© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

CHEMISTRY

NCERT - FULL MARKS CHEMISTRY(TAMIL)

CHEMICAL KINETICS-II

Examples

1. The decomposition of phosphine $\left(\mathrm{PH}_{3}\right)$ on tungsten at low pressure is a first order reaction. It is because the

D Watch Video Solution

2. In a first-order reaction, it takes the reactant 40.5 minutes to be 25% decomposed. Find the rate constant of the reaction.

- Watch Video Solution

3. A certain amount of methyl acetate was hydrolysed in the presence of excess of 0.05 M HCl at $25^{\circ} C .20 \mathrm{~mL}$ of reaction mixture were removed and titrated with NaOH solution, the volume V of alkali required for neutralisation after time ' t ' were as follows :

$\mathrm{t}(\mathrm{min})$	0	20	40	60	∞
$\mathrm{v}(\mathrm{mL})$	20.2	25.6	29.5	32.8	50.5

Show that the reaction is the first order reaction.
4. Derive the relationship between half-life period and rate constant for a first order reaction.

- Watch Video Solution

Self Evaluation A Choose The Correct Answer

1. In the acid hydrolysis of an ester what is the time taken for complete hydrolysis ?
A. second order reaction
B. zero order reaction
C. pseudo first order reaction
D. first order reaction

- Watch Video Solution

2. The unit of zero order rate constant is
A. litre $\mathrm{mol}^{-1} \mathrm{sec}^{-1}$
B. $\mathrm{mol} \mathrm{litre}^{-1} \mathrm{sec}^{-1}$
C. $\sec ^{-1}$
D. litre $^{2} \mathrm{sec}^{-1}$

Answer:

D Watch Video Solution

3. The excess energy which a molecule must possess to become active is known as
A. kinetic energy
B. threshold energy
C. potential energy
D. activation energy

Answer:

- Watch Video Solution

4. The term A in Arrhenius equation is called as
A. $k=A e^{-1 / R T}$
B. $k=A e^{-R T / E a}$
C. $k=A e^{-E a / R T}$
D. $k=A e^{E a / R T}$

- Watch Video Solution

5. The term A in Arrhenius equation is called as
A. Probability factor
B. Activation of energy
C. Collision factor
D. Frequency factor

Answer:

6. If $[\mathrm{A}]$ is the concentration of A at any time t and $\left[A_{0}\right]$ is the concentration at $t=0$, then for the first order reaction, the rate equation can be written as \qquad .
A. molecularity
B. order
C. rate
D. rate constant

Answer:

- Watch Video Solution

7. The chemical reactions which takes place with the evolution of heat energy are called \qquad . Reaction
A. consecutive reactions
B. parallel reactions
C. opposing reactions
D. chain reactions

Answer:

- Watch Video Solution

8. The half life period of a first order reaction is 10 minutes. Then its rate constant is
A. $6.93 \times 10^{2} \mathrm{~min}^{-1}$
B. $0.693 \times 10^{-2} \mathrm{~min}^{-1}$
C. $6.932 \times 10^{-2} \min ^{-1}$
D. $69.3 \times 10^{-1} \mathrm{~min}^{-1}$

- Watch Video Solution

9. For a reaction : $a A \rightarrow b B$, the rate of reaction is doubled when the concentration of A is increased by four times. The rate of reaction is equal to
A. $k[A]^{a}$
B. $k[A]^{\frac{1}{2}}$
C. $k[A]^{\frac{1}{a}}$
D. $k[A]$

Answer:

10.

$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}, \frac{d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t}=k_{1}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right], \frac{d\left[\mathrm{NO}_{2}\right]}{d t}=k_{2}\left[\mathrm{~N}_{2} O_{5}\right]$ and $\frac{d O_{2}}{d t}=k_{3}\left[N_{2} O_{5}\right]$, the relation between k_{1}, k_{2} and k_{3} is

$$
\text { A. } 2 k_{1}=4 k_{2}=k_{3}
$$

B. $k_{1}=k_{2}=k_{3}$
C. $2 k_{1}=k_{2}=4 k_{3}$
D. $2 k_{1}=k_{2}=k_{3}$

Answer:

- Watch Video Solution

11. For a reaction, $E_{a}=0$ and $k=4.2 \times 10^{5} \mathrm{sec}^{-1}$ at 300 K , the value of k at 310 K will be \qquad
A. $4.2 \times 10^{5} \mathrm{sec}^{-1}$
B. $8 . .4 \times 10^{5} \mathrm{sec}^{-1}$
C. $8.4 \times 10^{5} \mathrm{sec}^{-1}$
D. unpredictable

Answer:

- Watch Video Solution

Self Evaluation B Answer In One Or Two Sentences

1. Define zero order reaction. Give the unit for its rate constant
(k).
2. Derive the relationship between half-life period and rate constant for a first order reaction.

- Watch Video Solution

3. What is meant by activation energy?

- Watch Video Solution

4. Define zero order reaction. Give the unit for its rate constant
(k).

- Watch Video Solution

5. Write Arrhenius equation and explains the terms involved.
6. Define half life period.

- Watch Video Solution

7. Give the example for a zero order reaction.

- Watch Video Solution

8. What are simple and complex reactions ?

D Watch Video Solution

9. Write notes on (i) consecutive reactions, (ii) parallel reactions and (iii) opposing reactions.

Self Evaluation C Answer Not Exceeding Sixty Words

1. Write an account of the Arrhenius theory of electrolytic dissociation.

- Watch Video Solution

2. Write notes on (i) consecutive reactions, (ii) parallel reactions and (iii) opposing reactions.

- Watch Video Solution

3. Write the characteristics of refraction.
4. Explain the experimental determination of material of the prism using spectrometer. Determination of angle of the prism.

- Watch Video Solution

Self Evaluation D Solve The Problems

1. The specific reaction rates of a chemical reaction are $2.45 \times 10^{-5} \mathrm{sec}^{-1}$ at 273 K and $1.62 \times 10^{-4} \mathrm{sec}^{-1}$ at 303 K .

Calculate the activation energy.

- Watch Video Solution

2. Rate constant of a first order reaction is $0.45 \mathrm{sec}^{-1}$, calculate its half life.

- Watch Video Solution

3. A first order reaction completes 25% of the reaction in 100 mins. What are the rate constant and half life values of the reactions?

D Watch Video Solution

4. If 30% of a first order reaction is completed in 12 mins, what percentage will be completed in 65.33 mins?
5. Show that for a first order reaction the time required for 99.9% completion is about 10 times its half life period.

- Watch Video Solution

6. The half life period of a first order reactions is 10 mins. What percentage of the reactant will remain after one hour ?

- Watch Video Solution

7. The initial rate of a first order reaction is $5.2 \times 10^{-6} \mathrm{~mol} \mathrm{lit}^{-1} \mathrm{~s}^{-1} 298 \mathrm{~K}$. When the initial concentration of reactant is $2.6 \times 10^{-3} \mathrm{~mol} \mathrm{lit}^{-1}$, calculate the first order rate constant of the reaction at the same temperature.

