© 'doubtnut

India's Number 1 Education App

CHEMISTRY

NCERT - FULL MARKS CHEMISTRY(TAMIL)

CHEMICAL EQUILIBRIUM - II

Self Evaluation A Choose The Correct Answer

1. What is meant by 'chemical equilibrium ' ?

A. dynamic
B. stationery
C. none
D. both

Answer: A

D Watch Video Solution
2. If the equilibrium constants of following reactions are $2 A \Leftrightarrow B$ is K_{1} and $B \Leftrightarrow 2 A$ is K_{2}, then
A. $K_{1}=2 K_{2}$
B. $K_{1}=1 / K_{2}$
C. $K_{2}=\left(K_{1}\right)^{2}$
D. $K_{1}=1 / K_{2}{ }^{2}$

Answer: B

D Watch Video Solution

3. In the
$2 H I \Leftrightarrow H_{2}+I_{2}, K_{p}$ is
A. greater than K_{c}
B. less than K_{c}
C. Equal to K_{c}
D. Zero

Answer: C

D Watch Video Solution

4. For the reaction
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$ the rate of the reaction in terms of ammonia is
A. low pressure and high temperature
B. low pressure and low temperature
C. high temperature and high pressure
D. high pressure and low temperature

Answer: D

D Watch Video Solution

5. For the homogeneous are reaction at 600 K ,
$4 \mathrm{NH}_{3(g)}+5 O_{2(g)} \Leftrightarrow 4 N O_{(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(g)}$.
The equilibrium K_{c} has the unit.
A. $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{-1}$
B. $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$
C. $\left(\mathrm{mol} \mathrm{dm}{ }^{-3}\right)^{10}$
D. $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{-9}$

Answer: B

D Watch Video Solution

6. Two moles of ammonia gas are introduced into a previously evacuated $1.0 \mathrm{dm}^{3}$ vessel in which it partially dissociates at high
temperature. At equilibrium 1.0 mole of ammonia remains. The equilibrium constant K_{c} for the dissociation is
A. $27 / 16\left(\text { mole dm }^{-3}\right)^{2}$
B. $27 / 8\left(\text { mole dm }^{-3}\right)^{2}$
C. $27 / 4\left(\text { mole dm }{ }^{-3}\right)^{2}$
D. None of these

Answer: A

D View Text Solution

7. An equilibrium reaction is endothermic if K_{1}

and K_{2} are the equilibrium constants at T_{1} and T_{2} temperatures respectively and if T_{2} is greater than T_{1} then
A. K_{1} is less than K_{2}
B. K_{1} is greater than K_{2}
C. K_{1} is equal to K_{2}
D. None

Answer: A

D View Text Solution

Self Evaluation B Answer In One Or Two Sentences

1. Dissolution of ammonium nitrate increases
with increase in temperature. why ?

- Watch Video Solution

2. Write the equilibrium constant for the following
(i) $\mathrm{H}_{2} \mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})}$
(ii) $\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \Leftrightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)}$
(iii) $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$

D Watch Video Solution
3. State Le-Chatelier principle.

D Watch Video Solution

4. How will you arrive at the unit of equilibrium constant?

- Watch Video Solution

5. The Cyanobacteria are also referred to as

- Watch Video Solution

6. Derive the relation $K_{p}=K_{c}(R T)^{\Delta n_{g}}$ for a general chemical equilibrium reaction.

D Watch Video Solution
7. Calculate Δn_{g}, for the following reactions
(i) $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$
(ii)
$2 \mathrm{H}_{2} \mathrm{O}_{(g)}+2 C l_{2(g)} \Leftrightarrow 4 H C l_{(g)}+O_{2}((g))$

(D) Watch Video Solution

Self Evaluation C Answer Not Exceeding 60 Words

1. Derive the relation $K_{p}=K_{c}(R T)^{\Delta n_{g}}$ for a general chemical equilibrium reaction.
2. For the equilibrium reaction

$$
H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}
$$

- Watch Video Solution

3. Derive the relationship between C_{p} and C_{v} for an ideal gas.

- Watch Video Solution

1. The equilibrium constant Kc for
$A_{(g)} \Leftrightarrow B_{(g)} \quad$ is 2.5×10^{-2}. The rate constant of the forward reaction is
$0.05 \mathrm{sec}^{-1}$. Calculate the rate constant of the reverse reaction.

D Watch Video Solution
2. In the equilibrium $H_{2}+I_{2} \Leftrightarrow 2 H I$ the number of moles of H_{2}, I_{2} and HI are 1,2,3
moles respectively. Total pressure of the reaction mixture is 60 atm. Calculate the partial pressures of H_{2}, I_{2} and HI in the mixture.

- Watch Video Solution

3. In 1 litre volume reaction vessel, the equilibrium constant K_{c} of the reaction $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2} \quad$ is $\quad 2 \times 10^{-4} \mathrm{lit}^{-1}$.

What will be the degree of dissociation
assuming only a small of 1 mole of $P C l_{5}$ has dissociated?

D Watch Video Solution

4. At temperature T_{1}, the equilibrium constant of eaction is K_{1}. At a higher temperature T_{2}, K_{2} is 10% of K_{1}. Predict whether the equilibrium is endothermic or exothermic.
5. At $35^{\circ} \mathrm{C}$, the value of K_{p} for the equilibrium reaction $\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$ is 0.3174 , Calculate the degree of dissociation when P is 0.2382 atm

D View Text Solution

6.

For
the
equilibrium
$2 \mathrm{NOCl}_{(g)} \Leftrightarrow 2 \mathrm{NO}_{(g)}+\mathrm{Cl}_{2(g)}$ the value of
the equilibrium constant K_{c} is 3.75×10^{-6} at
$790^{\circ} C$. Calculate K_{p} for this equilibrium at the same temperature.

D Watch Video Solution

7.

For
the
equilibrium
$2 \mathrm{SO}_{3(g)} \Leftrightarrow S O_{2(g)}+O_{2(g)}$, the value of equilibrium constant is 4.8×10^{-3} at $700^{\circ} \mathrm{C}$.

At equilibrium, if the concentration of SO_{3} and $S O_{2}$ are 0.60 M and 0.15 M respectively.

Calculate the concentration of O_{2} in the equillibrium mixture.
8. Hydrogen iodide is injected into a container at $458^{\circ} \mathrm{C}$. Certain amount of HI dissociates to H_{2} and I_{2} At equilibrium, concentration of HI is found to be $0.421 M$ while $\left[H_{2}\right]$ and $\left[I_{2}\right]$ each equal to $6.04 \times 10^{-2} M$, at $458^{\circ} C$.

Calculate the value of the equilibrium constant of the dissociation of HI at the same temperature.
9. Dissociation equilibrium constant of HI is
2.06×10^{-2} at $458^{\circ} C$. At equilibrium, concentrations of HI and I_{2} are 0.36 M and
$0.15 M$ respectively. What is the equilibrium concentration of H_{2} at $458^{\circ} \mathrm{C}$.

- Watch Video Solution

10. The equilibrium constant for the reaction
$2 \mathrm{SO}_{3(g)} \Leftrightarrow 2 \mathrm{SO}_{2(g)}+O_{2(g)}$ is 0.15 at 900
K. Calculate the equilibrium constant for the
reaction $\quad 2 \mathrm{SO}_{2(g)}+O_{2(g)} \Leftrightarrow 2 S O_{3(g)} \quad$ at the same temperature.

D Watch Video Solution

11. For the reaction $A+B \Leftrightarrow 3 C$ at $25^{\circ} C$, a 3
litre volume reaction vessel contains 1,2 and 4 moles of A, B and C respectively at equilibrium, calculate the equilibrium constant K_{c} of the reaction at $25^{\circ} C$.

D Watch Video Solution

12. How much $P C l_{5}$ must be added to one litre volume reaction vessel at $250^{\circ} \mathrm{C}$ in order to obtain a concentration of 0.1 mole of
$C l_{2}, K_{c} \quad$ for $\quad P C l_{5} \Leftrightarrow P C l_{3}+C l_{2} \quad$ is $0.0414 \mathrm{~mol} \mathrm{dm}^{-3}$ at $250^{\circ} \mathrm{C}$.

- Watch Video Solution

13. At 540 , the equilibrium constant K_{p} for
$P C l_{5}$ dissociation equilibrium at 1.0 atm 1.77
atm. Calculate equilibrium constant in molar
concentration $\left(K_{c}\right)$ at same temperature and pressure.

- View Text Solution

