©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

BINOMIAL THEOREM

Example

1. Find the number of terms in the expansion of the following :
$(2 x+3 y)^{8}$.

- Watch Video Solution

2. Find the number of terms in the expansion of the following :
$(2 x-3 y+4 z)^{n}$.
3. Find the number of terms in the expansion of the following :
$\left[(2 x+y)^{8}-(2 x-y)^{8}\right]$.

- Watch Video Solution

4. The number of integer terms in the expansion of $\left(5^{1 / 2}+7^{1 / 8}\right)^{1024}$ is

- Watch Video Solution

5. Expand the following :
$(1-2 x)^{5}$.

- Watch Video Solution

6. Expand the following :
$\left(\frac{x}{3}+\frac{1}{x}\right)^{5}, x \neq 0$.
7. Expand the following :
$\left(1-x+x^{2}\right)^{4}$.

- Watch Video Solution

8. Write the general term in the expansion of $\left(x^{2}-y\right)^{6}$.

- Watch Video Solution

9. Determine the value of x in the expansion of
$\left(x+x^{\log _{10} x}\right)^{5}$, if the third term in the expansion is 1000000

- Watch Video Solution

10. Find a if the 17th and 18th terms in the expansion of $(2+a)^{50}$ are equal.

- Watch Video Solution

11. Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ is $\sqrt{6}: 1$.

- Watch Video Solution

12. If a and b are distinct integers, prove that $\mathrm{a}-\mathrm{b}$ is a factor of $a^{n}-b^{n}$,whenever n is a positive integer.

- Watch Video Solution

13. Using Binomial Theorem, evaluate each of the following: (99) ${ }^{5}$.
14. Using Binomial theorem, indicate which number is larger $(1.1)^{10000}$ or 1000.

- Watch Video Solution

15. Show that $(101)^{50}>(100)^{50}+(99)^{50}$.

- Watch Video Solution

16. Find $(a+b)^{4}-(a-b)^{4}$. Hence evaluate
$(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}$.

- Watch Video Solution

17. Write the general term in the expansion of $\left(x^{2}-y x\right)^{12}, x \neq 0$
18. Find the $(\mathrm{n}+1)$ th term from the end in the expansion of $\left(x-\frac{1}{x}\right)^{3 n}$.

- Watch Video Solution

19. If t_{r} is the rth term is the expansion of $(1+a)^{n}$, in ascending powers of a, prove that : $r(r+1) t_{r+2}=(n-r+1)(n-r) a^{2} t_{r}$.

- Watch Video Solution

20. Write the middle term in the expansion of:
$\left(x-\frac{1}{2 y}\right)^{10}$.

- Watch Video Solution

21. Write the middle term in the expansion of:
$(1+x)^{2 n}$, where n is a positive integer.

Watch Video Solution

22. Determine the two middle terms in the expansion of : $\left(x^{2}+a^{2}\right)^{5}$.

- Watch Video Solution

23. Show that the middle term in the expansion of $(1+x)^{2 n}$ is $\frac{1.3 .5 \ldots(2 n-1)}{n!} 2^{n} x^{n}$, where n is a positive integer.

- Watch Video Solution

24. Find the term containing x^{3}, if any, in $\left(3 x-\frac{1}{2 x}\right)^{8}$.

- Watch Video Solution

25. Find the coefficient of x^{5} in the expansion of :

$$
(1+x)^{21}+(1+x)^{22}+\ldots \ldots \ldots \ldots \ldots+(1+x)^{30} .
$$

- Watch Video Solution

26. Find the coefficient of $x^{6} y^{3}$ in $(x+2 y)^{9}$.

- Watch Video Solution

27. The sum of the coefficients of the first three terms of the expansion $\left(x-\frac{3}{x^{2}}\right)^{m}, x \neq 0, \mathrm{~m}$ being a natural number, is 559 . Find the term in the expansion containing x^{3}.

- Watch Video Solution

28. Find the coefficient of x^{5} in the expansion of : $(1+2 x)^{6}(1-x)^{7}$ using binomial theorem.

- Watch Video Solution

29. Show that the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$.

- Watch Video Solution

30. For what value of m, the coefficients of $(2 m+1)^{t h}$ and $(4 m+5)^{t h}$ terms in the expansion of $(1+x)^{10}$ are equal ?

- Watch Video Solution

31. Find the term independent of x in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{9}$.

- Watch Video Solution

32. Find the term independent of x in the expansion of $\left(\sqrt[3]{x}+\frac{1}{2 \sqrt[3]{x}}\right)^{18}$
33. Find the term independent of x in the expansion of : $\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}$.

- Watch Video Solution

34. If the 2nd , 3nd and 4th terms in the
expansion of $(x+y)^{n}$ are 240,720 and 1080
respansion find x, y and n .

- Watch Video Solution

35. The coefficients of the $(r-1)^{t h}, r^{\text {th }}$ and $(r+1)^{\text {th }}$ terms in the expansion of $(x+1)^{n}$ are in the ratio $1: 3: 5$. find n and r.

- Watch Video Solution

36. If the coefficents of pth, $(p+1$ (th and ($p+2$)th terms in expansion of $(1+x)^{n}$ are in AP , then

Watch Video Solution

37. Find the greatest term in the expansion of $(3 x+4 y)^{28}$, when $\mathrm{x}=6, \mathrm{y}=$ 3.

- Watch Video Solution

38. Prove that the number of all subsets of a finite set of n element is 2^{n}.

- Watch Video Solution

39. Evaluate : ${ }^{10} C_{1}+{ }^{10} C_{2}+{ }^{10} C_{3} \ldots \ldots .{ }^{10} C_{10}$.

- Watch Video Solution

40. Evaluate : $\sum_{r=1}^{n}{ }^{n} C_{r} 2^{r}$.

(D) Watch Video Solution

41. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots . C_{n} x^{n}$ prove that: $C_{0}+2 C_{1}+\ldots \ldots \ldots+2^{n} C_{n}=3^{n}$.

- Watch Video Solution

42. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$, prove that $C_{1}+2 C_{2}+3 C_{3}+\ldots+n C_{n}=n \cdot 2^{n-1}$

- Watch Video Solution

43. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$, prove that $C_{0}+2 C_{1}+3 C_{2}+\ldots+(n+1) C_{n}=(n+2) 2^{n-1}$.
44. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots . C_{n} x^{n}$ prove that:
$C_{0}+\frac{C_{1}}{2}+\frac{C_{2}}{3}+\ldots \ldots \ldots+\frac{C_{n}}{n+1}=\frac{2^{n+1}-1}{n+1}$.

- Watch Video Solution

45. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$,
prove that $\frac{C_{1}}{C_{0}}+2 \frac{C_{2}}{C_{1}}+3 \frac{C_{2}}{C_{2}}+\ldots+n \frac{C_{n}}{C_{n-1}}=\frac{n(n+1)}{2}$

- Watch Video Solution

46.

${ }^{n} C_{0}+3^{n} C_{1}+5^{n} C_{2}+\ldots \ldots . .+(2 n+1)^{n} C_{n}=(n+1) 2^{n}$.

- Watch Video Solution

47. If $(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots \ldots \ldots \ldots+{ }^{n} C_{n} x^{n}$, prove that: ${ }^{n} C_{1}-2^{n} C_{2}+3^{n} C_{3}-\ldots \ldots . .+(-1)^{n-1} n^{n} C_{n}=0$.

- Watch Video Solution

48. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots \ldots \ldots .+C_{n} x^{n}$, find the values of $C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+\ldots .+C_{n}^{2}$.

- Watch Video Solution

49. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots . . C_{n} x^{n}$ prove the following:
$C_{0} C_{n}+C_{1} C_{n-1}+C_{2} C_{n-2}+\ldots .+C_{n} C_{0}=\frac{(2 n!)}{(n!)^{2}}$.

- Watch Video Solution

50. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots \ldots \ldots .+C_{n} x^{n}$, find the values of $C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+\ldots .+C_{n}^{2}$.

Watch Video Solution

51. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots . C_{n} x^{n}$ prove that : $C_{0}+2 C_{1}+\ldots \ldots \ldots+2^{n} C_{n}=3^{n}$.

- Watch Video Solution

52. Prove that
$\left(C_{0}+C_{1}\right)\left(C_{1}+C_{2}\right)\left(C_{2}+C_{3}\right)\left(C_{3}+C_{4}\right) \ldots \ldots \ldots .\left(C_{n-1}+C_{n}\right)=$ $\frac{C_{0} C_{1} C_{2} \ldots . C_{n-1}(n+1)^{n}}{n!}$

- Watch Video Solution

53. Evaluate : $2 C_{0}+\frac{2^{2} C_{1}}{2}+\frac{2^{3} C_{2}}{3}+\ldots \ldots . .+\frac{2^{11} C_{10}}{11}$.

- Watch Video Solution

54. A box contains two white balls, three black balls and four red balls. In how many ways can three balls be drawn from the box if at least one black ball is to be included in a draw ?

- Watch Video Solution

55. Seven relatives of a man comprises four ladies and three gentlemen: his wife has also seven relatives-three of them are ladies and four gentlemen. In how many ways can they invite 3 ladies and 3 gentlemen at a dinner party so that there are three mans relatives and three wifes relatives?

- Watch Video Solution

56. Eighteen guests have to be Seated, half on each side of a long table.

Four particular guests desire to sit on one particular side and three others on the other side. Determine the number of ways in which the Seating arrangements can be made.

- Watch Video Solution

57. A student is allowed to select atlest one an atmost n books from a collection of $(2 n+1)$ books. If the total number of ways in which he can select books is 63 , find the value of n.

- Watch Video Solution

58. Given p points in a plane, no three of which are collinear q of these Points, which are in the same straight line. Determine the number of (I) straight lines

- Watch Video Solution

59. Find the number of r-subsets of the set $S=\{1,2, \ldots \ldots ., 4\}$ that do not contain a pair of consecutive integers.
60. Using Permutation or otherwise, prove that $\frac{\left(n^{2}\right)!}{(n!)^{2}}$ is an integer, where n is a positive integer.

- Watch Video Solution

61. Two planes P_{1} and P_{2} pass through origin. Two lines L_{1} and L_{2} also passing through origin are such that L_{1} lies on P_{1} but not on P_{2}, L_{2} lies on P_{2} but not on P_{1}, A, B, C are there points other than origin, then prove that the permutation $\left[\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}\right]$ of $[\mathrm{A}, \mathrm{B}, \mathrm{C}]$ exists. Such that: A lies on $L_{1}, \mathrm{~B}$ lies on P_{1} not on L_{1}, C does not lie on P_{1}.

- Watch Video Solution

62. Two planes P_{1} and P_{2} pass through origin. Two lines L_{1} and L_{2} also passingthrough origin are such that L_{1} lies on P_{1} but not on P_{2}, L_{2} lies on P_{2} but not on P_{1}. A, B, C are there points other than origin, then prove
that the permutation $\left[\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}\right]$ of $[\mathrm{A}, \mathrm{B}, \mathrm{C}]$ exists. Such that: A^{\prime} lies on $L_{2}, \mathrm{~B}^{\prime}$ lies on P2 not on L_{2}, C' does not lies on P_{2}.

- Watch Video Solution

63. Find the coefficient of (A) x^{9} (B) the term independent of x in the expansion of $\left(x^{2}-\frac{1}{3 x}\right)^{9}$.

- Watch Video Solution

64. If the coefficients of x, x^{2} and x^{3} in the binomial expansion of $(1+x)^{2 n}$ are in A.P., prove that $2 n^{2}-9 n+7=0$.

- Watch Video Solution

65. Find the sum of coefficients in the expansion of the binomial $(5 p-4 q)^{n}$, where n is a positive integer .

Watch Video Solution

66. Find the coefficient of x^{50} in the expression : $(1+x)^{1000}+2 x(1+x)^{999}+3 x^{2}(1+x)^{998}+\ldots+1001 x^{1000}$.

- Watch Video Solution

Exercise

1. How many terms are there in the expansion of :
$\left(\frac{2}{p}+\frac{p}{2}\right)^{8}$.

- Watch Video Solution

2. How many terms are there in the expansion of :
$\left(x^{2}+y\right)^{16}$.
3. How many terms are there in the expansion of :
$\left(1+2 x+x^{2}\right)^{20}$.

Watch Video Solution
4. How many terms are there in the expansion of :
$(\sqrt{x}+\sqrt{y})^{10}+(\sqrt{x}-\sqrt{y})^{10}$.

- Watch Video Solution

5. Expand the following :
$(x+y)^{5}$.
(Watch Video Solution
6. Expand the following :

$$
(3 x-2 y)^{5} .
$$

Watch Video Solution

7. Expand the following :
$(1-x)^{6}$.

- Watch Video Solution

8. Expand each of the following expressions:
$(2 x-3)^{6}$.

- Watch Video Solution

9. Expand the following :
$(4 x-5 y)^{5}$.
10. Expand the following :
$\left(y^{2}+3 x\right)^{4}$.

- Watch Video Solution

11. Expand the following :
$\left(x^{2}-y\right)^{7}$.

- Watch Video Solution

12. Expand the following :
$\left(2 x-3 x^{2}\right)^{3}$.

- Watch Video Solution

13. Expand the following :
$\left(x^{2}+2 y^{3}\right)^{6}$.

- Watch Video Solution

14. Expand the following :
$\left(1-x^{2}\right)^{4}$.

- Watch Video Solution

15. Expand the following :
$\left(x+\frac{1}{x}\right)^{2}, x \neq 0$.

- Watch Video Solution

16. Expand the following :
$\left(x+\frac{1}{x}\right)^{6}$.
17. Expand the following :
$\left(x^{2}+\frac{3}{x}\right)^{4}, x \neq 0$.

- Watch Video Solution

18. Exapand: $\left(\frac{2}{x}-\frac{x}{2}\right)^{5}, x \neq 0$

- Watch Video Solution

19. Expand the following :
$\left(x-\frac{1}{y}\right)^{5}, y \neq 0$.

- Watch Video Solution

20. Expand the following :
$\left(1+x+x^{2}\right)^{3}$.

D Watch Video Solution

21. Find the expnsion of $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ using Binomial Theorem.

- Watch Video Solution

22. Expand using binomial theorem $\left(1+\frac{x}{2}-\frac{2}{x}\right)^{4}, x \neq 0$

- Watch Video Solution

23. Find the general term in the expansion of :
$\left(1-x^{2}\right)^{12}$.
24. Find the general term in the expansion of:
$\left(x^{2}-\frac{1}{x}\right)^{12}, x \neq 0$.

- Watch Video Solution

25. Find the Values of:
$(\sqrt{3}+\sqrt{2})^{3}+(\sqrt{3}-\sqrt{2})^{3}$.

Watch Video Solution

26. Find the Values of :
$(\sqrt{3}+\sqrt{2})^{6}+(\sqrt{3}-\sqrt{2})^{6}$.

Watch Video Solution
27. Find the Values of :
$(\sqrt{3}+1)^{5}-(\sqrt{3}-1)^{5}$.
28. Use Binomial Theorem to find :
$(51)^{6}$.

Watch Video Solution

29. Use Binomial Theorem to find :
$(96)^{3}$.

- Watch Video Solution

30. Use Binomial Theorem to find:
$(98)^{5}$.

- Watch Video Solution

31. Use Binomial Theorem to find: $(999)^{5}$.

Watch Video Solution
32. Using, Binomial theorem, evaluate (101) ${ }^{4}$

- Watch Video Solution

33. Use Binomial Theorem to find :
$(102)^{5}$.

- Watch Video Solution

34. Use Binomial Theorem to find :
$(10.1)^{4}$.
35. Use Binomial Theorem to find : $(1.02)^{6}$, correct to five decimal places.

- Watch Video Solution

36. Use Binomial Theorem to indicate which is larger ? $(1.2)^{4000}$ or 800.

(Watch Video Solution

37. Use Binomial Theorem to indicate which is larger :
$(1.01)^{1000000}$ or 10,000 .

Watch Video Solution

38. Find

3rd term in the expansion of $\left(3 x-\frac{y^{3}}{6}\right)^{4}$.
39. Find the third term in the expansion of :
$\left(x+\frac{2}{5} y\right)^{4}$.

- Watch Video Solution

40. Thee fourth term in the expansion of $(x-2 y)^{12}$ is:

- Watch Video Solution

41. Find the fourth term in the expansion of :
$\left(\frac{4}{7} x-y^{2}\right)^{5}$

(Watch Video Solution

42. Find the 13th term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$
43. Find the 5 th term from the end of $\left(\frac{x^{3}}{2}-\frac{2}{x^{2}}\right)^{12}, x \neq 0$.

- Watch Video Solution

44. Find the 4th term from the end of $\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{9}, x \neq 0$.

- Watch Video Solution

45. Find the rth term from the end in the expansion of $(x+a)^{n}$.

- Watch Video Solution

46. Determine the value of x in the expansion of
$\left(x+x^{\log _{10} x}\right)^{5}$, if the third term in the expansion is 1000000
47. For what value of x is the ninth term in the expansion of : $\left\{3^{\log _{3} \sqrt{25^{x-1}+7}}+3^{-\frac{1}{8} \log _{3}\left(5^{x-1}+1\right)}\right\}^{10}$ is equal to 180 .

- Watch Video Solution

48. Find $(x+1)^{6}+(x-1)^{6}$. Hence evaluate $(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}$.

- Watch Video Solution

49. Write the middle term in the expansion of $\left(x+\frac{1}{x}\right)^{4}$.

- Watch Video Solution

50. Find the middle term in the expansion of:
$\left(2 x^{2}-\frac{1}{3 x^{2}}\right)^{10}$.
51. Find the middle term in the expansion of:
$\left(\frac{1}{2} a+\frac{1}{3} b\right)^{8}$.

Watch Video Solution

52. Prove that the middle term in the expansion of $\left(2 x+\frac{3}{x}\right)^{20}$ is 19.17. 13. $11.3^{10} \cdot 2^{12}$.

- Watch Video Solution

53. Find the middle terms in the expansion of $\left(3-\frac{x^{3}}{6}\right)^{7}$

Watch Video Solution

54. Find the middle terms in the expansion of :
$\left(\frac{x}{3}+9 y\right)^{10}$.

- Watch Video Solution

55. Find the middle terms in the expansion of :
$\left(\frac{x}{y}+\frac{y}{x}\right)^{2 n+1}$.

- Watch Video Solution

56. Show that coefficient of the middle term of $(1+x)^{2 n}$ is equal to the sum of the coefficients of two middle terms of $(1+x)^{2 n-1}$.

- Watch Video Solution

57. Write and simplify the term involving x^{5} in the expansion of $\left(x-\frac{1}{x}\right)^{11}$.

- Watch Video Solution

58. Determine the term involving x^{3} in $(5-2 x)^{6}$.

- Watch Video Solution

59. Find the coefficient of x^{10} in the expansion of $\left(2 x^{2}-\frac{3}{x}\right)^{11}, x \neq 0$

- Watch Video Solution

60. Find the coefficient of the term involving x^{10} in the expansion of $\left(x^{2}-2\right)^{11}$.

- Watch Video Solution

61. Find the coefficient of the term involving x^{2} in the expansion of
$\left(3 x-\frac{1}{x}\right)^{6}$.
62. Find the coefficient of x^{5} in $(x+3)^{6}$.

- Watch Video Solution

63. Find the coefficient of x^{8} in the expansion of $\left(x^{2}-\frac{1}{x}\right)^{10}$

- Watch Video Solution

64. Find a positive value of m for which the coefficient of x^{2} in the expansion of $(1+x)^{m}$ is 6 .

- Watch Video Solution

65. Show that coefficient of a^{m} and a^{n} in the expansion of $(1+a)^{m+n}$ are equal.
66. Find 'a' if the coefficients of x^{2} and x^{3} in the expanion of $(3+a x)^{9}$ are equal.

- Watch Video Solution

67. Find the value of r if the coefficients of $(2 r+4)$ th and $(r-2)$ th term in the expansion of $(1+x)^{18}$ are equal.

- Watch Video Solution

68. Find the coefficient of $a^{5} b^{7}$ in $(a-2 b)^{12}$.

- Watch Video Solution

69. Find the coefficient of a^{4} in the expansion of the product $(1+2 a)^{4}(2-a)^{5}$.
70. In the binomial expansion $(a+b)^{n}$, the coefficients of fourth and thirteenth terms are equal to each other. Find n .

- Watch Video Solution

71. In the binomial expansion of $(1+x)^{34}$, the coefficients of the $(2 r-1)$ th and the $(r-5)$ th terms are equal. Find r.

- Watch Video Solution

72. Which term is independent of x in the expansion of $\left(2 x^{2}+\frac{1}{x}\right)^{12}$? And find its value.

- Watch Video Solution

73. Write and simplify the term independent x in the expansion of $\left(x^{2}-\frac{2}{x^{3}}\right)^{5}$. And find its value.

- Watch Video Solution

74. Write and simplify the term independent of x in the expansion of $\left(x-\frac{1}{x}\right)^{12}$, where $x \neq 0$.

- Watch Video Solution

75. Find the term independent of $\mathrm{x}, x \neq 0$ in the expansion of:
$\left(x-\frac{1}{x}\right)^{14}$.

- Watch Video Solution

76. Find the term independent of x in the
expansion of $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$
77. Find the term independent of $\mathrm{x}, x \neq 0$ in the expansion of:
$\left(x^{2}+\frac{3}{x}\right)^{6}$.

- Watch Video Solution

78. Find the term independent of $\mathrm{x}, x \neq 0$ in the expansion of:
$\left(3-\frac{x^{3}}{6}\right)^{7}$.

- Watch Video Solution

79. Write and simplify the coefficient of the term independent of x, in the expansion of $\left(x^{3}-\frac{1}{x}\right)^{12}, x \neq 0$.

- Watch Video Solution

80. Find the greatest term in $(x+y)^{n}$, when $\mathrm{x}=11, \mathrm{y}=4, \mathrm{n}=30$.

- Watch Video Solution

81. Find the greatest term in $(1+4 x)^{8}$, when $x=\frac{1}{3}$.

- Watch Video Solution

82. Find a, b and n in the expansion of $(a+b)^{n}$ if the first three terms of the expansion are 729, 7290 and 30375 respectively.

- Watch Video Solution

83. The first three terms in the expansion of a binomial are 1,10 and 40.

Find the expansion.

- Watch Video Solution

84. The coefficients of three consecutive terms in the expansion of $(1+a)^{n}$ are in the ratio $1: 7: 42$. Find n

- Watch Video Solution

85. The coefficients of three consecutive terms in the expansion of $(1+a)^{n}$ are in the ratio : 6: $33: 110$. Find n .

- Watch Video Solution

86. If the coefficients of 5th, 6th, and 7th terms in the expansion of $(1+x)^{n}$ are in A.P., then $n=$

- Watch Video Solution

87. If the coefficients of x, x^{2} and x^{3} in the binomial expansion of $(1+x)^{2 n}$ are in A.P., prove that $2 n^{2}-9 n+7=0$.
88. If three successive coefficients in the expansion of $(1+x)^{n}$ are 28,56 and 70 , find n .

- Watch Video Solution

89. In the expansion of $(x+a)^{n}$, the sums of the odd and the even terms are O and E respectively, prove that : $2\left(O^{2}+E^{2}\right)=(x+a)^{2 n}+(x-a)^{2 n}$.

- Watch Video Solution

90. In the expansion of $(x+a)^{n}$, the sums of the odd and the even terms are O and E respectively, prove that : $4 O E=(x+a)^{2 n}-(x-a)^{2 n}$.

- Watch Video Solution

91. In the expansion of $(x+a)^{n}$, the sums of the odd and the even terms are O and E respectively, prove that : $O^{2}-E^{2}=\left(x^{2}-a^{2}\right)^{n}$.

- Watch Video Solution

92. Show that $9^{n+1}-8 n-9$ is divisible by 64 , whenever n is a positive integer.

- Watch Video Solution

93. Using Binomial theorem, prove that $6^{n}-5 n$ always leaves remainder 1 when divided by 25.

- Watch Video Solution

94. Evaluate the following :
${ }^{12} C_{0}+{ }^{12} C_{1}+{ }^{12} C_{2}+\ldots \ldots .+{ }^{12} C_{12}$.
95. Evaluate the following :
${ }^{12} C_{0}+{ }^{12} C_{2}+{ }^{12} C_{4}+{ }^{12} C_{12}$.

- Watch Video Solution

96. Evaluate the following :
${ }^{16} C_{1}+{ }^{16} C_{3}+{ }^{16} C_{5}+\ldots \ldots .+{ }^{16} C_{15}$.

- Watch Video Solution

97. Prove that $\sum_{r=0}^{n} 3^{r n} C_{r}=4^{n}$.

- Watch Video Solution

98.

Prove
that
${ }^{n} C_{0}+3^{n} C_{1}+5^{n} C_{2}+\ldots \ldots .+(2 n+1)^{n} C_{n}=(n+1) 2^{n}$.

Watch Video Solution

99. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots . . C_{n} x^{n}$ prove the following : $C_{0}-2 C_{1}+3 C_{2}-\ldots \ldots \ldots+(-1)^{n}(n+1) C_{n}=0$.

- Watch Video Solution

100. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots . . C_{n} x^{n}$ prove the following:
$\left(1+\frac{C_{1}}{C_{0}}\right)\left(1+\frac{C_{2}}{C_{1}}\right)\left(1+\frac{C_{3}}{C_{2}}\right) \ldots\left(1+\frac{C_{n}}{C_{n-1}}\right)=\frac{(n+1)^{n}}{n!}$.

- Watch Video Solution

101. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots . . C_{n} x^{n}$ prove the following :
$C_{0}-\frac{C_{1}}{2}+\frac{C_{2}}{3}-\ldots .+(-1)^{n} \frac{C_{n}}{n+1}=\frac{1}{n+1}$.

- Watch Video Solution

102. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots . . C_{n} x^{n}$ prove the following:
$C_{0}+\frac{1}{3} C_{2}+\frac{1}{5} C_{4}+\frac{1}{7} C_{6}+\ldots \ldots \ldots=\frac{2^{n}}{n+1}$.

- Watch Video Solution

103. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots . . C_{n} x^{n}$ prove the following:
$2 C_{0}+2^{2} \frac{C_{1}}{2}+2^{3} \frac{C_{2}}{3}+\ldots \ldots .+2^{n+1} \frac{C_{n}}{n+1}=\frac{3^{n+1}-1}{n+1}$.

- Watch Video Solution

104. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots . . C_{n} x^{n}$ prove the following : $2 C_{0}+5 C_{1}+8 C_{2}+\ldots+(3 n+2) C_{n}=(3 n+4) 2^{n-1}$.

- Watch Video Solution

105. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots . . C_{n} x^{n}$ prove the following:
$C_{0} C_{n}+C_{1} C_{n-1}+C_{2} C_{n-2}+\ldots .+C_{n} C_{0}=\frac{(2 n!)}{(n!)^{2}}$.
106.

Prove
that
$C_{0} C_{r}+C_{1} C_{r+1}+C_{2} C_{r+2}+\ldots \ldots \ldots \ldots . .+c_{n-r} C_{n}=\frac{(2 n)!}{(n-r)!(n+r)!}$

- Watch Video Solution

107. Find the coefficient of x^{n-r} in the expansion of $(x+1)^{n}(1+x)^{n}$. Deduce that $C_{0} C_{r}+C_{1} C_{r-1}+\ldots \ldots+C_{n-r} C_{n}=\frac{(2 n!)}{(n+r)!(n-r)!}$.

- Watch Video Solution

108. Find the coefficient of x^{4} in the expansion of $(1+x)^{n}(1-x)^{n}$. Deduce that $C_{2}=C_{0} C_{4}-C_{1} C_{3}+C_{2} C_{2}-C_{3} C_{1}+C_{4} C_{0}$.

- Watch Video Solution

109. Write and simplify the term involving $a^{2} b^{5}$ in $(a-2 b)^{4}(a+b)^{3}$.

- Watch Video Solution

110. Expand using binomial theorem $\left(1+\frac{x}{2}-\frac{2}{x}\right)^{4}, x \neq 0$

- Watch Video Solution

111. Find an approximation of $(0.99)^{5}$ using the first three terms of its expansions.

- Watch Video Solution

112. If 6th, 7 th, 8 th and 9 th terms of $(x+y)^{n}$ are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d respectively, then prove that: $\frac{b^{2}-a c}{c^{2}-b d}=\frac{4}{3} \cdot \frac{a}{c}$.
113. Find the coefficient of x^{10} in the expansion of : $\left(1+x+x^{2}+x^{3}+\ldots .+x^{10}\right)^{4}$.

Watch Video Solution

114. If k_{r} is the coefficient of y^{r-1} in the expansion of $(1+2 y)^{10}$, in ascending powers of y , determine r when $\frac{k_{r+2}}{k_{r}}=4$.

Watch Video Solution

115. If x^{p} occurs in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{2 n}$, prove that its coefficient is : $\frac{(2 n)!}{\left[\frac{1}{3}(4 n-p)!\right]\left[\frac{1}{3}(2 n+p)!\right]}$.

- Watch Video Solution

116. Determine the term independent of x in the expansion of $\left(1+x+x^{-2}+x^{-3}\right)^{10}$.

(D) Watch Video Solution

117. Find the value of $\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$.

- Watch Video Solution

118. If fourth term in the expansion of : $\left\{\sqrt{x^{\frac{1}{\log x+1}}}+x^{\frac{1}{12}}\right\}^{6}$ is equal to 200 and $\mathrm{x}>1$, find x .

- Watch Video Solution

119. Find the value of x for which the sixth term of : $\left(\sqrt{2^{\log \left(10-3^{x}\right)}}+\sqrt[5]{2^{(x-2) \log 3}}\right)^{n}$ is equal to 21 , if it is known that the binomial coefficient of the $2 n d$, 3 rd and 4 th term in the expansion represent respectively the 1st, 3rd and 5th term of an A.P. (the symbol log stands for logarithm to the base 10).
120. If in the expansion of $(1-x)^{2 n-1}$, the coefficient of x^{r} is denoted by a_{r}, then show that $a_{r-1}+a_{2 n-r}=0$.

- Watch Video Solution

121. If $C_{1}, C_{2}, C_{3}, C_{4}$ are the coefficients of any four consecutive terms in the expansion of $(1+x)^{n}$, prove that
$\frac{C_{1}}{C_{1}+C_{2}}+\frac{C_{3}}{C_{3}+C_{4}}=\frac{2 C_{2}}{C_{2}+C_{3}}$.

- Watch Video Solution

122. For the expansion of $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots+C_{n} x^{n}$, show that C_{j} 's taken two at a time represented by $\Sigma C_{i j}, 0 \leq i \leq j \leq n$ is equal to $2^{2 n-1}-\frac{(2 n)!}{2(n!)^{2}}$.

- Watch Video Solution

$123.7!\div 5!$ is :
A. 7 !
B. 2!
C. 42
D. 24

Answer:

- Watch Video Solution

124.3 ! +4 ! is
A. 7 !
B. 7
C. 12!
D. None of these.

Answer:

D Watch Video Solution

125.4!-3! is :
A. 18
B. 1!
C. 16
D. None of these.

Answer:

126. If $\mathrm{n}=7$ and $\mathrm{r}=5$, then the value of ${ }^{n} C_{r}$ is:
B. 42
C. 35
D. 75

Answer:

- Watch Video Solution

127. If $\mathrm{n}=5$ and $\mathrm{r}=3$, then the value of ${ }^{n} C_{r}$ is:
A. 20
B. 10
C. 15
D. 53

Answer:

128. If $\mathrm{n}=8$ and $\mathrm{r}=3$, then the value of ${ }^{n} P_{r}$ is:
A. 140
B. 336
C. 40
D. 85

Answer:

- Watch Video Solution

129. The value of $\frac{12!}{10!2!}$ is :
A. 42
B. 66
C. 76
D. 45

Answer:

- Watch Video Solution

130. The value of $\frac{8!}{6!\times 2!}$ is:
A. 28
B. 42
C. 166
D. None

Answer:

- Watch Video Solution

131. The value of $\frac{7!}{5!}$ is :
A. 42
B. 66
C. 55
D. 32

Answer:

- Watch Video Solution

132. If ${ }^{n} C_{r}={ }^{n} C_{s}$, then n is:
A. $r+s$
B. $r \times s$
C. $r-s$
D. $\frac{r}{s}$.

Answer:

133. If ${ }^{n} C_{8}={ }^{n} C_{9}$, then n is:
A. 1
B. 17
C. 0
D. 10

Answer:

- Watch Video Solution

134. The value of $\frac{7!}{5!}$ is:
A. 2 !
B. 7
C. 42
D. 24

Answer:

D Watch Video Solution

135. The value of ${ }^{8} P_{7}$ is
A. 7 !
B. 8 !
C. 8
D. 15

Answer:

136. The value of ${ }^{15} C_{11}+{ }^{15} C_{10}$ is equal to
A. $\frac{15}{11}$
B. $\frac{15}{10}$
C. $\frac{5}{11}$
D. $\frac{5}{10}$.

Answer:

- Watch Video Solution

137. If ${ }^{n} P_{4}=5^{n} P_{3}$, then n is:
A. 8
B. 6
C. 7
D. 5

Answer:

138. The value of ${ }^{15} C_{11}+{ }^{15} C_{10}$ is equal to
A. $\frac{15}{11}$
B. $\frac{15}{10}$
C. $\frac{5}{11}$
D. $\frac{5}{10}$.

Answer:

- Watch Video Solution

139. The number of straight lines that can be drawn out of 10 points of which 7 are collinear is:
A. 22
B. 23
C. 24
D. 25

Answer:

D Watch Video Solution

140. The number of diagonals that can be drawn by joining the vertices of an octagon is
A. 20
B. 28
C. 8
D. 16

Answer:

- Watch Video Solution

141. The number of divisors of the number 56 excluding 1 and 56 is :
A. 8
B. 7
C. 6
D. None of these.

Answer:

- Watch Video Solution

142. The number of 3 -digit odd numbers, by using the digits $1,2,3,4,5,6$ when the repetition of digits is allowed is :
A. 60
B. 108
C. 36
D. 3

Answer:

143. There are 15 points in a plane, no three of which are in a st. line, except 6 , all of which are in a st. line. The number of st. lines, which can be drawn by joining them is :
A. ${ }^{15} C_{2}-6$
B. ${ }^{15} C_{2}-{ }^{6} C_{2}$
C. ${ }^{15} C_{2}-{ }^{6} C_{2}-1$
D. ${ }^{15} C_{2}-{ }^{6} C_{2}+1$.

Answer:

Watch Video Solution

144. Number of triangles formed by joining 12 points, 7 of which are in the same straight line, is :
A. 185
B. 220
C. 792
D. None of these.

Answer:

- Watch Video Solution

145. If 7 points out of 12 are in the same straight line, then the number of triangles formed is :
A. 19
B. 158
C. 185
D. 201

Answer:

146. The total number of terms in the expansion of $(x+y)^{100}+(x-y)^{100}$ after simplification is :
A. 50
B. 51
C. 202
D. None of these.

Answer:

- Watch Video Solution

147. The coefficient of x^{17} in the expansion of :
$(x-1)(x-2)(x-3) \ldots \ldots(x-18)$ is :
B. -171
C. $\frac{171}{2}$
D. 684

Answer:

- Watch Video Solution

148. Let S_{p} and S_{q} be the coefficients of x^{p} and x^{q} respectively in $(1+x)^{p+q}$, then :
A. $S_{p} \neq S_{q}$
B. $S_{p}=\frac{p}{q} S_{q}$
C. $S_{p}=\frac{q}{p} S_{q}$.
D. $S_{p}=S_{q}$.

Answer:

149. Find the coefficient of x^{5} in the expansion of $(x+3)^{6}$ is :
A. 18
B. 6
C. 12
D. None of these.

Answer:

150. If $x=\frac{1}{3}$, then the greatest term in the expansion of $(1+4 x)^{8}$ is the :
A. 4th term
B. 5th term
C. 6th term
D. 3rd term.

Answer:

- Watch Video Solution

151. The middle term in the expansion of $(1+x)^{2 n}$ is :
A. $\frac{(2 n)!}{n!} x^{n}$
B. $\frac{(2 n)!}{n!(n-1)!} x^{n+1}$
C. $\frac{(2 n)!}{(n!)^{2}} x^{n}$
D. $\frac{(2 n)!}{(n+1)!(n-1)!} x^{n}$.

Answer:

- Watch Video Solution

152. The term independent of x in $\left(2 x-\frac{1}{3 x}\right)^{6}$ is :
A. $\frac{160}{9}$
B. $\frac{80}{9}$
C. $\frac{160}{27}$
D. $\frac{80}{3}$.

Answer:

- Watch Video Solution

153. The coefficient of the term independent of x in $\left(2 x-\frac{3}{x}\right)^{6}$ is :
A. 4320
B. 216
C. -216
D. -4320 .

Answer:

154. The fourth term in the binomial expansion of $\left(x^{2}-\frac{1}{x^{3}}\right)^{n}$ is independent of x, when n is equal to:
A. 2
B. 3
C. 4
D. None of these.

Answer:

Watch Video Solution

155. In a binomial expansion $(1+x)^{n}$ is a positive integer, the coefficients of 5 th, 6th and 7th terms are in A.P., then the value of n is :
A. 7
B. 5
C. 3
D. 10

Answer:

- Watch Video Solution

156. If the three consecutive coefficients in the expansion of $(1+x)^{n}$ are in the ratio $1: 3: 5$, then the value of n is:
A. 6
B. 7
C. 8
D. 9

Answer:

157. Let $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots .+C_{n} x^{n} \quad$ and $\frac{C_{1}}{C_{0}}+2 \frac{C_{2}}{C_{1}}+3 \frac{C_{3}}{C_{2}}+\ldots .+n \frac{C_{n}}{C_{n-1}}=\frac{n(n+1)}{k}$. The value of k is:
A. $\frac{1}{2}$
B. 2
C. $\frac{1}{3}$
D. 3

Answer:

- Watch Video Solution

158. In the expansion of $(x+a)^{n}$, the sums of the odd and the even terms are O and E respectively, prove that : $O^{2}-E^{2}=\left(x^{2}-a^{2}\right)^{n}$.
A. $\left(a^{2}-x^{2}\right)^{n}$
B. $\left(a^{2}-x^{2}\right)^{2 n}$
C. $\left(a^{2}+x^{2}\right)^{2 n}$
D. $\left(a^{2}+x^{2}\right)^{n}$.

Answer:

- Watch Video Solution

159. The 5th term from the end in the expansion of $\left(\frac{x^{3}}{2}-\frac{2}{x}\right)^{12}$ is:
A. $\frac{7920}{x^{4}}$
B. $-\frac{7920}{x^{4}}$
C. $7920 x^{4}$
D. $-7920 x^{4}$.

Answer:

160. In the binomial expansion of $(a-b)^{n}, n \geq 5$, the sum of the 5th and 6th terms is zero. Then $\frac{a}{b}$ equals :
A. $\frac{n-5}{6}$
B. $\frac{n-4}{5}$
C. $\frac{5}{n-4}$
D. $\frac{6}{n-5}$.

Answer:

161. The value of $C(47,4)+\sum_{r=1}^{5}(52-r, 3)$ is:
A. $C(52,4)$
B. C $(51,4)$
C. C $(52,3)$
D. C $(51,3)$.

Answer:

Watch Video Solution
162. $7^{9}+9^{7}$ is divisible by:
A. 128
B. 24
C. 64
D. 72

Answer:

163. Find the term independent of x in the expansion of : $\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}$.
A. 210
B. 105
C. 70
D. 112

Answer:

- Watch Video Solution

164. Product of any r consecutive natural numbers is always divisible by :
A. r!
B. $(r+4)$!
C. $(r+1)$!
D. $(r+2)$!.

Answer:

- Watch Video Solution

165. If $C_{0}, C_{1}, C_{2}, \ldots \ldots . ., C_{n}$ denote the coefficients in the expansion of
$(1+x)^{n}$, then the value of : $C_{1}+2 C_{2}+3 C_{3}+\ldots . .+n C_{n}$ is:
A. $n .2^{n-1}$
B. $(n+1) 2^{n-1}$
C. $(n+1) 2^{n}$
D. $(n+2) 2^{n-1}$.

Answer:

- Watch Video Solution

166. A polygon has 44 diagonals. The number of the sides is:
A. 10
B. 11
C. 12
D. 13

Answer:

- Watch Video Solution

167. Find 'a' if the coefficients of x^{2} and x^{3} in the expanion of $(3+a x)^{9}$ are equal.
A. $\frac{3}{7}$
B. $\frac{7}{3}$
C. $\frac{7}{9}$
D. $\frac{9}{7}$.

Answer:

- Watch Video Solution

168. Using binomial theorem. the value of $(0.999)^{3}$,correct to 3 decimal places, is
A. 0.999
B. 0.998
C. 0.997
D. 0.995 .

Answer:

D Watch Video Solution

169. The coefficient of x^{n}, where n is any positive integer, in the expansion of $\left(1+2 x+3 x^{2}+\ldots \rightarrow \infty\right)^{1 / 2}$ is:
A. 1
B. $\frac{n+1}{2}$
C. $2 n+1$
D. $n+1$.

Answer:

D Watch Video Solution

170. If ${ }^{2 n+1} P_{n-1}:{ }^{2 n-1} P_{n}=3: 5$ then the value of n equals:
A. 4
B. 3
C. 2
D. 1

Answer:

171. $\mathrm{If}|\mathrm{x}|<1$, then the coefficient of x^{6} in the expansion of $\left(1+x+x^{2}\right)^{-3}$ is:
A. 3
B. 6
C. 9
D. 12

Answer:

- Watch Video Solution

172. ${ }^{15} C_{0} \cdot{ }^{5} C_{5}+{ }^{15} C_{1} \cdot{ }^{5} C_{4}+{ }^{15} C_{2} \cdot{ }^{5} C_{3}+{ }^{15} C_{3} \cdot{ }^{5} C_{2}+{ }^{15} C_{4} \cdot{ }^{5} C_{1}$ equals:
A. $2^{20}-2^{5}$
B. $\frac{20!}{5!5!}$
C. $\frac{20!}{5!5!}-1$
D. $\frac{20!}{5!5!}-\frac{15!}{5!10!}$.

Answer:

- Watch Video Solution

173. Every body in a room shakes hand with every body else. The total number of hand-shakes is 66 . The number of persons in the room is
A. 10
B. 33
C. 24
D. 12

Answer:

- Watch Video Solution

174. ${ }^{15} C_{8}+{ }^{15} C_{9}-{ }^{15} C_{6}-{ }^{15} C_{7}=$
A. 1
B. 2
C. 0
D. None of these.

Answer:

- Watch Video Solution

175. If the rth term in the expansion of $\left(\frac{x}{3}-\frac{2}{x^{2}}\right)^{10}$ contains x^{4}, then r is equal to ,
A. 2
B. 1
C. 3
D. 5

Answer:

- Watch Video Solution

176. If 5^{99} is divided by 13 , the remainder is
A. 8
B. 7
C. 9
D. 6

Answer:

- Watch Video Solution

177. The total number of terms in the expansion of $(x+y)^{100}$ after simplification is:
A. 101
B. 50
C. 51
D. 202

Answer:

- Watch Video Solution

178. If P_{m} stands for ${ }^{m} P_{m}$, then: $1+1 . P_{1}+2 P_{2}+3 P_{3}+\ldots \ldots \ldots+n P_{n}$ is equal to,
A. n !
B. $(n+3)$!
C. $(n+2)$!
D. $(n+1)$!.

Answer:

- Watch Video Solution

179. The number of positive integers satisfying the inequality ${ }^{n+1} C_{n-2}-{ }^{n+1} C_{n-1} \leq 50$ is :
A. 9
B. 8
C. 7
D. 6

Answer:
180. The number of diagonals of a polygon of 20 sides is:
A. 210
B. 190
C. 180
D. 170

Answer:

- Watch Video Solution

181. he number of ways in which 5 boys and 5 girls can be seated for a photograph so that no two girls sit next to each other is :
A. $6!5!$
B. $(5!)^{2}$
C. $\frac{10!}{5!}$
D. $\frac{10!}{(5!)^{2}}$.

Answer:

- Watch Video Solution

182. $\frac{{ }^{8} C_{0}}{6}-{ }^{8} C_{1}+{ }^{8} C_{2} .6-{ }^{8} C_{3} .6^{2}+\ldots .+{ }^{8} C_{8} .6^{7}=$
A. 0
B. 6^{7}
C. 6^{8}
D. $\frac{5^{8}}{6}$.

Answer:

183. What is the smallest natural number n such that n ! is divisible by 990
?
A. 9
B. 11
C. 33
D. 99

Answer:

- Watch Video Solution

184. What is the number of words formed from the letters of the word 'JOKE' so that the vowels and consonants alternate?
A. 4
B. 8
C. 12
D. None of these.

Answer:

- Watch Video Solution

185. Find the coefficient indepandent of x in the
expansion of $\left(1+x+2 x^{3}\right)\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$
A. $\frac{1}{3}$
B. $\frac{19}{54}$
C. $\frac{1}{4}$
D. No such term exists in the expansion.

Answer:

186. The number of ways in which 6 men and 5 women can sit at a round table if no two women are to sit together is given by :
A. 30
B. $5!\times 4$!
C. $7!\times 5!$
D. $6!\times 5!$.

Answer:

- Watch Video Solution

187. A student is to answer 10 out of 13 questions in an examination such that he must choose at least 4 from the first five questions. The number of choices available to him is :
A. 196
B. 280
C. 346
D. 140

Answer:

- Watch Video Solution

188. If ${ }^{n} C_{r}$ denotes the number of combinations of n things taken r at a time, then the expression ${ }^{n} C_{r+1}+{ }^{n} C_{r-1}+2 \times{ }^{n} C_{r}$ equals :
A. ${ }^{n+2} C_{r+1}$
B. ${ }^{n+1} C_{r}$
C. ${ }^{n+1} C_{r+1}$
D. ${ }^{n+2} C_{r}$.

Answer:

189. The number of integral terms in the expansion of $(\sqrt{3}+\sqrt[8]{5})^{256}$ is :
A. 33
B. 34
C. 35
D. 32

Answer:

190. The coefficient of t^{24} in $\left(1+t^{2}\right)^{2}\left(1+t^{12}\right)\left(1+t^{24}\right)$ is:
A. ${ }^{12} C_{0}+3$
B. ${ }^{12} C_{6}$
C. ${ }^{12} C_{6}+1$
D. ${ }^{12} C_{6}+2$.

Answer:

D Watch Video Solution

191. How many ways are there to arrange the letters in me word 'GARDEN' with the vowels in alphabetical order?
A. 120
B. 240
C. 360
D. 480

Answer:

D Watch Video Solution

192. If ${ }^{\wedge} n-1 C_{r}=\left(k^{2}-3\right)^{n} C_{r+1}$, thenk \in
A. $(-\infty,-2)$
B. $(2, \infty)$
C. $[-\sqrt{3}, \sqrt{3}]$
D. $[\sqrt{3}, 2]$.

Answer:

- Watch Video Solution

193. The coefficient of the middle term in the binomial expansion in powers of x of $(1+\alpha x)^{4}$ and of $(1-\alpha x)^{6}$ is the same, if α equals :
A. $-\frac{5}{3}$
B. $\frac{10}{3}$
C. $-\frac{3}{10}$
D. $\frac{3}{5}$.

Answer:

194. Thr ciefficient of x^{n-2} in the polynomial $(x-1)(x-2)(x-3) \ldots(x-n)$, is
A. $n-1$
B. $(-1)^{n}(1+n)$
C. $(-1)^{n-1}(n-1)^{2}$
D. $(-1)^{n-1} n$.

Answer:

- Watch Video Solution

195. If the letters of the word SACHIN are arranged in all possible ways and these words are written out as in dictionary, then the word SACHIN appears at serial number:
A. 600
B. 601
C. 602
D. 603

Answer:

- Watch Video Solution

196. A rectangle with sides ($2 \mathrm{~m}-1$) and ($2 \mathrm{n}-1$) is divided into squares of unit length by drawing parallel lines as shown in the diagram, then the

A. $(m+n-1)^{2}$
B. 4^{m+n-1}
C. $m^{2} n^{2}$
D. $m(m+1) n(n+1)$.

Answer:

D Watch Video Solution

197. The value of ${ }^{50} C_{4}+\sum_{r=1}^{6}{ }^{56-r} C_{3}$ is:
A. ${ }^{55} C_{3}$
B. ${ }^{55} C_{4}$
C. ${ }^{56} C_{4}$
D. ${ }^{56} C_{3}$.

Answer:

- Watch Video Solution

198. If the coefficient of x^{7} in $\left(a x^{2}+\frac{1}{b x}\right)^{11}$ is equal to the coefficient of x^{-7} in $\left(a x-\frac{1}{b x^{2}}\right)$, then ab is equal to
A. $a+b=1$
B. $a-b=1$
C. $a b=1$
D. $\frac{a}{b}=1$.

Answer:

- Watch Video Solution

199.

The
value
of
$\binom{30}{0}\binom{30}{10}-\binom{30}{1}\binom{30}{11}+\binom{30}{2}\binom{30}{12}+\ldots+\binom{30}{20}\binom{30}{30}$
A. $\binom{30}{10}$
B. $\binom{30}{15}$
C. $\binom{60}{30}$
D. $\binom{31}{10}$.

- Watch Video Solution

200. At an election, a voter may vote for any number of candidates not greater than the number to be elected. There are 10 candidates and 4 are to be elected. The number of ways in which a voter may vote for at least one candidate is- (A) 5040 (B) 6210 (C) 385 (D) 1110
A. 5040
B. 6210
C. 385
D. 1110

Answer:

Watch Video Solution
A. $(20,45)$
B. $(35,20)$
C. $(45,35)$
D. $(35,45)$.

Answer:

- Watch Video Solution

202. The letters of the word COCHIN are permuted and all the permutations are arranged in an alphabatical order as in english dictionary. The number of words that appear before the word COHIN is
A. 360
B. 192
C. 96
D. 48

Answer:

- Watch Video Solution

203. The sum of series. ${ }^{20} C_{0}-{ }^{20} C_{1}+{ }^{20} C_{2}-{ }^{20} C_{3}+\ldots .+{ }^{20} C_{10}$ is
A. $\frac{1}{2}{ }^{20} C_{10}$
B. 0
C. ${ }^{20} C_{10}$
D. $-{ }^{20} C_{10}$.

Answer:

- Watch Video Solution

204. In the binomial expansion of $(a-b)^{n}, n \geq 5$, the sum of the 5 th and 6th terms is zero. Then $\frac{a}{b}$ equals :
A. $\frac{6}{n-5}$
B. $\frac{n-5}{6}$
C. $\frac{n-4}{5}$
D. $\frac{5}{n-4}$.

Answer:

- Watch Video Solution

205. How many different words can be formed by jumbling the letters of the word 'MISSISSIPPI' in which no two S are together ?
A. $7 .{ }^{6} C_{4} \cdot{ }^{8} C_{4}$
B. $8 .{ }^{6} C_{4} \cdot{ }^{7} C_{4}$
C. $8.7 .{ }^{8} C_{4}$
D. 6.8. ${ }^{7} C_{4}$.

Answer:

- Watch Video Solution

206. The number of 7 -digit integers, with sum of the digits equal to 10 and formed by using the digits 1,2 and 3 only, is
A. 55
B. 66
C. 77
D. 88

Answer:
207. The remainder left out when $8^{2 n}-(62)^{2 n+1}$ is divided by 9 , is
A. 0
B. 2
C. 7
D. 8

Answer:

- Watch Video Solution

208. From 6 different novels and 5 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on a shelf so that the dictionary is always in the middle. Then the number of such arrangements is :
A. less than 500
B. at least 500 but less than 750
C. at least 750 but less than 1000
D. at least 1000.

Answer:

- Watch Video Solution

209. There are two urns. Urn A has 4 distinct red balls and urn B has 5 distinct blue balls. From each urn (two balls are taken out at random and then transferred to the other. The number of ways in which this can be done is:
A. 60
B. 36
C. 66
D. 108

Answer:

210. There are 10 points in a plane, out of these 6 are collinear. If N is the number of triangles formed by joining these points, then
A. $N \leq 100$
B. $100<N<140$
C. $140<N \leq 190$
D. $N>190$.

Answer:

- Watch Video Solution

211. For $\mathrm{r}=0,1,2, . ., 10$, let A_{r}, B_{r} and C_{r} denote respectively, the coefficients of x^{r} in the expansion of
$(1+x)^{10},(1+x)^{20}$ and $(1+x)^{30}, \sum_{r=1}^{10} A_{r}\left(B_{10} B_{r}-C_{10} A_{r}\right)$ is equal to
A. $B_{10}-C_{10}$
B. $A_{10}\left(B_{10}^{2}-C_{10} A_{10}\right)$
C. 0
D. $C_{10}-B_{10}$.

Answer:

- Watch Video Solution

212. The coefficient of x^{7} in the expansion of $\left(1-x-x^{2}+x^{3}\right)^{6}$, is
A. 144
B. -132
C. -144
D. 132

Answer:

213. Find the number of ways in which five identical balls can be distributed among ten boxes, if not more than one can go into a box.

- Watch Video Solution

214. A committee of 12 is to be formed from nine women and eight men. In how many ways this can be done if at least five women have to be included in a committee? In how many of these committees : the women are in majority?

- Watch Video Solution

215. A committee of 12 is to be formed from nine women and eight men. In how many ways this can be done if at least five women have to be included in a committee? In how many of these committees : the men are in majority?

- Watch Video Solution

216. A question paper consists of two sections having respectively 3 and 4 questions. The following note is given on the question paper : "It is not necessary to attempt all the questions. One question from each part is compulsory." In how many ways Can a candidate select the questions ?

- Watch Video Solution

217. Let $R=(5 \sqrt{5}+11)^{2 n+1}$ and and $\mathrm{f}=\mathrm{R}-[\mathrm{R}]$, where [] denotes the greatest integer function, prove that $R f=4^{2 n+1}$.

- Watch Video Solution

218.

Give
that
$C_{1}+2 C_{2} x+3 C_{3} x^{2}+\ldots . .+2 n . C_{2 n} \cdot x^{2 n-1}=2 n(1+x)^{2 n-1}$, where
$C_{r}=\frac{(2 n)!}{r!(2 n-r)!}, \quad \mathrm{r}=0,1,2, \quad, 2 \mathrm{n} \quad, \quad$ then
$C_{1}^{2}-2 C_{2}^{2}+3 C_{3}^{2}-\ldots \ldots \ldots . .2 n C_{2 n}^{2}=(-1)^{n} . n C_{n}$.

- Watch Video Solution

219. Prove that $\sum_{r=1}^{k}(-3)^{r-1} \cdot{ }^{3 n} C_{2 r-1}=0$, where $k=\frac{3 n}{2}$ and n is an even integer.

- Watch Video Solution

220. If $a_{0}, a_{1}, a_{2}, \ldots, a_{2 n}$ are the coefficients in the
expansion of $\left(1+x+x^{2}\right)^{n}$ in ascending power of x show that $a_{0}^{2}-a_{1}^{2}+a_{2}^{2}-\ldots+a_{2 n}^{2}=a_{n}$.

- Watch Video Solution

221. Find the value of x for which the sixth term of : $\left(\sqrt{2^{\log \left(10-3^{x}\right)}}+\sqrt[5]{2^{(x-2) \log 3}}\right)^{n}$ is equal to 21 , if it is known that the
binomial coefficient of the 2 nd , 3 rd and 4 th term in the expansion represent respectively the 1st, 3rd and 5th term of an A.P. (the symbol log stands for logarithm to the base 10).
