

CHEMISTRY

NCERT - FULL MARKS CHEMISTRY(TAMIL)

NUCLEAR CHEMISTRY

Solved Problems

1. After 24 hours, only 0.125 g out of the initial quantity of 1g of a radioisotope remains

behind. what is half-life period?

2. Half-life period of a radioactive element is 100 seconds. Calculate the disintegration constant and average life period. How much time will it take for 90% decay?

3. The half-life of cobalt - 60 is 5.26 years. Calculate the % activity remaining after 4 years.


```
4. Wooden artifact and freshly cut tree are having 7.6 and 15.2 counts \min^{-1} g^{-1} of carbon \left(t^{1/2} = 5700 \mathrm{years}\right) respectively.
```

Calculate the age of the artifact.

5. Half life period of a radio active element is 1500 years. Find the value of disintegration constant interms of second.

Watch Video Solution

6. Calculate the number of α and β particles

emitted in the conversion of $90^{Th^{232}}$ to $82^{pb^{208}}$.

7. The atomic masses of Li, He and proton are 7.01823 amu, 4.00387 amu and 1.00715 amu respectively. Calculate the energy evolved in the reaction, $3^{Li^7} + 1^{HA^1} \rightarrow 22^{He^4} + \triangle$ E Given 1 amu = 931 MeV.

Watch Video Solution

8. Calculate the number of neutrons in the remaining atom after emission of an α particle from $92^{X^{238}}$ atom. also report the mass

number and atomic number of the product

atom.

10. The activity of a radioactive isotope falls to

12.5% in 90 days. Calculate the half life and

decay constant.

Watch Video Solution

11. Calculate Q value of the following nuclear reaction $13^{Al^{27}} + 2^{He^4} \rightarrow 14^{Si^{30}} + 1^{H^1}$ + Q. The exact mass of $13^{Al^{27}}$ is 26.9815 amu, $14A^{Si^{30}}$ is 29.9738, 2^{He^4} is 4.0026 amu and 1^{H^1} is 1.0078

amu.

1. On neutron bombardment fragmentation of U-235 occurs according to the equation $92^{U^{235}} + 0^{n^1} o 42^{Mo^{95}} + 57^{La^{139}} + x^{e^0}_{-1} + y^{n^1}_0$ Calculate the values of x and y.

Watch Video Solution

2. On neutron bombardment fragmentation of

U-235 occurs according to the equation.

Calculate the values of x and y.

Watch Video Solution

Self Evaluation

1. The phenomenon of radioactivity was discovered by

A. Madam curie

B. Pierre curie

C. Henry Becquerel

D. Rutherford

Answer:

Watch Video Solution

2. The most penetrating radiations are

A. α rays

B. β rays

C. γ rays

D. all are equally penetrating

Answer:

Watch Video Solution

3. In the nuclear reaction, $92^{X^{232}}
ightarrow 89^{Y^{220}}$, the

number of α and β particles emitted are

A. $7\alpha, 5\beta$

 $B.6\alpha, 4\beta$

C. $3\alpha, 3\beta$

D. 8lpha, 6eta

Answer:

Watch Video Solution

4. Which one of the following particles is used to bombard $13^{Al^{27}}$ to give $15^{p^{30}}$ and a neutron

A. α particle

B. deuteron

C. proton

D. neutron

Answer:

Watch Video Solution

5. Radioactivity is due to

A. Stable electronic configuration

- B. Stable nucleus
- C. Unstable nucleus

D. Unstable electronic configuration

Answer:

Answer:

7. $92^{U^{235}}$ nucleus absorbs a neutron and disintegrates into $54^{Xe^{139}}$, $38^{Sr^{94}}$ and x. What will be the product x?

A. 3 neutrons

B. 2 neutrons

C. α particle

D. β particle

Answer:

8. Assertion: The ionision power of β -particle is less compared to α -particle but their penetrating power is more. Reason: The mass of β -particle is less than the

mass of α -particle.

A. Increase of one proton only

B. Decrease of one neutron only

C. Both (a) and (b)

D. None of these

Answer:

9. Which of the following is used as a

moderator and coolant in nuclear reaction?

A. Water

B. Deuterium

C. Some compound of uranium

D. Cadmium

Answer:

Watch Video Solution

10. What is half life period.

11. Write two difference between chemical

reaction and nuclear reaction.

12. Why do you mean be Q value of nuclear reaction ?

13. What are the types of nuclear reaction. Give

example for each type.

15. What is binding energy of a nucleus? Give

its expression.

17. What is thermo chemical reactions?

18. Explain the uses of radio isotopes in medicine field.
Watch Video Solution

19. How many α and β particles will be emitted by an element $84^{A^{218}}$ is changing to a stable isotope of $82^{B^{206}}$

20. Calculate the decay constant for Ag^{108} if

its half life is 2.31 minutes.

Watch Video Solution

22. $92^{U^{238}}$ undergoes a series of changes by emitting α and β particles and finally $82^{pb^{206}}$ is formed. Calculate the number of and particles emitted during the change.

Watch Video Solution

23. The atomic mass of Th is 232 and its atomic number is 90. In terms of its radioactivity six α and four β particles are emitted. What is the

25. Predict the bombarding projectile in the

following nuclear reactions

(ii) $34^{Se^{83}}+\,?\, o\,34^{Se^{84}}+\gamma$ rays

(iii) $7^{N^{14}}+ \ ? \ o \ 8^{O^{17}+1^{H^1}}$

Watch Video Solution

26. The decay constant for $6^{C^{14}}$ is $2.31 imes 10^{-4}$

year-1 calculate the half life period.

