©゙’doubtnut

India's Number 1 Education App

CHEMISTRY

NCERT - FULL MARKS

CHEMISTRY(TAMIL)

ELECTRO CHEMISTRY - I

Examples

1. If 50 milli ampere of current is passed
through copper coulometer for 60 min ,
calculate the amount of copper deposited.

D Watch Video Solution

2. 0.1978 g of copper is deposited by a current of 0.2 ampere in 50 minutes. What is the electrichemical equivalent of copper ?

- Watch Video Solution

3. What current strength in amperes will be required to liberate 10 g of iodine from
potassium iodide solution in one hour?

- Watch Video Solution

4. An electric current is passed through three
cells in series containing respectively solutions
of copper sulphate, silver nitrate and potassium iodide. What weights of silver and iodine will be liberated while 1.25 g of copper is being deposited?

D Watch Video Solution

5. The resistance of a 0.01 N solution of an electrolyte was found to 210 ohm at $25^{\circ} C$
using a conductance cell with a cell constant $0.88 \mathrm{~cm}^{-1}$. Calculate the specific conductance and equivalent conductance of the solution.

- Watch Video Solution

6. Specific conductance of $1 \mathrm{M} \mathrm{KNO}_{3}$ solution
is observed to be 5.55×10^{-3} mho cm^{-1}.

What is the equivalent conductance of KNO_{3} when one litre of the solution is used?
7. Equivalent conductivity of acetic acid at infinite dilution is 39.7 and for 0.1 M acetic acid the equivalent conductance is
5.2 mho. cm^{2}. gm.equiv. ${ }^{-1}$. Calculate degree of dissociation, H^{+}ion concentration and dissociation constant of the acid.
8. Find the degree of dissociation of HF in 1 M aqueous solution. The value of K for the ionic equilibrium $H F=H^{+}+F^{-}$is 7.2×10^{-4}.

D Watch Video Solution

9. The hydrogen ion concentration of a fruit
juice is $3.3 \times 10^{-2} M$. What is the pH of the juice? Is it acidic or basic?

D Watch Video Solution

10. If a solution has a pH of 7.41 , determine its
H^{+}concentration.

- Watch Video Solution

11. pH of a solution is 5.5 at $25^{\circ} \mathrm{C}$. Calculate its
$\left[O H^{-}\right]$

D Watch Video Solution

12. Calculate the pH of 0.001 M HCl solution
13. Find the pH of a buffer solution containing 0.20 mole per litre $\mathrm{CH}_{3} \mathrm{COONa}$ and 0.15 mole per litre $\mathrm{CH}_{3} \mathrm{COOH}, K_{a}$ for acetic acid is 1.8×10^{-5}

D Watch Video Solution

14. The Ka of propionic acid is 1.34×10^{-5}.

What is the pH of a solution containing 0.5 M propionic acid and 0.5 M sodium
proportionate ? What happens to the pH of the solution when volume is doubled by adding water ?

D Watch Video Solution

Self Evaluation A Choose The Correct Answer

1. The new sources of energy is termed as
A. neutralisation
B. hydrolysis
C. electrolysis
D. ionisation

Answer:

- Watch Video Solution

2. Faraday's laws of electrolysis are related to
A. Dalton

B. Faraday

C. Kekule

D. Avogadro

Answer:

D Watch Video Solution

3. When 5 coulomb of charge, flows through a circuit for 20 seconds. Calculate the current?
A. equivalent weight

B. molecular weight

C. electrochemical equivalent

D. one gram

Answer:

D Watch Video Solution
4. Explain Faraday's laws of electrolysis.
A. atomic number of the cation
B. atomic number of the anion

C. equivalent weight of the electrolyte

D. speed of the cation

Answer:

D Watch Video Solution

5. The specific conductance of a 0.01 M solution of KCl is $0.0014 \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$ at
$25^{\circ} \mathrm{C}$. Its equivalent conductance is
A. $14 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} e q^{-1}$
B. $140 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} e q^{-1}$
C. $1.4 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} e q^{-1}$
D. $0.14 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} e q^{-1}$

Answer:

D Watch Video Solution

6. The equivalent conductivity of $\mathrm{CH}_{3} \mathrm{COOH}$ at $25^{\circ} \mathrm{C}$ is $80 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{eq}^{-1}$ and at infinite dilution $400 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} e q^{-1}$. The degree of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}$ is
A. 1
B. 0.2
C. 0.1
D. 0.3

Answer:

D Watch Video Solution
7. Why is it necessary to use acetic acid and not sulphuric acid for acidification of sodium
extract for testing sulphur by lead acetate test?
A. increases
B. decreases
C. does not change
D. becomes zero

Answer:
(Watch Video Solution
8. Attempt titrating an amino acid against a weak base and discover the number of dissociating (ionizable) functional groups in the amino acid.
A. it has low vapour pressure
B. it is only partially ionised
C. it is completely ionised
D. it has low density

Answer:

9. Which one of the following formulae represents Ostwald's dilution law for a binary electrolyte whose degree of dissociation is α and concentration C .

$$
\begin{aligned}
& \text { A. } K=\frac{(1-\alpha) C}{\alpha} \\
& \text { B. } K=\frac{\alpha^{2} C}{1-\alpha} \\
& \text { C. } K=\frac{(1-\alpha) C}{\alpha^{2}} \\
& \text { D. } K=\frac{\alpha^{2} C}{(1-\alpha) C}
\end{aligned}
$$

D Watch Video Solution

10. State Ostwald's dilution law.

A. $\mathrm{CH}_{3} \mathrm{COOH}$
B. NaCl
C. NaOH
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$
11. Which one of the following relationship is correct ?

$$
\begin{aligned}
& \text { A. } p H=\frac{1}{\left[H^{+}\right]} \\
& \text {B. } p H=\log _{10}\left[H^{+}\right] \\
& \text {C. } \log _{10} p H=\left[H^{+}\right] \\
& \text {D. } p H=\log _{10} \cdot \frac{1}{\left[H^{+}\right]}
\end{aligned}
$$

Answer:
12. When 10^{-6} mole of a monobasic strong
acid is dissolved in one litre of solvent, the pH
of the solution is

A. 6
B. 7
C. less than 6
D. more than 7
13. When pH of a solution is 2 , the hydrogen ion concentration in moles litre ${ }^{-1}$ is

A. 1×10^{-12}
B. 1×10^{-2}
C. 1×10^{-7}
D. 1×10^{-4}

Answer:

14. The pH of a solution containing 0.1 N NaOH solution is
A. 1
B. 10^{-1}
C. 13
D. 10^{-13}

Answer:

- Watch Video Solution

15. A chemical reaction which involves addition of oxygen is called as \qquad
A. buffer solution
B. true solution
C. isohydric solution
D. ideal solution

Answer:

16. The hydrogen ion concentration of a buffer solution consisting of a week acid and its salts
is given by

$$
\begin{aligned}
& \text { A. }\left[H^{+}\right]=K_{a} \frac{[\mathrm{Acid}]}{[\mathrm{Salt}]} \\
& \text { B. }\left[H^{+}\right]=K_{a}[\text { Salt }] \\
& \text { C. }\left[H^{+}\right]=K_{a}[\mathrm{Acid}] \\
& \text { D. }\left[H^{+}\right]=K_{a} \frac{[\mathrm{Salt}]}{[\mathrm{Acid}]}
\end{aligned}
$$

Answer:

17. Indicators used in acid-base titrations are
A. strong organic acids
B. strong organic bases
C. weak organic acids or weak organic bases
D. non-electrolysis

Answer:

18. For the titration between oxalic acid and sodium hydroxide, the indicator used in
A. potassium permanganate
B. phenolphthalein
C. litmus
D. methyl orange

Answer:

D Watch Video Solution

Self Evaluation B Answer In One Or Two

Sentences

1. Obtain an expression for electrical conductor.
(D) Watch Video Solution
2. Define Faraday.

D Watch Video Solution
3. Define electrochemical equivalent.

D Watch Video Solution

4. What are insulators. Give examples.

D Watch Video Solution
5. State Ostwald's dilution law.
6. What is common ion effect. Give examples.

D Watch Video Solution

7. What is a buffer action ?

- Watch Video Solution

8. What are indicators ?

- Watch Video Solution

9. The resistance of a 0.01 N solution of an electrolyte was found to 210 ohm at $25^{\circ} C$ using a conductance cell with a cell constant $0.88 \mathrm{~cm}^{-1}$. Calculate the specific conductance and equivalent conductance of the solution.

D Watch Video Solution

10. What is Henderson equation ?

D Watch Video Solution

Self Evaluation C Answer Not Exceeding Sixty Words

1. Write an account of the Arrhenius theory of electrolytic dissociation.
(Watch Video Solution
2. What is electrolysis?

D Watch Video Solution

3. State Ostwald's dilution law.

D Watch Video Solution

4. Explain buffer action with example.

- Watch Video Solution

5. Derive Henderson equation.

6. State and explain Kohlrausch's law.

(Watch Video Solution

Self Evaluation D Solve The Problems

1. What is the electrochemical equivalent of a
substance when 150 gm of it is deposited by 10 ampere of current passed for 1 sec ?

- Watch Video Solution

2. The electrochemical equivalent of an electrolyte is $2.35 \mathrm{gm} \mathrm{amp}{ }^{-1} \mathrm{sec}^{-1}$. Calculate the amount of the substance deposited when 5 ampere is passed for 10 sec .

D Watch Video Solution

3. To 1 M solution of $\mathrm{AgNO}_{3}, 0.75 \mathrm{~F}$ quantity of current is passed. What is the concentration of the electrolyte, AgNO_{3} remaining in the solution?
4. 0.5 F of electric current was passed though 5 molar solutions of
$\mathrm{AgNO}_{3}, \mathrm{CuSO}_{4}$ and AlCl_{3} connected in series. Find out the concentration of each of the electrolyte after the electrolysis ?

- Watch Video Solution

5. To one molar solution of a trivalent metal
salt, electrolysis was carried out and 0.667 M
was the concentration remaining after electrolysis. Calculate the quantity of electricity passed.

D Watch Video Solution

6. A conductance cell has platinum electrodes,
each with $5 \mathrm{~cm}^{2}$ area and separated by 0.5 cm distance. What is the cell constant?
7. Using a conductivity cell with $0.9 \mathrm{~cm}^{-1}$ cell constant, the conductance was observed to be 2.5×10^{-3} mho for 0.07 M KCl solution. What is the specific conductance of the solution?

- Watch Video Solution

8. Specific conductance of $1 \mathrm{M} \mathrm{KNO}_{3}$ solution is observed to be 5.55×10^{-3} mho cm^{-1}.

What is the equivalent conductance of KNO_{3} when one litre of the solution is used?

D Watch Video Solution

9. Explain why on dilution does the conductivity decrease whereas molar conductivity increases for an electrolytic solution.
10. The equivalent conductances at infinite dilution of $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COONa}$ and NaCl are 426.16, 91.0 and $126.45 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{gm}$ equivalent ${ }^{-1}$ respectively. Calculate the equivalent conductance $\left(\lambda_{\infty}\right)$ of acetic acid.

D Watch Video Solution

