose the correct option.

Using the principle of homogeneity of dimensions, find which of the following relation is correct?
A. $T^{2}=\frac{4 \pi^{2}-a^{3}}{G}$
B. $T^{2}=\frac{4 \pi^{2} a^{3}}{G M}$
C. $T^{2}=4 \pi^{2} a^{3}$
D. $T^{2}=\frac{4 \pi^{2} a^{3}}{G M^{3}}$

Answer:

- Watch Video Solution

107. The value of the magnitude rounded off to the nearest integral power of 10 is called
A. significant figure
B. special way of writing
C. significant figure
D. order of magnitude

Answer:

D Watch Video Solution
108. Choose the correct option.

The magnitude of any physical quantity can be
expressed as $A \times 10^{n}$ where n is a number called order of magnitude and A is
A. $0.1 \leq A<1$
B. $0.5 \leq A<5$
C. $5 \leq A<A$
D. $1 \leq A>9$

Answer:
(Watch Video Solution

109. Choose the correct option.

The number of significant figures in 0.400 is
A. 1
B. 2
C. 3
D. 4

Answer:

D Watch Video Solution
110. Choose the correct option.

Which of the following is NOT a fundamental unit?
A. cm
B. kg
C. centigrade
D. volt

Answer:

111. Choose the correct option.

Dimensions of kinetic energy are the same as
that of
A. Force
B. Acceleration
C. Work
D. Pressure

Answer:

- Watch Video Solution

112. Choose the correct option.

Which is following relations is correct?
A. 1 light year $=9.46 \times 10^{15} \mathrm{~m}$
B. 1 astronomical unit $(A V)=1.496 \times 10^{10} \mathrm{~m}$
C. 1 parsec $=2.26$ light years
D. All of above

Answer:
(D) Watch Video Solution
113. Choose the correct option.

SI unit of energy, the joule is equivalent to
A. N.m
B. W / s
C. $N-m^{2} / s^{2}$
D. N / m

Answer:

D Watch Video Solution
114. Choose the correct option.

The error in the measurement of sides of a
rectangle is 1%. The error in measurement of its area is
A. [1\%
B. $1 / 2 \%$
C. 0.02
D. None of the above

Answer:
115. Choose the correct option.

Dimensions of electric potential are
A. $\left[M^{1} L^{-2} T^{-3} I^{-1}\right]$
B. $\left[M^{1} L^{2} T^{-3} I^{-1}\right]$
C. $\left[M^{2} L^{1} T^{-3} I^{-1}\right]$
D. $\left[M^{1} L^{2} T^{-3} I^{1}\right]$

Answer:
116. Choose the correct option.

Which of the following is supplementary unit?
A. kelvin
B. ampere
C. radian
D. joule

Answer:

- Watch Video Solution

117. Choose the correct option.

If the pointer of the voltmeter shows reading
of 0.2 V when no curent flows in the circuit,
the error in voltmeter is
A. Instrumental error

B. Personal error

C. Random error
D. None of these

Answer:

118. Choose the correct option.

The number of seconds in a day has order of magnitude as
A. 5
B. 4
C. -4
D. -5

Answer:
119. Choose the correct option.
N / m^{2} is a unit of
A. Energy
B. Momentum
C. Pressure
D. Force

Answer:

120. Choose the correct option.

If $x=a t+b t^{2}$, where x is distance travelled
by body in $k m$ while t is second, then unit of b are
A. $k m / s$
B. $\mathrm{km}-\mathrm{s}$
C. $k m-s^{2}$
D. $k m / s^{2}$
121. Choose the correct option.

Select the pair whose dimensions are same
A. Force-Pressure
B. Work-Torque
C. Velocity- Velocity gradient
D. Energy-omentum

Answer:
122. Choose the correct option.

Which of the following units is NOT written

correctly

A. Meter
B. kelvin
C. newton
D. kilogram
123. Choose the correct option.

Which of the following is dimensionaless
A. Planck's constant
B. gravitational constant
C. Power of a lens

D. Refractive index

Answer:

124. Choose the correct option.

The sum of $7.21,12.141$ and 0.0028 can be expressed upto appropriate number of significant figures as
A. 19.3
B. 19.35
C. 19.353
D. 19.358
125. The diference between the true value and measured value is called
A. mistake
B. error
C. significant figures
D. fault

Answer:
126. If the pointer of the voltmetre is not exactly at the zero of the scale, then the error is called
A. instrumental error
B. systematic error
C. personal error
D. random error

Answer:

127. The value of the magnitude rounded off to
the nearest integral power of 10 is called
A. significant figures
B. uncertain number
C. significant number
D. order of magnitude

Answer:

128. The reference standard used for the measurement of a physical quantity is called
A. standard quality
B. dimension
C. constant
D. unit

Answer:

- Watch Video Solution

129. Define fundamental quantity and state them with SI units.

D Watch Video Solution

130. Explain system of units and state and some system of units.

- Watch Video Solution

131. Explain with example, how is dimensional analysis used to convert the unit of a physical quantity from one system to another system of units.

- Watch Video Solution

132. Find the dimension of: work

- Watch Video Solution

133. Find the dimension of : Refractive index

D Watch Video Solution

134. Show that the equation $s=u t+\frac{1}{2} a t^{2}$ is dimensionally correct.

D Watch Video Solution

135. Determine the number of significant
figures in the following measurements.
0.05718

D Watch Video Solution

136. Determine the number of significant figures in the following measurements. 9300

D Watch Video Solution

137. Determine the number of significant
figures in the following measurements.
2.35×10^{-19}

D Watch Video Solution

138. Determine the number of significant figures in the following measurements.
1.3725×10^{9}

D Watch Video Solution

139. What is an error explain types of error.

D Watch Video Solution
140. Period of simple pendulam is given as
$T=2 \pi \sqrt{\frac{1}{g}}$.Verify this formula using dimensional method.

D Watch Video Solution

141. The side of a cube is measured to be $20.44 \pm 0.02 \mathrm{~m}$. Find the percentage error in the measurement of area.
142. For measuring large distances, which units are used by astronomers? In detail.

(Watch Video Solution

143. Why is only carbon is used and not only other element for defining atomic mass unit?

D Watch Video Solution

144. List the reasons for arising uncertainties
in observations.

D Watch Video Solution
145. State limitation of dimensional Analysis

