©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

CONIC SECTIONS

Example

1. Prove that the equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle and find its centre and radius.

- Watch Video Solution

2. Find the equation of the circle whose centre is $(-3,2)$ and radius 4 .
3. Find the equation of the circle whose centre is $(2,-1)$ and which passes through (3, 6).

- Watch Video Solution

4. Find the equation of the circle whose centre is (h, k) and which touches : x-axis.

- Watch Video Solution

5. Find the equation of the circle whose centre is (h, k) and which touches
:
y-axis.

- Watch Video Solution

6. Find the equation of the circle whose centre is (h, k) and which touches : both axes.

- Watch Video Solution

7. Determine the radius and centre of the circle : $x^{2}+y^{2}-x+2 y-3=0$.

- Watch Video Solution

8. Prove that the radii of the circles
$x^{2}+y^{2}=1, x^{2}=y^{2}-2 x-6 y=6$ and $x^{2}+y^{2}-4 x-12 y=9$ are in AP.

- Watch Video Solution

9. Find the equation of the circle whose centre is $(a \cos \alpha, a \sin \alpha)$ and radius is a.

- Watch Video Solution

10. Find the equation of the circle with radius 5 whose centre lies on x axis and passes through the point (2, 3).

- Watch Video Solution

11. A circle of radius 4 units touches the co-ordinate axes in the first quadrant. If the circle makes one complete roll on the x-axis along the positive direction of x-axis, find its equation in new position.

- Watch Video Solution

12. A circle of radius 4 units touches the co-ordinate axes in the first quadrant. Find the equation of its image in the line mirror $\mathrm{y}=0$.

Watch Video Solution

13. Find the equation of the image of the circle : $x^{2}+y^{2}+8 x-16 y+64=0$ in the mirror $\mathrm{x}=0$.

- Watch Video Solution

14. Find the equation of the circle whose radius is 5 and which touches the circle $x^{2}+y^{2}-2 x-4 y-20=0$ externally at the point $(5,5)$.

- Watch Video Solution

15. Find the equation of a circle passing through the points $(5,7),(6,6)$ and (2,-2). Also find its centre and radius.
16. Find the equation of the circle passing through the point $(2,4)$ and has its centre at the intersection of $x-y=4$. and $2 x+3 y=-7$.

- Watch Video Solution

17. Find the equation of the circle whose centre lies on the line $x-4 y=1$ and which passes through the points $(3,7)$ and $(5,5)$.

- Watch Video Solution

18. If a circle is concentric with the circle $x^{2}+y^{2}-4 x-6 y+9=0$ and passes through the point $(-4,-5)$ then its equation is

- Watch Video Solution

19. Find the equation of a circle concentric with the circle : $2 x^{2}+2 y^{2}-6 x+8 y+1=0$ and of double its area.

- Watch Video Solution

20. Show that the four points $(1,0),(2,-7),(8,1)$ and $(9,-6)$ are concyclic.

- Watch Video Solution

21. Show that the points (x, y), where : $x=5 \cos \theta, y=-3+5 \sin \theta$ lie on a circle for all values of θ.

- Watch Video Solution

22. Find the parametric representation of the circle
$x^{2}+y^{2}-2 x+4 y-4=0$.
23. Find the equation of the following curve : $x=a+c \cos \alpha, y=b+c \sin \alpha$, where $0 \leq \alpha<2 \pi$, in cartesian form*. In case the curve is a circle, find its centre and radius.

- Watch Video Solution

24. Show that the point : $x=\frac{2 r t}{1+t^{2}}, y=\frac{r\left(1-t^{2}\right)}{1+t^{2}}$ (r constant) lies on a circle for all values of t such that $-1 \leq t \leq 1$.

- Watch Video Solution

25. Find the equation of the circle, the co-ordinates of the end points of whose diameter are $(3,4)$ and $(-3,-4)$.

- Watch Video Solution

26. Find the equation of the circle drawn on the diagonal of the rectangle as its diameter whose sides are $\mathrm{x}=4, \mathrm{x}=-2$ and $\mathrm{y}=5$ and $\mathrm{y}=-2$.

- Watch Video Solution

27. If $y=2 x$ is a chord of a circle $x^{2}+y^{2}-10 x=0$, find the equation of the circle with this chord as diameter.

- Watch Video Solution

28. Find the equation of the circle, which passes through the origin and makes intercepts 4 and 2 on the x and y axes respectively.

- Watch Video Solution

29. Find the equation of a circle which has the portion of the line $3 x+4 y=14$ intercepted by the lines $x-y=0$ and $11 x-4 y=0$ as a
diameter.

- Watch Video Solution

30. If the abscissae and the ordinates of two points A and B be the roots of $a x^{2}+b x+c=0$ and $a^{\prime} y^{2}+b^{\prime} y+c^{\prime}=0$ respectively, show that the equation of the circle described on $A B$ as diameter is : $a a^{\prime}\left(x^{2}+y^{2}\right)+a^{\prime} b x+a b^{\prime} y+\left(c a^{\prime}+c^{\prime} a\right)=0$.

- Watch Video Solution

31. Find the equation of the parabola whose focus is the point $(-1,-2)$ and directrix is $x-2 y+3=0$.

- Watch Video Solution

32. Find the equation of the parabola with vertex at $(0,0)$ and focus is at (0, 2).
33. Find the equation of the parabola, which has vertex $(0,0)$ and is symmetric about y-axis and passes through the point ($2,-3$).

- Watch Video Solution

34. Find the equation of the parabola with vertex is $(2,1)$ and the directrix is $\mathrm{x}=\mathrm{y}-1$.

- Watch Video Solution

35. For the parabola $2 y^{2}=5 x$, find the vertex, the axis and the focus.

- Watch Video Solution

36. Show that the equation $y^{2}-8 y-x+19=0$ represents a parabola.

Find its vertex, focus and directrix.

- Watch Video Solution

37. Find the equation of the parabola whose latus-rectum is 4 units, axis is the line $3 x+4 y-4=0$ and the tangent at the vertex is the line $4 x-3 y+7=0$.

- Watch Video Solution

38. Find the length of the side of an equilateral traingle inscribed in the parabola $y^{2}=4 a x$, so that one angular point is at the vertex.

- Watch Video Solution

39. The focus of a parabolic mirror as shown in the figure is at a distance of 5 cm from its vertex. If the mirror is 45 cm deep, find the distance $A B$.

- Watch Video Solution

40. If a parabolic reflector is 20 cm in diameter and 5 cm deep. Find the fous.

- Watch Video Solution

41. An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?

- Watch Video Solution

42. The towers of a bridge, hung in the form of a parabola, have their tops 30 metres above the roadway and are 200 metres apart. If the cable is 5 metres above the road way at the centre of the bridge, find the length of the vertical supporting cable 30 metres from the centre.

- Watch Video Solution

43. Find the lengths of the major and minor axes, co-ordinates of the foci, vertices, the eccentricity and equations of the directrices for the ellipse $9 x^{2}+16 y^{2}=144$.

- Watch Video Solution

44. Find the equation of the ellipse satisfying the following conditions : Vertices at $(\pm 13,0)$, foci at (± 5.0).

- Watch Video Solution

45. Find the equation of the ellipse satisfying the following condition :

Foci at ($\pm 3,0$), passing through (4, 1).

- Watch Video Solution

46. Find the equations of the ellipse whose length of the major axis is 20 and foci are $(0, \pm 5)$.

- Watch Video Solution

47. Find the equation of the ellipse with $e=\frac{3}{4}$, foci on y-axis, centre at the origin, and passing through the point (6, 4).

- Watch Video Solution

48. Find the equation of the ellipse whose axes are parallel to the coordinates axes having its centre at the point $(2,-3)$ one focus at $(-3,3)$ and one vetrex at $(4,-3)$.

- Watch Video Solution

49. Find the equation of the locus of all points, the sum of whose distances from $(3,0)$ and $(9,0)$ is 12.

- Watch Video Solution

50. Show that : $4 x^{2}+16 y^{2}-24 x-32 y=12$ is the equation of ellipse, and find its vertices, foci, eccentricity and directrices.

- Watch Video Solution

51. A rod $A B$ of length 15 cm rests in between two co-ordinate axes in such a way that the end point A lies on the x-axis and end point B lies on y-axis.

A point $P(x, y)$ is taken on the rod in such a way that $A P=6 \mathrm{~cm}$. Prove that the locus of P is an ellipse.
52. An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.

- Watch Video Solution

53. The foci of the hyperbola $9 x^{2}-16 y^{2}=144$ are

- Watch Video Solution

54. Find the equation of the hyperbola satisfying the following conditions
: Vertices at $\left(\pm 0, \frac{\sqrt{11}}{2}\right)$, foci at $(0, \pm 3)$.

- Watch Video Solution

55. Find the equation of the locus of all points such that the difference of their distances from $(4,0)$ and $(-4,0)$ is always equal to 2 .
56. The foci of a hyperbola coincide with the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$, find the equation of hyperbola if ecentricity is 2.

- Watch Video Solution

57. If e and e' be the eccentricities of a hyperbola and its conjugate, prove that $\frac{1}{e^{2}}+\frac{1}{\left(e^{\prime}\right)^{2}}=1$.

- Watch Video Solution

58. Show that the equation : $16 x^{2}-3 y^{2}-32 x-12 y-44=0$ represents a hyperbola, and find the lengths of the axes and eccentricity.

- Watch Video Solution

59. Two vertices of an equilateral triangle are $(0,0)$ and $(0,2 \sqrt{3})$. Find the third vertex.

- Watch Video Solution

60. The co-ordinates of two points A and B are $(-1,4)$ and $(5,1)$ respectively. Find the co-ordinates of the point P , which lies on extended time $A B$ such that it is three times as far from B as from A.

- Watch Video Solution

61. $A B$ is a variable line moving between the axes in such a way that A lies on x-axis, and B on y-axis. If P is variable point on $A B$ such that $P A=b, P B=$ a and $A B=a+b$, find the equation of the locus of P.

- Watch Video Solution

62. Find the equation of the straight line joining the points $\left(a \cos \theta_{1} a \sin \theta_{1}\right)$ and $\left(a \cos \theta_{2}, a \sin \theta_{2}\right)$.

- Watch Video Solution

63. A straight line L through the origin meets the lines $x+y=1$ and $x+y=$ 3 at P and Q respectively. Through P and Q two Straight lines L_{1} and L_{2} are drawn parallel to $2 \mathrm{x}-\mathrm{y}=5$ and $3 \mathrm{x}+\mathrm{y}=5$ respectively. Lines L_{1} and L_{2} intersect at R. Show that the locus of R, as L varies, is a straight line.

- Watch Video Solution

64. A straight line L with negative slope passes through the point $(8,2)$ and cuts the positive co-ordinate axes at points P and Q . Find the absolute minimum value of $O P+O Q$, as L varies, where O is the origin.

- Watch Video Solution

65. Show that four lines $a x \pm b y \pm c=0$ enclose a rhombus whose area is $\frac{2 c^{2}}{a b}$.

- Watch Video Solution

66. Find the equation of straight lines passing through point $(2,3)$ and having intersept of length 2 units between the straight lines $2 x+y=3,2 x+y=5$

- Watch Video Solution

67. A line through $A(-5,-4)$ meets the lines $x+3 y+2=0,2 x+y+4=0$ and $x-y-5=0$ at the points B,C and D respectively , if

$$
\left(\frac{15}{A B}\right)^{2}+\left(\frac{10}{A C}\right)^{2}=\left(\frac{6}{A D}\right)^{2}
$$

find the equation of the line
68. Consider a curve $a x^{2}+2 h x y+b y^{2}=1$ and a point P not on the curve. A line drawn from the point P intersects the curve at points Q and R. If the product $P Q . P R$ is independent of the slope of the line, then show that the curve is a circle.

- Watch Video Solution

69. A variable line L is passing through the point $B(2,5)$ intersects the lines $2 x^{2}-5 x y+2 y^{2}=0$ at P and Q . Find the locus of the point R on L such that distances $B P, B R$ and $B Q$ are in harmonic progression.

- Watch Video Solution

70. Find the equation of a circle, which touches the line $x+y=5$ at the point ($-2,7$) and cuts the circle $x^{2}+y^{2}+4 x-6 y+9=0$ orthogonally.

- Watch Video Solution

71. A circle has radius 3 units and its centre lies on the line $y=x-1$. Find the equation of the circle if it passes through $(7,3)$.

- Watch Video Solution

72. Two circles, each of radius 5 units, touch each other at (1, 2). If the equation of their common tangent is $4 x+3 y=10$, find the equations of the circles.

- Watch Video Solution

73. Let a circle be given by $2 x(x-a)+y(2 y-b)=0,(a \neq 0, b \neq 0)$.

Find the condition on a and b if two chords each bisected by the x-axis, can be drawn to the circle from $\left(a, \frac{b}{2}\right)$

- Watch Video Solution

74. The circle $x^{2}+y^{2}-2 x-4 y+1=0$ with centre C meets the y axis at points A and B. Find the area of the triangle $A B C$.

Watch Video Solution

75. Let $2 x^{2}+y^{2}-3 x y=0$ be the equation of a pair of tangents drawn from the origin O to a circle of radius 3 with centre in the first quadrant. If A is one of the points of contact, find the length of OA.

- Watch Video Solution

76. Let C_{1} and C_{2} be two circles with C_{2} lying inside C_{1}. A circle C lying inside C_{1} touches C_{1} internally and C_{2} externally. Idenitfy the locus of the center of C .

- Watch Video Solution

77. Let the mirror image of the point $A(5,6)$ with respect to the line $2 x+$ $3 y=15$ be the point B. Find the equation of the circle described on $A B$ as diameter. AC is any chord of the circle meeting the x-axis at D such that $A D=10 D C$. How many such chords are possible ?

- Watch Video Solution

78. A circle touches the line $2 x+3 y+1=0$ at the point $(1,-1)$ and is orthogonal to the circle which has line segment having end points ($0,-1$) and $(-2,3)$ as the diameter.

- Watch Video Solution

79. If From the vertex of a parabola $y^{2}=4 a x$ a pair of chords be drawn at right angles to one another and with these chords as adjacent sides a rectangle be made, then the locus of the further angle of the rectangle is
80. The ordinates of points P and Q on the parabola $y^{2}=12 x$ are in the ratio $1: 2$. Find the locus of the point of intersection of the normals to the parabola at P and Q .

- Watch Video Solution

81. Points A, B and C lie on the parabola $y^{2}=4 a x$. The tangents to the parabola at A, B and C, taken in pair, intersect at points P, Q and R. Determine the ratio of the areas of the triangles $A B C$ and $P Q R$.

- Watch Video Solution

82. At any point P on the parabola $y^{2}-2 y-4 x+5=0$, a tangent is drawn which meets the directrix at Q . Find the locus of R which divides P externally in the ratio $\frac{1}{2}: 1$.

- Watch Video Solution

83. A parabola, of latus-rectum I, touch a fixed equal parabola, the axes of two parabola, being parallel. Prove that the locus of the vertex of the moving parabola is a parabola of latus rectum 21.

- Watch Video Solution

84. Consider the family of circles $x^{2}+y^{2}=r^{2}, 2<r<5$. If in the first quadrant, the common tangnet to a circle of this family and the ellipse $4 x^{2}+25 y^{2}=100$ meets the co-ordinate axes at A and B , then find the equation of the locus of the mid-point of AB.

- Watch Video Solution

85. Let P be a point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,0<b<a$. Let the line parallel to y-axis passing through P meet the circle $x^{2}+y^{2}=a^{2}$ at the point Q such that P and Q are on the same side of x-axis. For two positive real numbers r and s, find the locus of the point R on $P Q$ such that $P R: R Q$ $=r: s$ and P varies over the ellipse.
86. Prove that the tangents at the extremities of lactusrectum of an intersect on the correesponding directrix.

- Watch Video Solution

87. Find the locus of the mid-point of the chords of the circle $x^{2}+y^{2}=16$, which are tangent to the hyperbola $9 x^{2}-16 y^{2}=144$.

- Watch Video Solution

88. The angle between a pair of tangents drawn from a point P to the parabola $y^{2}=4 a x$ is 45°. Show that the locus of the point P is a hyperbola.
89. Let d be the perpendicular distance from the centre of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ to the tangent drawn at a point P on the ellipse. If $F_{1} \& F_{2}$ are the two foci of the ellipse, then show the $\left(P F_{1}-P F_{2}\right)^{2}=4 a^{2}\left(1-\frac{b^{2}}{d^{2}}\right)$.

- Watch Video Solution

Exercise

1. Determine whether the following represents a circle, a point or no circle
$1-x^{2}-y^{2}=0$.

- Watch Video Solution

2. Determine whether the following represents a circle, a point or no circle :
$x^{2}+y^{2}+2 x+1=0$.
3. Determine whether the following represents a circle, a point or no circle :
$x^{2}+y^{2}+x-y=0$.

- Watch Video Solution

4. Determine whether the following represents a circle, a point or no circle :
$x^{2}+y^{2}+2 x+10 y+26=0$.

- Watch Video Solution

5. Determine whether the following represents a circle, a point or no circle :
$x^{2}+y^{2}-3 x+3 y+10=0$.
6. Write the co-ordinates of the centre of the circle : $2 x^{2}+2 y^{2}-6 x+8 y-4=0$.

- Watch Video Solution

7. Find the equations of the following circle :

Centre (0,2) and radius 2.

(Watch Video Solution

8. In each of the following find the equation of the circle with centre $\left(\frac{1}{2}, \frac{1}{4}\right)$ and radius $\frac{1}{12}$.

- Watch Video Solution

9. Find the equation of the circle with

Centre ($-2,3$) and radius 4

- Watch Video Solution

10. Find the equations of the following circle :

Centre $(1,1)$ and radius $\sqrt{2}$.

- Watch Video Solution

11. Find the equations of the following circle:

Centre $\left(\frac{1}{2}, \frac{1}{2}\right)$ and radius $\frac{1}{\sqrt{2}}$.

- Watch Video Solution

12. Find the equations of the following circle :

Centre $(-\mathrm{a},-\mathrm{b})$ and radius $\sqrt{a^{2}-b^{2}}$.
13. The centre and radius of the circle $x^{2}+(y-1)^{2}=2$ are

- Watch Video Solution

14. Find the centre and radius of the circle :
$(x+5)^{2}+(y-3)^{2}=36$.

- Watch Video Solution

15. Find the centre and radius of the circle :
$\left(x-\frac{1}{2}\right)^{2}+\left(y+\frac{1}{3}\right)^{2}=\frac{1}{4}$.

- Watch Video Solution

16. Find the centre and radius of the circle :
$x^{2}+y^{2}+8 x+10 y-8=0$.

Watch Video Solution

17. Find the centre and radius of the circle :
$x^{2}+y^{2}-4 x-8 y-45=0$.

- Watch Video Solution

18. Find the centre and radius of the circle :
$x^{2}+y^{2}-8 x+10 y-12=0$.

- Watch Video Solution

19. Find the centre and radius of the circle :
$2 x^{2}+2 y^{2}-x=0$.
20. Show that the equation : $A x^{2}+A y^{2}+D x+E y+F=0$ represents a circle.

- Watch Video Solution

21. Find the equation of circle passing through the points:
$(0,0),(2,0)$ and $(0,4)$.Also find its centre and radius.

- Watch Video Solution

22. Find the equation of circle passing through the points :
$(0,2),(3,0)$ and (3, 2).Also find its centre and radius.

- Watch Video Solution

23. Find the equation of circle passing through the points :
$(1,0),(-1,0)$ and (0,1). Also find its centre and radius.

Watch Video Solution

24. Find the equation of circle passing through the points :
$(2,-6),(6,4)$ and $(-3,1)$. Also find its centre and radius.

- Watch Video Solution

25. Find the equation of circle passing through the points :
$(1,-2),(5,4)$ and (10,5). Also find its centre and radius.

- Watch Video Solution

26. Find the equation of circle passing through the points :
$(0,0),(5,0)$ and $(3,3)$. Also find its centre and radius.
27. Find the equation of circle passing through the points :
$(5,5),(6,4)$ and $(-2,4)$. Also find its centre and radius.

- Watch Video Solution

28. Find the equation of circle passing through the points :
$(5,5)(-2,4)$ and $(7,1)$. Also find its centre and radius.

- Watch Video Solution

29. Find the equation of circle passing through the points :
$(1,2)(3,-4)$ and $(5,-6)$.

- Watch Video Solution

30. Find the equation of the circle, which is circumscribed about the triangle whose vertices are $(-2,3),(5,2)$ and $(6,-1)$.

- Watch Video Solution

31. Find the equation of the circle with centre $(2,2)$ and passes through the point $(4,5)$.

- Watch Video Solution

32. Find the equation of the circle whose centre is the point $(1,-2)$ and which passes through the centre of the circle $x^{2}+y^{2}+2 y=3$.

- Watch Video Solution

33. Find the equation of the circle passing through $(0,0)$ and making intercepts 'a' and 'b' on the coordinate axes.
34. Find the equation of the image of the circle : $x^{2}+y^{2}+8 x-16 y+64=0$ in the mirror $\mathrm{x}=0$.

- Watch Video Solution

35. Find the equation of the circle, which touches the axis of x at a distance 3 from the Origin and intercepts a length 6 on the axis of y.

- Watch Video Solution

36. Find the equation of the circle, which touches the axis of y at a distance of +4 from the origin and intercepts a length 6 on the axis of y and cuts off an intercept 6 from the axis of x .

- Watch Video Solution

37. Find the equation of the circle passing through the point $(0,0)$ and the points, where the st. line $3 x+4 y=12$ meets the axes of co-ordinates.

- Watch Video Solution

38. A circle has radius 3 units and its centre lies on the line $y=x-1$. Find the equation of the circle if it passes through $(7,3)$.

- Watch Video Solution

39. Find the equation of the circle of radius 5 whose centre lies on y-axis and Passes through (3, 2).

- Watch Video Solution

40. Find the equation of the circle with radius 5 whose centre lies on y axis and Passes through the point $(2,3)$.
41. Find the equation of the circle concentric with the circle $x^{2}+y^{2}+4 x+6 y+11=0$ and Passing through the point $(5,4)$.

- Watch Video Solution

42. Find the equation of the circle whose centre is the point of intersection of the lines $2 x-3 y+4=0$ and $3 x+4 y-5=0$ and passes through the origin.

- Watch Video Solution

43. Find the equation of the circle passing through the point $(2,4)$ and has its centre at the intersection of $x-y=4$. and $2 x+3 y=-7$.

- Watch Video Solution

44. Find the equation of the circle, which passes through the points (2, $3)$ and $(3,-2)$ and has its centre on the line $2 x-3 y=8$.

- Watch Video Solution

45. Find the equation of the circle, whose centre lies on the line $2 x-y-3=$ 0 and which passes through the points $(3,-2)$ and $(-2,0)$.

- Watch Video Solution

46. Find the equation of the circle which passes through points $(2,-2)$ and $(3,4)$ and whose centre lies on the line $\mathrm{x}+\mathrm{y}=2$.

- Watch Video Solution

47. Find the equation of the circle which passes through the points (4,1),
$(6,5)$ and has its centre on the line $4 x+y=16$.
48. Find the equation of the circle passing through the points. $(2,3)$ and $(-1,1)$ whose centre is on the line $x-3 y-11=0$.

- Watch Video Solution

49. Find the equation of the circle whose centre is $(2,-3)$ and which passes through the intersection of the st. lines $3 x+2 y=11$ and $2 x+3 y=4$.

- Watch Video Solution

50. Find the equation of the circle whose centre is $(2,-3)$ and which passes through the intersection of the straight lines $3 x-2 y=1$ and $4 x+y=27$.

- Watch Video Solution

51. Find the equation of the circle which passes through the origin and cuts- off chords of lengths 4 and 6 on the positive side of the X -axis and Y -axis, respectively.

- Watch Video Solution

52. Find the equation of a circle concentric with the circle $x^{2}+y^{2}-2 x-4 y+1=0$ and whose radius is 5.

- Watch Video Solution

53. Find the equation of a circle concentric with $x^{2}+y^{2}-4 x-6 y-3=0$ and which touches the y-axis.

- Watch Video Solution

54. Find the equation of a circle passing through the centre of the circle $x^{2}+y^{2}+8 x+10 y-7=0 \quad$ and concentric with the circle $2 x^{2}+2 y^{2}-8 x-12 y-9=0$.

- Watch Video Solution

55. Find the equation of the circie concentric with the circle $x^{2}+y^{2}+4 x-8 y-6=0$ and having radius double of its radius.

- Watch Video Solution

56. Find the equation of the circie concentric with the circle $x^{2}+y^{2}+4 x-8 y-6=0$ and having radius double of its radius.

- Watch Video Solution

57. The circle $(x-a)^{2}+(y-a)^{2}=a^{2}$ is rolled on the y-axis in the positive direction through one complete revolution. Find the equation of the circle in its new position.

- Watch Video Solution

58. Find the equation of a circle of radius 5 which lies within the circle $x^{2}+y^{2}+14 x+10 y-26=0$ and which touches the given circle at the point (-1,3).

- Watch Video Solution

59. Find the equation of the circle passing through the vertices of the triangle whose sides are :
$x+y=2,3 x-4 y=6$ and $x-y=0$.

- Watch Video Solution

60. Find the equation of the circle passing through the vertices of the triangle whose sides are :
$x-y=0,3 x+2 y=5$ and $x+2 y=5$.

- Watch Video Solution

61. Show that the points $(5,5),(6,4),(-2,4)$ and $(7,1)$ all lie on a circle. Find its equation, centre and radius.

- Watch Video Solution

62. Prove that the points $(1,-6),(5,2),(7,0)$ and $(-1,-4)$ are concyclic. Find the radius of the circle.

- Watch Video Solution

63. Show that the point (x, y), where : $x=a+r \cos \alpha, y=b+r \sin \alpha$ lie on a circle for all values of α.
64. Find the parametric representation of the following circle $x^{2}+y^{2}=9$.

- Watch Video Solution

65. Find the parametric representation of the following circle $3 x^{2}+3 y^{2}=4$.

- Watch Video Solution

66. Find the parametric representation of the following circle $(x-2)^{2}+(y-3)^{2}=5$.
. Watch Video Solution
67. Find the parametric representation of the following circle $x^{2}+y^{2}+2 x-4 y-1=0$.

- Watch Video Solution

68. Find the parametric form of the equation of the circle
$x^{2}+y^{2}+p x+p y=0$

- Watch Video Solution

69. Find the parametric representation of the following circle $x^{2}+y^{2}+2 g x+2 f y+c=0$.

- Watch Video Solution

70. Find the parametric equation of the circles:
$2 x^{2}+2 y^{2}-5 x-7 y-3=0$.
71. Find the parametric equation of the circles :
$3 x^{2}+3 y^{2}+4 x-6 y-4=0$.

- Watch Video Solution

72. Find the equations of the following curves in cartesian form. Wherever the curve is a circle, find its centre and radius :
$x=3 \cos \alpha, y=3 \sin \alpha$.

- Watch Video Solution

73. Find the equations of the following curves in cartesian form. Wherever the curve is a circle, find its centre and radius :

$$
x=1+2 \cos \alpha, y=3+2 \sin \alpha .
$$

- Watch Video Solution

74. Find the equations of the following curves in cartesian form.

Wherever the curve is a circle, find its centre and radius : $x=5+3 \cos \alpha, y=7+3 \sin \alpha$.

- Watch Video Solution

75. Find the equations of the following curves in cartesian form. Wherever the curve is a circle, find its centre and radius :
$x=7+4 \cos \alpha, y=-3+4 \sin \alpha$, where $0 \leq \alpha<2 \pi$.

- Watch Video Solution

76. Find the equations of the following curves in cartesian form. Wherever the curve is a circle, find its centre and radius :
$x=\frac{1}{2} t+1, y=2 t-1$.

- Watch Video Solution

77. Find the equations of the following curves in cartesian form. Wherever the curve is a circle, find its centre and radius :
$x=a t^{2}, y=2 a t$.

- Watch Video Solution

78. Eliminate the parameter ' t ' from the equations :
$x=\frac{20 t}{4+t^{2}}, y=\frac{5\left(4-t^{2}\right)}{4+t^{2}}$.

- Watch Video Solution

79. Find the equation of the circle when the end points of a diameter are as below :
$(2,3)$ and $(-1,-3)$.

- Watch Video Solution

80. Find the equation of the circle when the end points of a diameter are as below :
$(-2,3)$ and ($3,-5$).

- Watch Video Solution

81. Find the equation of the circle when the end points of a diameter are as below :
$(-2,-3)$ and $(-3,5)$.

- Watch Video Solution

82. Find the equation of the circle when the end points of a diameter are as below :
$(3,2)$ and $(2,5)$.

- Watch Video Solution

83. Find the equation of the circle when the end points of a diameter are as below :
$(5,-3)$ and (2, -4).

- Watch Video Solution

84. Find the equation of the circle when the end points of a diameter are as below:
$(-1,2)$ and (3, -4).

- Watch Video Solution

85. Find the equation of the circle when the end points of a diameter are as below :
(p, q) and (r, s).

- Watch Video Solution

86. Find the equation of the circle, which passes through the origin and makes intercepts 3 and 4 on the axes.

Watch Video Solution

87. Find the equation of the circle, which passes through the origin and cuts off intercepts 'a' and 'b' from the axes.

- Watch Video Solution

88. If one end of a diameter of the circle : $x^{2}+y^{2}-4 x-6 y+11=0$ is $(8,4)$, show that the co-ordinates of the other end are $(-4,2)$.

- Watch Video Solution

89. One end of a diameter of a circle : $x^{2}+y^{2}-3 x+5 y-4=0$ is (1 ,
$-6)$, find the other end.
90. Find the equation of the circle drawn on the diagonals of the rectangle as its diameter whose sides are :
$x=6, x=-3, y=3$ and $y=-1$.

- Watch Video Solution

91. Find the equation of the circle drawn on the diagonals of the rectangle as its diameter whose sides are :
$x=5, x=8 y=4, y=7$.

- Watch Video Solution

92. Find the equation of the circle drawn on the diagonals of the rectangle as its diameter whose sides are :
$x=4, x=-5, y=5, y=-3$.
93. Find the equation of the parabola with vertex at the origin and satisfying the condition :

Focus (2, 0), Directrix x = -2 .

- Watch Video Solution

94. Find the equation of the parabola with vertex at the origin and satisfying the condition :

Focus (6,0), Directrix $x=-6$.

- Watch Video Solution

95. Find the equation of the parabola with vertex at the origin and satisfying the condition :

Focus $(0,-3)$, Directrix $y=3$.
96. Find the length of latus-rectum of the following condition :

Focus (2, 0), Directrix $x=-2$.

- Watch Video Solution

97. Find the length of latus-rectum of the following condition :

Focus (6,0), Directrix x $=-6$.

- Watch Video Solution

98. Find the length of latus-rectum of the following condition:

Focus (0, -3), Directrix y $=3$.

- Watch Video Solution

99. Find the equation of the parabola that satisfies the following condition :

Vertex (0.0), passing through $(2,3)$ and axis is along x-axis.

- Watch Video Solution

100. Find the equation of the parabola that satisfy the given conditions:

Vertex $(0,0)$, passing through $(5,2)$ and symmetric with respect to y-axis.

- Watch Video Solution

101. Find the equation of the following parabola:

Focus at (3,-4): Directrix $x+y-2=0$

- Watch Video Solution

102. Find the equation of the following parabola:

Focus at (5,0), Directrix $x=-5$.
103. Find the equation of the following parabola :

Vertex at (1,2), Directrix $x+y+1=0$.

- Watch Video Solution

104. Find the equation of the following parabola :

Vertex at $(6,-3)$, Directrix $3 x-5 y+1=0$.

- Watch Video Solution

105. Find the equation of the following parabola :

Vertex (0,0), Focus (3, 0) .

- Watch Video Solution

106. Find the equation of the following parabola :

Vertex (0, 0), Focus (-2, 0).
107. Find the equation of the parabola with vertex at $(0,0)$ and focus is at (0, 2).

- Watch Video Solution

108. Find the equation of the following parabola :

Vertex (4,1): Focus (4, - 3).

- Watch Video Solution

109. For the following parabola, find the axes, co-ordinates of the foci and the equations of the directrices and lengths of latus-rectum :
$y^{2}=8 x$.

- Watch Video Solution

110. For the following parabola, find the axes, co-ordinates of the foci and the equations of the directrices and lengths of latus-rectum :
$y^{2}=12 x$.

- Watch Video Solution

111. For the following parabola, find the axes, co-ordinates of the foci and the equations of the directrices and lengths of latus-rectum :
$y^{2}=-8 x$.

(Watch Video Solution

112. For the following parabola, find the axes, co-ordinates of the foci and the equations of the directrices and lengths of latus-rectum :
$y^{2}=10 x$.

- Watch Video Solution

113. For the following parabola, find the axes, co-ordinates of the foci and the equations of the directrices and lengths of latus-rectum :
$x^{2}=6 y$.

- Watch Video Solution

114. In each of the following find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum .

$$
x^{2}=-9 y
$$

- Watch Video Solution

115. For the following parabola, find the axes, co-ordinates of the foci and the equations of the directrices and lengths of latus-rectum :
$x^{2}=-16 y$.

- Watch Video Solution

116. Find the equations of the parabola with vertices at the origin and satisfying the following condition :

Focus at (-a, 0).

- Watch Video Solution

117. Find the equations of the parabola with vertices at the origin and satisfying the following condition :

Directrix $\mathrm{y}=2$.

- Watch Video Solution

118. Find the equations of the parabola with vertices at the origin and satisfying the following condition :

Passing through $(2,3)$ and axis along x-axis.

- Watch Video Solution

119. Find the equation of the parabola whose latus-rectum is 4 units , axis is the line $3 x+4 y-4=0$ and the tangent at the vertex is the line $4 x-3 y+7=0$.

- Watch Video Solution

120. Prove that the equation $y^{2}+2 a x+2 b y+c=0$ represent a parabola whose axis is parallel to the axis of x . Find its vertex.

- Watch Video Solution

121. Find the equation of the parabola which is symmetric about y-axis and passes through the point $(2,-3)$.

- Watch Video Solution

122. Find the foci, vertices, directrices, and axes of following parabola. Also draw their rough sketches:
$y=x^{2}-2 x+3$.

- Watch Video Solution

123. Find the foci, vertices, directrices, and axes of following parabola. Also draw their rough sketches :
$y=-4 x^{2}+3 x$.

- Watch Video Solution

124. Find the foci, vertices, directrices, and axes of following parabola. Also draw their rough sketches:
$x^{2}+2 y-3 x+5=0$.

- Watch Video Solution

125. Find the vertex, focus, latus-rectum, axis and directrix of the parabola $x^{2}-y-2 x=0$.

- Watch Video Solution

126. Find the vertex, axis, focus and directrix of the parabola $x^{2}+4 x+2 y-7=0$.

- Watch Video Solution

127. Find the focus, vertex, equation of the directrix and the axis of the parabola $x=y^{2}-2 y+3$.

- Watch Video Solution

128. Find the area of the triangle formed by the lines joining the vertex of the parabola $x^{2}=12 y$ to the ends of its latus-rectum.
129. Find the equation of the parabola whose focus is $(1,1)$ and tangent at the vertex is $x+y=1$.

- Watch Video Solution

130. Show that the area of the triangle inscribed in the parabola $y^{2}=4 a x$ is $: \frac{1}{8 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|$, where y_{1}, y_{2}, y_{3} are the ordinates of the angular points.

- Watch Video Solution

131. The focus of a parabolic mirror as shown in the figure is at a distance of 6 m from its vertex. If the mirror is 20 cm deep, show that

$M N=8 \sqrt{30} \mathrm{~m}$.

- Watch Video Solution

132. The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m . Find the length of a supporting wire attached to the roadway 18 m from the middle.

- Watch Video Solution

133. A water jet from the fountain reaches its maximum height of 4 metres at a distance of 0.5 metre from the vertical passing through the point A of the water outlet. Show that the height of the jet above the horizontal AX at a distance of 0.75 metre from the point A is 3 metres.

- Watch Video Solution

134. A beam is supported at its end points by supports which are 12 metres apart. Since the load is concentrated at its centre, there is a deflection of 3 cm at the centre and the deflected beam is in the shape of a parabola. How far from the centre is the deflection 1 cm ?

- Watch Video Solution

135. If the eccentricity is zero, show that the ellipse becomes a circle.

- Watch Video Solution

136. Find the equation of the ellipse with foci at $(\pm 5,0)$ and $x=\frac{36}{5}$ as one directrix.

- Watch Video Solution

137. Find the lengths of the major and minor axes, the co-ordinates of the foci, the vertices, the eccentricity, length of latus-rectum and equations of the directrices of the following ellipse:

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1
$$

- Watch Video Solution

138. Find the lengths of the major and minor axes, the co-ordinates of the foci, the vertices, the eccentricity, length of latus-rectum and equations of the directrices of the following ellipse :

$$
\frac{x^{2}}{36}+\frac{y^{2}}{16}=1 .
$$

139. Find the lengths of the major and minor axes, the co-ordinates of the foci, the vertices, the eccentricity, length of latus-rectum and equations of the directrices of the following ellipse :
$\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$.

- Watch Video Solution

140. Find the lengths of the major and minor axes, the co-ordinates of the foci, the vertices, the eccentricity, length of latus-rectum and equations of the directrices of the following ellipse :

$$
\frac{x^{2}}{16}+\frac{y^{2}}{9}=1 .
$$

- Watch Video Solution

141. Find the lengths of the major and minor axes, the co-ordinates of the foci, the vertices, the eccentricity, length of latus-rectum and equations of
the directrices of the following ellipse :
$\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$.

- Watch Video Solution

142. Find the lengths of the major and minor axes, the co-ordinates of the foci, the vertices, the eccentricity, length of latus-rectum and equations of the directrices of the following ellipse :

$$
\frac{x^{2}}{49}+\frac{y^{2}}{36}=1
$$

- Watch Video Solution

143. Find the lengths of the major and minor axes, the co-ordinates of the foci, the vertices, the eccentricity, length of latus-rectum and equations of the directrices of the following ellipse :

$$
\frac{x^{2}}{100}+\frac{y^{2}}{400}=1
$$

144. Find the lengths of the major and minor axes, the co-ordinates of the foci, the vertices, the eccentricity, length of latus-rectum and equations of the directrices of the following ellipse :
$x^{2}+16 y^{2}=16$.

- Watch Video Solution

145. Find the lengths of the major and minor axes, the co-ordinates of the foci, the vertices, the eccentricity, length of latus-rectum and equations of the directrices of the following ellipse:
$16 x^{2}+y^{2}=16$.

- Watch Video Solution

146. Find the lengths of the major and minor axes, the co-ordinates of the foci, the vertices, the eccentricity, length of latus-rectum and equations of the directrices of the following ellipse:
$36 x^{2}+4 y^{2}=144$.

(D) Watch Video Solution

147. Find the lengths of the major and minor axes, the co-ordinates of the foci, the vertices, the eccentricity, length of latus-rectum and equations of the directrices of the following ellipse :

$$
9 x^{2}+4 y^{2}=36
$$

- Watch Video Solution

148. Find the lengths of the major and minor axes, the co-ordinates of the foci, the vertices, the eccentricity, length of latus-rectum and equations of the directrices of the following ellipse :
$4 x^{2}+9 y^{2}=36$.

- Watch Video Solution

149. Find the lengths of the major and minor axes, the co-ordinates of the foci, the vertices, the eccentricity, length of latus-rectum and equations of
the directrices of the following ellipse :
$16 x^{2}+25 y^{2}=400$.

- Watch Video Solution

150. Find the equation for ellipse that satisfies the given conditions

Vertices $(\pm 5,0)$, foci $(\pm 4,0)$

- Watch Video Solution

151. Find the equation of the ellipse satisfying the given condition :

Vertices $(\pm 6,0)$, foci $(\pm 4,0)$.

- Watch Video Solution

152. Find the equation for ellipse that satisfies the given conditions

Vertices $(0, \pm 13)$, foci $(0, \pm 5)$
153. Find the equation of the ellipse satisfying the given condition : Ends of major axis $(\pm 3,0)$, ends of minor axis $(0, \pm 2)$.

- Watch Video Solution

154. Find the equation of the ellipse satisfying the given condition :

Ends of major axis $(0, \pm \sqrt{5})$, ends of minor axis $(\pm 1,0)$.

- Watch Video Solution

155. Find the eqation for the ellipse that satisfies the given conditions :

Length of major axis 26 , foci $(\pm 5,0)$

- Watch Video Solution

156. Find the eqation for the ellipse that satisfies the given conditions :

Length of major axis 16 , foci $(0, \pm 6)$

Watch Video Solution

157. Find the equation for the elllipse that satisfy the given conditions:
$\operatorname{Foci}(\pm 3,0), \mathrm{a}=4$.

- Watch Video Solution

158. Find the equation for the ellipse that satisfies the given condition :

Centre at (0,0), major axis along.y-axis and passes through the points (3, 2) and (1, 6).

- Watch Video Solution

159. Find the equation for the ellipse that satisfies the given condition : Major axis on the x-axis-an passes through the points $(4,3)$ and $(6,2)$.

- Watch Video Solution

160. Find the equation of the ellipse satisfying the given condition :

Axes along co-ordinate axes, passing through $(4,3)$ and $(-1,4)$.

- Watch Video Solution

161. Find the equation of the ellipse referred to its axes as the axes of coordinates :
whose major axis $=6$ and minor axis $=4$.

- Watch Video Solution

162. Find the equation of the ellipse referred to its axes as the axes of coordinates:
whose major axis $=8$ and eccentricity $=\frac{1}{2}$.

- Watch Video Solution

163. Find the equation of the ellipse referred to its axes as the axes of coordinates :
which passes through the points ($-2,1$) and eccentricity $=\sqrt{\frac{2}{5}}$

- Watch Video Solution

164. Find the equation of an ellipse whose axes lie along the coordinate axes, which passes through the point $(-3,1)$ and has eccentricity equal to $\sqrt{2 / 5}$
165. Find the equation of the ellipse referred to its axes as the axes of coordinates:
whose latus-rectum is 5 and eccentricity $\frac{2}{3}$.

- Watch Video Solution

166. Find the equation of the ellipse referred to its axes as the axes of coordinates :
whose foci are (2,0), $(-2,0)$ and latus-rectum is 6 .

- Watch Video Solution

167. Find the eccentricity of the ellipse if:
the latus-rectum is one half of its minor axis.

- Watch Video Solution

168. Find the eccentricity of the ellipse if :
the latus-rectum is one half of its major axis.

- Watch Video Solution

169. Find the eccentricity of the ellipse if :
the distance between the foci is equal to the length of latus-rectum.

- Watch Video Solution

170. Find the equation of the ellipse refer to its centre whose minor axis is equal to distance between the foci and latus rectum is 10 .

- Watch Video Solution

171. Find the equation of the ellipse whose foci are $(2,3),(-2,3)$ and whose semi-minor axes is $\sqrt{5}$.

Watch Video Solution

172. Find the equation of the set of all points whose distances from $(0,4)$ are $\frac{2}{3}$ of their distances from the line $\mathrm{y}=9$. Name the curve.

- Watch Video Solution

173. Show that : $4 x^{2}+16 y^{2}-24 x-32 y=12$ is the equation of ellipse, and find its vertices, foci, eccentricity and directrices.

- Watch Video Solution

174. Show that $4 x^{2}+8 x+y^{2}-4 y+4=0$ represents an ellipse. Find its eccentricity, co-ordinates of foci, equations of major and minor axes
and latus-rectum.

- Watch Video Solution

175. Show that $4 x^{2}+8 x+y^{2}-4 y+4=0$ represents an ellipse. Find its eccentricity, co-ordinates of foci, equations of major and minor axes and latus-rectum.

- Watch Video Solution

176. Find the centre, length of the axes, eccentricity and foci of the ellipse
$: 12 x^{2}+4 y^{2}+24 x-16 y+25=0$.

- Watch Video Solution

177. In the ellipse $25 x^{2}+9 y^{2}-150 x-90 y+225=0$

- Watch Video Solution

178. A rod of length 12 cm moves with its ends always touching the coordinates axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end-in contact with x -axis.

- Watch Video Solution

179. A man running a race-course notes that the sum of the distances from two flag posts from him is always 10 m and the distance between the flag posts is 8 m . Find the equation of the path traced by the man.

- Watch Video Solution

180. Find the co-ordinates of the vertices, the foci, the eccentricity and the length of latus-rectum of the hyperbola:

$$
\frac{x^{2}}{16}-\frac{y^{2}}{9}=1 .
$$

- Watch Video Solution

181. Find the co-ordinates of the vertices, the foci, the eccentricity and the length of latus-rectum of the hyperbola :

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

- Watch Video Solution

182. Find the co-ordinates of the vertices, the foci, the eccentricity and the length of latus-rectum of the hyperbola:
$\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$.

- Watch Video Solution

183. Find the co-ordinates of the vertices, the foci, the eccentricity and the length of latus-rectum of the hyperbola :

$$
16 x^{2}-9 y^{2}=576
$$

- Watch Video Solution

184. Find the co-ordinates of the vertices, the foci, the eccentricity and the length of latus-rectum of the hyperbola :
$y^{2}-16 x^{2}=16$.

- Watch Video Solution

185. Find the coordinates of the foci and the vertices, the ecentricity and the length of the latus rectum of the hyperbolas :
$5 y^{2}-9 x^{2}=36$

- Watch Video Solution

186. Find the co-ordinates of the vertices, the foci, the eccentricity and the length of latus-rectum of the hyperbola:
$49 y^{2}-16 x^{2}=784$.

- Watch Video Solution

187. Find the co-ordinates of the vertices, the foci, the eccentricity and the length of latus-rectum of the hyperbola :
$9 y^{2}-4 x^{2}=36$.

- Watch Video Solution

188. Find the lengths of transverse and conjugate axes, co-ordinates of foci, vertices and the eccentricity for the following hyperbola :

$$
16 x^{2}-9 y^{2}=144
$$

(Watch Video Solution

189. Find the lengths of transverse and conjugate axes, co-ordinates of foci, vertices and the eccentricity for the following hyperbola : $2 x^{2}-3 y^{2}-6=0$.

- Watch Video Solution

190. Find the lengths of transverse and conjugate axes, co-ordinates of foci, vertices and the eccentricity for the following hyperbola :
$3 x^{2}-2 y^{2}=1$.

- Watch Video Solution

191. Find the equations of the hyperbola satisfying the given conditions. Vertices $(\pm 2,0)$, foci $(\pm 3,0)$

- Watch Video Solution

192. Find the equations of the hyperbola satisfying the given conditions. Vertices $(0, \pm 3)$ foci $(0, \pm 5)$

- Watch Video Solution

193. Find the equation of the hyperbola satisfying the given condition :

Vertices $(0, \pm 5)$, Foci $(0, \pm 8)$.

- Watch Video Solution

194. Find the equation of the hyperbola satisfying the given condition :

Foci $(\pm 2,0), e=\frac{3}{2}$.

- Watch Video Solution

195. Find the equation of the hyperbola satisfying the given condition :

Vertices $(\pm 7,0), e=\frac{4}{3}$.

- Watch Video Solution

196. Find the equation of the hyperbola satisfying the given condition :

Vertices $(0, \pm 7), e=\frac{4}{3}$.
197. Find the equation of the hyperbola satisfying the given condition :

Vertices $(0, \pm 6), e=\frac{5}{3}$.

- Watch Video Solution

198. Find the equation of the hyperbola satisfying the given condition :

Vertices $(\pm 6,0)$, one of the directrices is $x=4$.

- Watch Video Solution

199. Find the equation of hyperbola satisfying the given conditions.

Foci $(0, \pm \sqrt{10})$, passing through $(2,3)$

- Watch Video Solution

200. Find the equations of the hyperbola satisfying the given conditions.

Foci $(\pm 5,0)$ the transverse axis is of length 8 .

- Watch Video Solution

201. Find the equation of the hyperbola satisfying the given condition :

Foci $(0, \pm 4)$, transverse axis is of length 6 .

- Watch Video Solution

202. Find the equations of the hyperbola satisfying the given conditions.

Foci $(0, \pm 13)$ the conjugate axis is of length 24 .

- Watch Video Solution

203. Find the equation of the hyperbola satisfying the given condition :

Foci $(0, \pm 12)$, conjugate axis is of length 24 .
204. Find the equation of the hyperbola satisfying the given conditions.

Foci $(\pm 3 \sqrt{5}, 0)$ the latus rectum is of length 8 .

- Watch Video Solution

205. Find the equation of the hyperbola satisfying the given condition :

Foci $(\pm 4,0)$, latus rectum of length 12 .

- Watch Video Solution

206. Find the equation of the hyperbola satisfying the given condition :

Foci $(0, \pm 12)$, latus rectum of length 36 .

- Watch Video Solution

207. Find the equation of the hyperbola, referred to its axes as each of coordinates if:
distance between foci is 5 and conjugate axis is 3 .

- Watch Video Solution

208. Find the equation of the hyperbola, referred to its axes as each of coordinates if:
conjugate axis is 5 and passes through the point (1, -2).

- Watch Video Solution

209. Find the equation of the hyperbola whose vertices are $(\pm 6,0)$ and one of the directrices is $\mathrm{x}=4$.

- Watch Video Solution

210. Find the equation of the hyperbola with vertices are $(\pm 6,0)$ and $e=\frac{5}{3}$. Locate its foci.

- Watch Video Solution

211. Find the equation of the hyperbola passing through the points $(2,1)$ and $(4,3)$.

- Watch Video Solution

212. For the hyperbola $4 x^{2}-9 y^{2}=36$, find the Foci.

- Watch Video Solution

213. Find the centre, eccentricity, foci and directrices of the hyperbola :
$9 x^{2}-16 y^{2}+18 x+32 y-151=0$.
214. Show that the triangle, the co-ordinates of whose vertices are given by integers can never be an equilateral triangle.

- Watch Video Solution

215. If $a \neq b \neq c$, prove that $\left(a, a^{2}\right),\left(b, b^{2}\right),\left(c, c^{2}\right)$ can never be collinear.

Watch Video Solution

216. The vertices of a triangle $A B C$ are $A(3,0), B(0,6)$ and $C(6,9)$. A line $D E$ divides both $A B$ and $A C$ in the ratio $1: 2$ meeting $A B$ in D and $A C$ in E. Prove that $\triangle A B C=9 \triangle A D E$.

- Watch Video Solution

217. A and A^{\prime} be the points $(5,0)$ and $(-5,0)$ respectively. Find the equation of the set of all points $P(x, y)$ such that $|A P|-1 A^{\prime} P \mid=6$.

Watch Video Solution

218. The extremities of the base of an isosceles triangle are the points (2a,

0) and ($0, a$). The equation of one of the sides is $x=2 a$. Find the equations of the other two sides and the area of the triangle.

- Watch Video Solution

219. A line is such that its segment between the straight line $5 x-y-4=0$ and $3 x+4 y-4=0$ is bisected at the point $(1,5)$ Obtain the equation.

- Watch Video Solution

220. Find the distance of the line $4 x-y=0$ from the point $P(4,1)$ measured along the line making an angle of 135° with the positive x-axis.

Watch Video Solution

221. Prove that the st. line $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ divides the join of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the ratio $-\frac{a x_{1}+b y_{1}+c}{a x_{2}+b y_{2}+c}$.

- Watch Video Solution

222. Prove that $(-1,4)$ is the orthocentre of the triangle formed by the lines whose equations are : $x-y+1=0, x-2 y+4=0$ and $9 x-3 y+1=0$.

- Watch Video Solution

223. The equation of the perpendicular bisector of the side $A B$ of a triangle $A B C$ is $x-y+5=0$. If the point A is $(1,-2)$, find the co-ordinates of
the point B.

- Watch Video Solution

224. Let the opposite angular points of a square be $(3,4)$ and $(1,-1)$. Find the coordinates of the remaining angular points.

- Watch Video Solution

225. Using the concept of slope, prove that medians of an equilateral triangle are perpendicular to the corresponding sides.

- Watch Video Solution

226. Show that the perpendicular drawn from the point $(4,1)$ on the line segment joining $(6,5)$ and $(2,-1)$ divides it internally in the ratio $8: 5$.
227. A rectangle has opposite vertices at the points $(1,2)$ and $(5,5)$. If the other vertices lie on the line $x=3$, find the equation of the sides of the rectangle.

- Watch Video Solution

228. Find the centroid, incentre, circumcentre and orthocentre of the triangle whose sides have the equations : $3 x-4 y=0,12 y+5 x=0$ and $y-15$ $=0$.

- Watch Video Solution

229. The vertices of a triangle are : $P\left(x_{1}, x_{1} \tan \theta_{1}\right), Q\left(x_{2}, x_{2} \tan \theta_{2}\right)$ and $R\left(x_{3}, x_{3} \tan \theta_{3}\right)$. If the circumcentre of $\triangle P Q R$ coincides with the origin and $H(\bar{x}, \bar{y})$ is the orthocentre, show that : $\frac{\bar{y}}{\bar{x}}=\frac{\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}}{\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}}$.
230. The points $(1,3)$ and $(5,1)$ are the opposite vertices of a rectangle. The other two vertices lie on the line $y=2 x+c$. Find c and the remaining vertices.

- Watch Video Solution

231. One side of a rectangle lies along the line $4 x+7 y+5=0$. Two of its vertices are $(-3,1)$ and $(1,1)$.Find the equations of the other three sides.

- Watch Video Solution

232. The consecutive sides of a parallelogram are $4 x+5 y=0$ and $7 x+2 y=$ 0 . If the equation of one of the diagonals is $11 x+7 y=9$, find the equation of the other diagonal.

- Watch Video Solution

233. One side of a square is inclined to the x-axis at an angle α and one of its extremities is at the origin. If the side of the square is 4 , find the equations of the diagonals of the square.

- Watch Video Solution

234. On the portion of the line $x+3 y-3=0$, which is intercepted between the co-ordinate axes, a square is constructed on the side of the line away from the Origin. Find the co-ordinates of the intersection of its diagonals. Also, find the equations of its sides.

- Watch Video Solution

235. Find the direction in which a straight line must be drawn through the point $(-1,2)$ so that its point of intersection with the line $x+y=4$ may be at a distance of 3 units from this point.
236. The hypotenuse of a right triangle has its ends at the points $(1,3)$ and ($-4,1$). Find the equation of the legs (perpendicular sides) of the triangle.

- Watch Video Solution

237. A ray of light passes through the point $(1,2)$ reflects on the x-axis at a point A and the reflected ray passes through the point (5, 3). Find the coordinates of A .

- Watch Video Solution

238. A person standing at the junction (crossing) of two straight paths represented by the equations: $2 x-3 y-4=0$ and $3 x+4 y-5=0$, wants to reach the path whose equation is $6 x-7 y+8=0$ in the least time. Find the equation of the path that he should follow.
239. Let (2, 1), (-3,-2) and (a, b) form a triangle. Show that the collection of the points (a, b) forms a line for which triangle is isosceles. Find the equation of the line.

- Watch Video Solution

240. Does the point ($-2.5,3.5$) lie inside, outside or on the circle $x^{2}+y^{2}=25 ?$

- Watch Video Solution

241. Prove that the centres of the three circles :
$x^{2}+y^{2}-4 x-6 y-14=0, x^{2}+y^{2}+2 x+4 y-5=0 \quad$ and
$x^{2}+y^{2}-10 x-16 y+7=0$ are collinear.

- Watch Video Solution

242. Prove that, through three given points which are not collinear, there is only one circle.

- Watch Video Solution

243. Find equations to the circles touching Y-axis at $(0,3)$ and making intercept of 8 units on the X -axis.

- Watch Video Solution

244. Find the area of the equilateral triangle that can be inscribed in the circle : $x^{2}+y^{2}-4 x+6 y-3=0$.

- Watch Video Solution

245. Find the equation of the circle circumscribing the quadrilateral
formed by the straight lines
$x-y=0,3 x+2 y=5, x-y=10$ and $2 x+3 y=0$.

- Watch Video Solution

246. If lines $5 \mathrm{x}+12 \mathrm{y}-10=0$ and $5 \mathrm{x}-12 \mathrm{y}-40=0$ touch a circle C_{1} of diameter 6, and if the centre of C_{1} lies in the first quadrant, find the equation of a circle C_{2}, which is concentric with C_{1} and cuts intercept of length 8 on these lines.

- Watch Video Solution

247. If the distances from the origin to the centres of the three circles $x^{2}+y^{2}-2 \lambda x=c^{2}$, where c is constant and λ is variable, are in G.P., prove that the lengths of tangents drawn from any point on the circle $x^{2}+y^{2}=c^{2}$ to the three circles are also in GP.

- Watch Video Solution

248. Determine the equation of the circle whose diameter is the chord $\mathrm{x}+$ $\mathrm{y}=1$ of the circle $x^{2}+y^{2}=4$.

Watch Video Solution

249. A rectangle $A B C D$ is inscribed in a circle with a diameter lying along the line $3 y=x+10$. If A and B are the points $(-6,7)$ and $(4,7)$ respectively, find the area of the rectangle

- Watch Video Solution

250. Find the equation of the circle, which passes through the origin and cut off equal chords of the length 'a' from the straight lines $y=x$ and $y=-x$.

- Watch Video Solution

251. Prove that the equation $y^{2}+2 A x+2 B y+c=0$ represents a parabola whose axis is parallel to the x-axis.

Watch Video Solution

252. A double ordinate of the parabola $y^{2}=4 a x$ is of length 8 a. Prove that the lines from the Vertex to its two ends are at right angles.

- Watch Video Solution

253. Prove that the equation of the parabola whose vertex and focus are on the X -axis at a distance a and a'from the origin respectively is $y^{2}=4\left(a^{\prime}-a\right)(x-a)$

- Watch Video Solution

254. Find the focus of the parabola
$x^{2}=4 y$

- Watch Video Solution

255. Show that the locus of the middle points of normal chords of the parabola $y^{2}=4 a x$ is

- Watch Video Solution

256. If any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ cuts off intercepts of length h and k on the axes, then $\frac{a^{2}}{h^{2}}+\frac{b^{2}}{k^{2}}$ is equal to

- Watch Video Solution

257. The vertices of a quadrilateral are situated at foci and the extremities of the minor axis of the ellipse $4 x^{2}+9 y^{2}=36$. Find the area of the
quadrilateral.

- Watch Video Solution

258. Find the equation of the hyperbola whose foci are $(8,3),(0,3)$ and whose eccentricity is $\frac{4}{3}$.

- Watch Video Solution

259. Find the slope of the line passing through the points:
(3, - 2) and ($7,-2$).
A. 0
B. undefined
C. 1
D. 4

Answer:

260. The slope of the line passing through the points $(3,-2)$ and $(-1,4)$ is:
A. $-\frac{2}{3}$
B. $-\frac{3}{2}$
C. $\frac{3}{2}$
D. 0

Answer:

- Watch Video Solution

261. Slope of the line passing through the points $(3,-2)$ and $(3,4)$ is:
A. undefined
B. 0
C. 1
D. 6

Answer:

- Watch Video Solution

262. If the equation of a circle is: $x^{2}+y^{2}+8 x-10 y+8=0$, then its centre is :
A. $(8,-10)$
B. $(-8,10)$
C. $(-4,5)$
D. $(4,-5)$.

Answer:
263. The centre of the circle $x^{2}+y^{2}-6 x+4 y-1=0$ is
A. $(-6,4)$
B. $(4,-1)$
C. $(3,-2)$
D. $(-3,2)$.

Answer:

- Watch Video Solution

264. If the equation of a circle is: $x^{2}+y^{2}-4 x-8 y-45=0$, then its centre is :
A. $(4,8)$
B. $(-4,-8)$
C. (-2, -4)
D. $(2,4)$.

- Watch Video Solution

265. The centre of the circle $x^{2}+y^{2}+8 x+10 y-8=0$ is:
A. $(-4,-5)$
B. $(4,5)$
C. $(-4,5)$
D. $(4,-5)$.

Answer:

266. The radius of the circle : $x^{2}+y^{2}-8 x+10 y-12=0$ is:
A. $\sqrt{35}$
B. $\sqrt{53}$
C. 53
D. 35

Answer:

- Watch Video Solution

267. The directrix of the parabola $y^{2}=4 a x$ is:
A. $x=-a$
B. $x-a=0$
C. $x=0$
D. None of these.

Answer:

268. The directrix of the parabola $y^{2}+4 x+3=0$ is:
A. $x=\frac{1}{4}$
B. $x+\frac{1}{4}=0$
C. $x-\frac{4}{3}=0$
D. $x-\frac{3}{4}=0$.

Answer:

- Watch Video Solution

269. The focus of the parabola $y^{2}=4 a x$ is:
A. $(a, 0)$
B. $(0, \mathrm{a})$
C. $(0,0)$
D. None of these.

Answer:

D Watch Video Solution

270. The vertex of the parabola $y^{2}=4 a x$ is
A. $(0,0)$
B. $(-9,0)$
C. $(9,0)$
D. $(0,9)$.

Answer:

271. The focus of the parabola $y=2 x^{2}+x$ is
A. $(0,0)$
B. $\left(\frac{1}{2}, \frac{1}{4}\right)$
C. $\left(-\frac{1}{4}, 0\right)$
D. None of these.

Answer:

- Watch Video Solution

272. The foci of the ellipse $9 x^{2}+4 y^{2}=36$ are
A. $(-5,0)$
B. $(0, \pm \sqrt{5})$
C. $(\pm 5,0)$
D. $(0,-5)$.

Answer:

273. The eccentricity of the parabola $y^{2}=-8 x$ is:
A. -2
B. 2
C. -1
D. 1

Answer:

D Watch Video Solution

274. The vertex of the parabola $y^{2}=4 a(x+a)$ is:
A. $(0,0)$
B. $(-a, 0)$
C. $(a, 0)$
D. $(0, a)$.

- Watch Video Solution

275. The eccentricity of the conic $4 x^{2}-9 y^{2}=2$ is:
A. $\sqrt{\frac{13}{3}}$
B. $\frac{\sqrt{13}}{3}$
C. $\sqrt{\frac{5}{3}}$
D. 2

Answer:

Watch Video Solution
276. If e, e ' be the eccentricities of two conics S and S^{\prime} and if $e^{2}+e^{, 2}=3$, then both S and S ' can be :
A. ellipses
B. parabolas
C. hyperbolas
D. None of these.

Answer:

- Watch Video Solution

277. The equation $\frac{x^{2}}{2-\lambda}+\frac{y^{2}}{\lambda-5}+1=0$ represents an ellipse if:
A. rgt2
B. rgt5
C. 2 lt rlt 5
D. None of these.

Answer:

278. The length of the latus-rectum of the parabola $x^{2}-4 x-8 y+12=0$ is:
A. 4
B. 6
C. 8
D. 10

Answer:

D Watch Video Solution

279. The focus of the parabola $y=2 x^{2}+x$ is
A. $(0,0)$
B. $\left(\frac{1}{2}, \frac{1}{4}\right)$
C. $\left(-\frac{1}{4}, 0\right)$
D. $\left(-\frac{1}{4}, 8\right)$.

Answer:

- Watch Video Solution

280. The axis of the parabola $9 y^{2}-16 x-12 y-57=0$ is:
A. $3 \mathrm{y}=2$
B. $x+3 y=3$
C. $2 \mathrm{x}=3$
D. $y=3$.

Answer:

- Watch Video Solution

281. The equation $x^{2}+3 y^{2}-9 x+2 y+1=0$ represents
A. ellipses
B. parabolas
C. hyperbolas
D. circle.

Answer:

- Watch Video Solution

282. A bridge is in the shape of a semi-ellipse. It is 400 metres One and has a maximum height of 10 metres at the middle point. The height of the bridge at a point distant 80 metres from one end is :
A. 4 metres
B. 2 metres
C. 8 metres
D. $\sqrt{91}$ metres .

Answer:

D Watch Video Solution

283. The eccentricity of the ellipse $4 x^{2}+9 y^{2}=36$ is :
A. $\frac{1}{2 \sqrt{3}}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{\sqrt{5}}{3}$
D. $\frac{\sqrt{5}}{6}$.

Answer:

284. The foci of the ellipse $9 x^{2}+4 y^{2}=36$ are

$$
\text { A. }(-5,0)
$$

B. $(0, \pm \sqrt{5})$
C. $(\pm 5,0)$
D. $(0,-5)$.

Answer:

- Watch Video Solution

285. The foci of the ellipse $25(x+1)^{2}+9(y+2)^{2}=225$, are at :
A. ($-1,2$) and ($-1,-6$)
B. $(-2,1)$ and $(-2,6)$
C. ($-1,-2$) and ($-2,-1$)
D. $(-1,-2)$ and $(-1,-9)$.

Answer:

286. The lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ are perpendicular to each other if
A. $a_{1} b_{2}=a_{2} b_{1}$
B. $a_{1} a_{2}=b_{1} b_{2}$
C. $a_{1} a_{2}+b_{1} b_{2}=0$
D. $a_{1} b_{2}+a_{2} b_{1}=0$.

Answer:

- Watch Video Solution

287. The equation of straight line passing through the point $(2,3)$ and perpendicular to the line $4 x-3 y=10$ is:
A. $-3 x+4 y=15$
B. $4 x+3 y=5$
C. $3 x+4 y=18$
D. $3 x+10 y=4$.

Answer:

- Watch Video Solution

288. The equations $y=x \sqrt{3}, \mathrm{y}=1$ are the sides of :
A. an equilateral triangle
B. a right-angled triangle
C. an isosceles triangle
D. an obtuse angled triangle.

Answer:

- Watch Video Solution

289. If a,b,c are in AP then $a x+b y+c=0$ represents
A. $(1,-2)$
B. $(-1,2)$
C. $(1,2)$
D. $(-1,-2)$.

Answer:

- Watch Video Solution

290. The coordinates of the foot of the perpendicular from $(2,3)$ to the line $3 x+4 y-6=0$ are
A. $\left(\frac{-14}{25}, \frac{-27}{25}\right)$
B. $\left(\frac{14}{25}, \frac{-27}{25}\right)$
C. $\left(\frac{-14}{25}, \frac{27}{25}\right)$
D. $\left(\frac{14}{25}, \frac{27}{25}\right)$.
291. Find the orthocentre of the triangle formed by the lines $x y=0$ and $x+y=1$
A. $\left(\frac{1}{2}, \frac{1}{2}\right)$
B. $\left(\frac{1}{3}, \frac{1}{3}\right)$
C. $\left(\frac{1}{4}, \frac{1}{4}\right)$
D. $(0,0)$.

Answer:

- Watch Video Solution

292. If the sum of the distances of a variable point from two perpendicular lines in a plane is 1 , then its locus is:

A. a square

B. a circle
C. a straight line
D. two intersecting lines.

Answer:

- Watch Video Solution

293. Point Q is symmetric to $P(4,-1)$ with respect to the bisector of the first quadrant. The length $P Q$ is :
A. $3 \sqrt{2}$
B. $5 \sqrt{2}$
C. $7 \sqrt{2}$
D. $9 \sqrt{2}$.

Answer:

294. The radius of the circle, which is touched by the line $y=x$ and has its centre on the positive direction of x-axis and also cuts-off a chord of length 2 units along the line $\sqrt{3} y-x=0$ is:
A. $\sqrt{5}$
B. $\sqrt{3}$
C. $\sqrt{2}$
D. 1

Answer:

- Watch Video Solution

295. Tangents drawn from the point $(4,3)$ to the circle $x^{2}+y^{2}-2 x-4 y=0$ are inclined at an angle :
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$.

Answer:

D Watch Video Solution

296. If I denotes the semi-latus rectum of the parabola $y^{2}=4 a x$ and SP and SQ denote the segments of any focal chord $P Q, S$ being the focus, then SP, I and SQ are in the relation :
A. A.P.
B. G.P.
C. H.P.
D. $l^{2}=S P^{2}+S Q^{2}$.

Answer:

297. The eccentricity of the ellipse : $x^{2}+4 y^{2}+8 y-2 x+1=0$ is :
A. $\frac{\sqrt{3}}{2}$
B. $\frac{\sqrt{5}}{2}$
C. $\frac{1}{2}$
D. $\frac{1}{4}$.

Answer:

- Watch Video Solution

298. The equation of the tangent parallel to $\mathrm{y}=\mathrm{x}$ drawn to $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$ is :
A. $x-y+1=0$
B. $x-y+2=0$
C. $x-y+3=0$
D. $x-y-2=0$.

Answer:

- Watch Video Solution

299. A line through the point $A(2,0)$, which makes an angle of 30° with the positive direction of x-axis is rotated about A in clockwise direction through an angle 15°. Then the equation of the straight line in the new position is :
A. $(2-\sqrt{3}) x+y-4+2 \sqrt{3}=0$
B. $(2-\sqrt{3}) x-y-4+2 \sqrt{3}=0$
C. $(2-\sqrt{3}) x-y+4+2 \sqrt{3}=0$
D. $(2-\sqrt{3}) x+y+4+2 \sqrt{3}=0$.

Answer:

300. The total number of tangents through the point $(3,5)$ that can be drawn to the ellipse $3 x^{2}+5 y^{2}=32$ and $25 x^{2}+9 y^{2}=450$ is:
A. 0
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

301. The co-ordinates of the foot of the perpendicular from $(0,0)$ upon the line $x+y=2$ are :
A. $(2,-1)$
B. $(-2,1)$
C. $(1,1)$
D. $(1,2)$.

Answer:

- Watch Video Solution

302. If C is the reflection of $A(2,4)$ in x-axis and B is the reflection of C in y-axis, then | $A B \mid$ is :
A. 20
B. $2 \sqrt{5}$
C. $4 \sqrt{5}$
D. 4

Answer:

303. The line $y=2 t^{2}$ intersects the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ in real points if
A. $|t| \leq 1$
B. $|t|<1$
C. $|t|>1$
D. $|t| \geq 1$.

Answer:

Watch Video Solution
304. The coordinates of the focus of the parabola described parametrically by $x=5 t^{2}+2, y=10 t+4$ are :
A. $(7,4)$
B. $(3,4)$
C. $(3,-4)$
D. $(-7,4)$.

Answer:

- Watch Video Solution

305. A positive acute angle is divided into two parts whose tangents are $\frac{1}{2}$ and $\frac{1}{3}$. Then the angle is :
A. $\frac{\pi}{4}$
B. $\frac{\pi}{5}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{6}$.

Answer:

306. The angle between the line joining the foci of an ellipse to one particular extremity of the minor axis is 90°. The eccentricity of the ellipse is :
A. $\frac{1}{8}$
B. $\frac{1}{\sqrt{3}}$
C. $\sqrt{\frac{2}{3}}$
D. $\sqrt{\frac{1}{2}}$.

Answer:

- Watch Video Solution

307. The circles : $x^{2}+y^{2}-10 x+16=0$ and $x^{2}+y^{2}=a^{2}$: intersect at two distinct points if:
A. $a<2$
B. $2<a<8$
C. $a>8$
D. $a=2$.

Answer:

- Watch Video Solution

308. The number of points on the line $x+y=4$, which are unit distance apart from the line $2 x+2 y=5$ is:
A. 0
B. 1
C. 2
D. infinity.

Answer:

309. For the two circles $x^{2}+y^{2}=16$ and $x^{2}+y^{2}-2 y=0$ there is/are
A. one pair of common tangents
B. only one common tangents
C. three common tangents
D. no common tangents.

Answer:

- Watch Video Solution

310. If C is a point on the line segment joining $A(-3,4)$ and $B(2,1)$ such that $A C=2 B C$, then the co-ordinates of C are :
A. $\left(\frac{1}{3}, 2\right)$
B. $\left(2, \frac{1}{3}\right)$
C. $(2,7)$
D. $(7,2)$.

Answer:

- Watch Video Solution

311. The point $(-4,5)$ is the vertex of a square and one of its diagonals is $7 x-$ $y+8=0$. The equation of the other diagonal is :
A. $7 x-y+23=0$
B. $7 y+x=30$
C. $7 y+x=31$
D. $x-7 y=30$.

Answer:

312. The vertices of a family of triangles have integer co-ordinates. If two of the vertices of all the triangles are $(0,0)$ and $(6,8)$, then the least value of areas of the triangles is :
A. 1
B. $\frac{3}{2}$
C. 2
D. $\frac{5}{2}$

Answer:

- Watch Video Solution

313. A line has slope m and y-intercept 4. The distance between the origin and the line is equal to :
A. $\frac{4}{\sqrt{1-m^{2}}}$
B. $\frac{4}{\sqrt{m^{2}-1}}$
C. $\frac{4}{\sqrt{m^{2}+1}}$
D. $\frac{4 m}{\sqrt{1+m^{2}}}$.

Answer:

- Watch Video Solution

314. One side of length 3a of a triangle of area a^{2} square units lies on the line $\mathrm{x}=\mathrm{a}$. Then one of the lines on which the third vertex lies, is:
A. $x=-a^{2}$
B. $x=a^{2}$
C. $x=-a$
D. $x=\frac{a}{3}$.

Answer:

315. The distance of the point $(1,2)$ from the line $x+y+5=0$ measured along with the line parallel to $3 x-y=7$ is equal to :
A. $4 \sqrt{10}$
B. 40
C. $\sqrt{40}$
D. $10 \sqrt{2}$.

Answer:

- Watch Video Solution

316. Area of the triangle formed by the lines $y=2 x, y=3 x$ and $y=5$ is equal to
(in square units) :
A. $\frac{25}{6}$
B. $\frac{25}{12}$
C. $\frac{5}{6}$
D. $\frac{17}{12}$.

Answer:

- Watch Video Solution

317. Triangle $A B C$ has vertices $(0,0)(11,60)$ and $(91,0)$. If the line $y=k x$ cuts the triangle into two triangles of equal area, then k is equal to :
A. $\frac{30}{51}$
B. $\frac{4}{7}$
C. $\frac{7}{4}$
D. $\frac{30}{91}$.

Answer:

318. If the lines $y=3 x+1$ and $2 y=x+3$ are equally inclined to the line $y=m x+4,\left(\frac{1}{2}<m<3\right)$, then the values of m are:
A. $\frac{1}{7}(1 \pm 5 \sqrt{3})$
B. $\frac{1}{7}(1 \pm 5 \sqrt{5})$
C. $\frac{1}{7}(1 \pm 5 \sqrt{2})$
D. $\frac{1}{7}(1 \pm 2 \sqrt{5})$.

Answer:

- Watch Video Solution

319. The vertices of a triangle are $(3,0),(3,3)$ and $(0,3)$. Then the coordinates of the circumcentre are :
A. $(0,0)$
B. $(1,1)$
C. $(2,2)$
D. $\left(\frac{3}{2}, \frac{3}{2}\right)$.

Answer:

- Watch Video Solution

320. Area of the equilateral triangle inscribed in circle
$x^{2}+y^{2}-7 x+9 y+5=0$ is:
A. $\frac{155}{8} \sqrt{3}$ square units
B. $\frac{165}{8} \sqrt{3}$ square units
C. $\frac{175}{8} \sqrt{3}$ square units
D. $\frac{185}{8} \sqrt{3}$ square units.

Answer:

- Watch Video Solution

321. The equation of one of the diameters of the circle $x^{2}+y^{2}-6 x+2 y=0$ is:
A. $x+y=0$
B. $x-y=0$
C. $3 x+y=0$
D. $x+3 y=0$.

Answer:

- Watch Video Solution

322. If two chords having lengths $a^{2}-1$ and $3(a+1)$, where a is a constant of a circle bisect each other, then the radius of the circle is :
A. 6
B. $\frac{15}{2}$
C. 8
D. $\frac{19}{2}$.

Answer:

- Watch Video Solution

323. The equation of the parabola having focus $(3,2)$ and vertex $(1,2)$, is :
A. $x^{2}+4 x-8 y+12=0$
B. $x^{2}-4 x-8 y+12=0$
C. $y^{2}-8 x-4 y+12=0$
D. $y^{2}+4 y-8 x+12=0$.

Answer:

- Watch Video Solution

324. The sum of the distances of a point $(2,-3)$ from the foci of an ellipse $16(x-2)^{2}+25(y+3)^{2}=400$ is :
A. 8
B. 6
C. 50
D. 32

Answer:

- Watch Video Solution

325. The equation of one of the tangents to $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$ which is parallel to $\mathrm{y}=\mathrm{x}$ is :
A. $x-y+2=0$
B. $x+y-1=0$
C. $x+y-2=0$
D. $x-y+1=0$.

Answer:

- Watch Video Solution

326. If e_{1} is eccentricity of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{7}=1$ and e_{2} is eccentricity of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{7}=1$, then $e_{1}+e_{2}$ is equal to:
A. $\frac{16}{7}$
B. $\frac{25}{4}$
C. $\frac{25}{12}$
D. $\frac{16}{9}$.

Answer:

327. A line passes through point $(2,2)$ and perpendicular to the line $3 x+y$
$=3$. Then y -intercept is :
A. $\frac{4}{3}$
B. $\frac{2}{3}$
C. $\frac{3}{4}$
D. $\frac{1}{2}$.

Answer:

- Watch Video Solution

328. If $p x^{2}-10 x y+12 y^{2}+5 x-16 y-3=0$ represents a pair of straight lines, then value of p is :
A. 3
B. 2
C. 4
D. 5

Answer:

- Watch Video Solution

329. Points (3, 3), (h, 0), ($0, \mathrm{k}$) are collinear and $\frac{a}{h}+\frac{b}{k}=\frac{1}{3}$. Then :
A. $a=3, b=2$
B. $a=3, b=3$
C. $a=1, b=1$
D. $a=2, b=2$.

Answer:

- Watch Video Solution

330. $\frac{\sqrt{2009}}{3}\left(x^{2}-y^{2}\right)=1$, then eccentricity of the hyperbola is:
A. $\sqrt{2}$
B. $\sqrt{5}$
C. $\sqrt{3}$
D. $\sqrt{7}$.

Answer:

- Watch Video Solution

331. The value of k for which the line $x+y+1=0$ touches the parabola $y^{2}=4 k x$ is :
A. 2
B. 1
C. -2
D. -1 .

Answer:

332. The eccentricity of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, if its latus rectum is half of its minor axis, is :
A. $\frac{\sqrt{3}}{2}$
B. $\frac{\sqrt{5}}{3}$
C. $\frac{3}{2}$
D. $\frac{4}{3}$.

Answer:

Watch Video Solution

333. The angle between the tangents drawn from the origin to the parabola $y^{2}=4 a(x-a)$ is
A. 90°
B. 45°
C. 60°
D. 30°.

Answer:

- Watch Video Solution

334. The angle between the lines $2 x=3 y=-z$ and $12 x=-2 y=-8 z$ is:
A. 60°
B. 45°
C. 90°
D. 30°.

Answer:

$x^{2}+y^{2}=1, x^{2}+y^{2}+6 x-2 y=1, x^{2}+y^{2}-12 x+4 y=1$ are $:$
A. collinear
B. form a right angled triangle
C. non-collinear
D. form an equilateral triangle.

Answer:

Watch Video Solution

336. If the lines $2 x+3 y+1=0,3 x-y-4=0$ are diameters of a circle $x^{2}+y^{2}+p x+q y+r=0$ of circumterence 10π, then values of $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are:
A. $-2,2-23$
B. $2,-2,23$
C. $-1,2,23$
D. $-2,-2,23$.

Answer:

- Watch Video Solution

337. The equation of the circle, while touches the line $x=y$ at origin and passes through the point $(2,1)$, is $x^{2}+y^{2}+p x+q y=0$. Then p, q are:
A. $5,-5$
B. $-4,4$
C. $4,-4$
D. $-5,5$.

Answer:

338. The locus of the foot of the perpendicular from the centre of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad$ on any tangent is given by $\left(x^{2}+y^{2}\right)^{2}=l x^{2}+m y^{2}$, where:
A. $l=a^{2}, m=b^{2}$
B. $l=-a^{2}, m=b^{2}$
C. $l=-a^{2}, m=-b^{2}$
D. $l=a^{2}, m=-b^{2}$.

Answer:

- Watch Video Solution

339. The locus of the mid-points of a chord of the circle $x^{2}+y^{2}=4$ which subtends a right angle at the origin is
A. $x+y=1$
B. $x+y=2$
C. $x^{2}+y^{2}=1$
D. $x^{2}+y^{2}=2$.

Answer:

- Watch Video Solution

340. The length of the chord joining the points $(4 \cos \theta 4 \sin \theta)$ and $\left(4 \cos \left(\theta+60^{\circ}\right), 4 \sin \left(\theta+60^{\circ}\right)\right)$ of the circle $x^{2}+y^{2}=16$ is :
A. 16
B. 2
C. 4
D. 8

Answer:

341. The number of common tangents to the circles $x^{2}+y^{2}-y=0$ and $x^{2}+y^{2}+y=0$ is :
A. 0
B. 1
C. 2
D. 3

Answer:

- Watch Video Solution

342. The co-ordinates of the centre of the smallest circle passing through the origin and having $y=x+1$ as a diameter are :
A. $(-1,0)$
B. $\left(\frac{-1}{2}, \frac{1}{2}\right)$
C. $\left(\frac{1}{2}, \frac{-1}{2}\right)$
D. $\left(\frac{1}{2}, \frac{1}{3}\right)$.

Answer:

- Watch Video Solution

343. The length of the diameter of the circle which cuts three circles :
$x^{2}+y^{2}-x-y-14=0$ $x^{2}+y^{2}+3 x-5 y-10=0$
$x^{2}+y^{2}-2 x+3 y-27=0$ orthogonally, is :
A. 4
B. 2
C. 8
D. 6

Answer:

- Watch Video Solution

344. For the parabola $y^{2}=4 x$, the point P whose focal distance is 17 , is :
A. $(2,8)$ or $(2,-8)$
B. $(16,8)$ or $(16,-8)$
C. $(8,8)$ or $(8,-8)$
D. $(4,8)$ or $(4,-8)$.

Answer:

- Watch Video Solution

345. The angle between the tangents drawn from origin to the parabola $y^{2}=12 x$ from the point $(-3,2)$ is:
A. 30°
B. 45°
C. 90°
D. 60°.

- Watch Video Solution

346. The number of values of c such that the straight line $y=4 x+c$ touches the curve $\frac{x^{2}}{4}+y^{2}=1$, is
A. infinite
B. 0
C. 1
D. 2

Answer:

Watch Video Solution

347. If the circle $x^{2}+y^{2}=a^{2}$ intersects the hyperbola $x y=C^{2}$ at four points $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right)$, and $S\left(x_{4}, y_{4}\right)$, then proove
$x_{1}+x_{2}+x_{3}+x_{4}=0, y_{1}+y_{2}+y_{3}+y_{4}=0, x_{1} x_{2} x_{3} x_{4}=C^{4}, y_{1} y_{2} y_{3}$ $y_{4}=C^{4}$
A. $y_{1} y_{2} y_{3} y_{4}=2 c^{4}$
B. $x_{1}+x_{2}+x_{3}+x_{4}=0$
C. $y_{1}+y_{2}+y_{3}+y_{4}=2$
D. $x_{1} x_{2} x_{3} x_{4}=2 c^{4}$.

Answer:

- Watch Video Solution

348. The foot of the perpendicular from the point $(2,4)$ upon $x+y=4$ is:
A. $(1,3)$
B. $(3,-1)$
C. $(2,2)$
D. $(4,0)$.

- Watch Video Solution

349. The vertices of a triangle are $(6,0),(0,6)$ and $(6,6)$. Then distance between its circumcentre and centroid, is
A. 1
B. $2 \sqrt{2}$
C. 2
D. $\sqrt{2}$.

Answer:

D Watch Video Solution

350. The angle between the pair of lines : $x^{2}+2 x y-y^{2}=0$ is:
A. 0
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$.

Answer:

- Watch Video Solution

351. In an ellipse, if the lines joining focus to the extremities of the minor axis form an equilateral triangle with the minor axis, then the eccentricity of the ellipse is :
A. $\frac{\sqrt{3}}{2}$
B. $\frac{\sqrt{3}}{4}$
C. $\frac{1}{\sqrt{2}}$
D. $\sqrt{\frac{2}{3}}$.

- Watch Video Solution

352. If a hyperbola passes through the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ and, its transverse and conjugate axes coincide with the major and minor axes of the ellipse and product of their eccentricities be 1 , then the equation of hyperbola is:
A. $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$
B. $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
c. $\frac{x^{2}}{16}-\frac{y^{2}}{25}=1$
D. None of these.

Answer:

- Watch Video Solution

353. The curve described parametrically by $x=t^{2}+t$ and $y=t^{2}-t$ represents:
A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola.

Answer:

- Watch Video Solution

354. If P is a point (x, y) on the line $y=-3 x$ such that P and the point $(3,4)$ are on the opposite sides of the line $3 x-4 y-8=0$, then :
A. $x>\frac{8}{15}, y<-\frac{8}{5}$
B. $x>\frac{8}{5}, y<-\frac{8}{15}$
C. $x>\frac{8}{15}, y=-\frac{8}{5}$
D. None of these.

Answer:

- Watch Video Solution

355. A variable line through the point $\left(\frac{1}{5}, \frac{1}{5}\right)$ cuts the coordinate axes in the points A and B. If the point P divides $A B$ internally in the ratio $3: 1$, then the locus of P is :
A. $3 y+x=20 x y$
B. $y+3 x=20 x y$
C. $x+y=20 x y$
D. $3 x+3 y=20 x y$.

Answer:

356. Find the equation of the circle which cuts orthogonally the circle $x^{2}+y^{2}-6 x+4 y-3=0$, passes through $(3,0)$ and touches the axis of y.
A. $x^{2}+y^{2}+6 x-6 y+9=0$
B. $x^{2}+y^{2}-6 x+6 y-9=0$
C. $x^{2}+y^{2}-6 x-6 y+9=0$
D. None of these.

Answer:

- Watch Video Solution

357. If the slope of one of the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ be the square of the other, then $\frac{a+b}{h}+\frac{8 h^{2}}{a b}$ is :
A. 3
B. 4
C. 5
D. 6

Answer:

- Watch Video Solution

358. If, in a hyperbola, the distance between the foci is 10 and the transverse axis has length 8 , then the length of its latus-rectum is:
A. 9
B. $\frac{9}{2}$
C. $\frac{32}{3}$
D. $\frac{64}{3}$.

Answer:

359. If $(3,3)$ is a vertex of a triangle and $(-3,6)$ and $(9,6)$ are the mid-points of the two sides through this vertex, then the centroid of the triangle is :
A. $(3,7)$
B. $(1,7)$
C. $(-3,7)$
D. $(-1,7)$.

Answer:

- Watch Video Solution

360. If $p x^{2}-10 x y+12 y^{2}+5 x-16 y-3=0$ represents a pair of straight lines, then value of p is :
A. $\frac{125}{367}$
B. $-\frac{125}{367}$
C. 15
D. -15 .

Answer:

- Watch Video Solution

361. The equation of the circle passing through the point $(1,1)$ and through the points of intersection of the circles : $x^{2}+y^{2}=6$ and $x^{2}+y^{2}-6 y+8=0$ is:
A. $x^{2}+y^{2}+3 y-13=0$
B. $x^{2}+y^{2}-3 y+1=0$
C. $x^{2}+y^{2}-3 x+1=0$
D. $5 x^{2}+5 y^{2}+6 y+16=0$.

Answer:

- Watch Video Solution

362. If the lines : $x+2 a y+a=0, x+3 b y+b=0$ and $x+4 c y+c=0$ are concurrent, where a, b, c are non-zero real numbers, then :
A. $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.
B. $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in G.P.
C. a,b,c are in A.P.
D. a,b,c are in G.P.

Answer:

D Watch Video Solution

363. If the equation $\lambda x^{2}+(2 \lambda-3) y^{2}-4 x-1=0$ represents a circle, then its radius is:
A. $\frac{\sqrt{11}}{3}$
B. $\frac{\sqrt{13}}{3}$
C. $\frac{\sqrt{7}}{3}$
D. $\frac{1}{3}$.

Answer:

- Watch Video Solution

364. If $\mathrm{x}=9$ is the chord of contact of the hyperbola $x^{2}-y^{2}=9$, then the equation of the corresponding pair of tangents is :
A. $9 x^{2}-8 y^{2}+18 x-9=0$
B. $9 x^{2}-8 y^{2}-18 x+9=0$
C. $9 x^{2}-8 y^{2}-18 x-9=0$
D. $9 x^{2}-8 y^{2}+18 x+9=0$.

Answer:

365. On the ellipse $4 x^{2}+9 y^{2}=1$, the points at which tangents are parallel to the line $8 \mathrm{x}=9 \mathrm{y}$ are :
A. $\left(\frac{2}{5}, \frac{1}{5}\right)$
B. $\left(-\frac{2}{5}, \frac{1}{5}\right)$
C. $\left(-\frac{2}{5},-\frac{1}{5}\right)$
D. $\left(\frac{2}{5},-\frac{1}{5}\right)$.

Answer:

- Watch Video Solution

366. The equation of the common tangent touching the circle $(x-3)^{2}+y^{2}=9$ and the parabola $y^{2}=4 x$ above the x-axis is:
A. $\sqrt{3} y=3 x+1$
B. $\sqrt{3} y=(x+3)$
C. $\sqrt{3} y=x+3$
D. $\sqrt{3} y=-(3 x+1)$.

Answer:

- Watch Video Solution

367. The number os integral values of m for which the x-coordinates of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integar is
A. 2
B. 0
C. 4
D. 1

Answer:

- Watch Video Solution

368. The equation of the directrix of the parabola : $y^{2}+4 y+4 x+2=0$
is:
A. $x=-1$
B. $x=1$
C. $x=-\frac{3}{2}$
D. $x=\frac{3}{2}$.

Answer:

- Watch Video Solution

369. Let $A B$ be a chord of the circle $x^{2}+y^{2}=r^{2}$ subtending a right angle at the centre. Then the locus of the centroid of the triangle PAB as

P moves on the circle is:
A. a parabola
B. a circle
C. an ellipse
D. a pair of st. lines.

Answer:

- Watch Video Solution

370. Let PQ and RS be tangents at the extremities of the diameter PR or a circle of radius r. If PS and RQ intersect a point X on the circumference of the circle, then prove that $2 r=\sqrt{P Q \times R S}$.
A. $\sqrt{P Q \cdot R S}$
B. $\frac{P Q+R S}{2}$
C. $\frac{2 P Q \cdot R S}{P Q+R S}$
D. $\sqrt{\frac{P Q^{2}+R S^{2}}{2}}$.

Answer:

371. The area of the parallelogram formed by the lines $y=m x, y=x m+1, y=n x$, and $y=n x+1$ equals.
A. $\frac{|m+n|}{(m-n)^{2}}$
B. $\frac{2}{|m+n|}$
C. $\frac{1}{|m+n|}$
D. $\frac{1}{|m-n|}$.

Answer:

Watch Video Solution

372. If $a>2 a b>0$, then the positive value of m for which $y=m x-b \sqrt{\left(1+m^{2}\right)} \quad$ is a common tangent to $x^{2}+y^{2}=b^{2}$ and $(x-a)^{2}+y^{2}=b^{2}$ is
A. $\frac{2 b}{\sqrt{a^{2}-4 b^{2}}}$
B. $\frac{\sqrt{a^{2}-4 b^{2}}}{2 b}$
C. $\frac{2 b}{a-2 b}$
D. $\frac{b}{a-2 b}$.

Answer:

- Watch Video Solution

373. The locus of the mid-point of the line segment joining the focus to a moving point oh the parabola $y^{2}=4 a x$ is a parabola with directrix:
A. $x=-a$
B. $x=-\frac{a}{2}$
C. $x=0$
D. $x=\frac{a}{2}$.

Answer:

374. The area bounded by the curves : $y=|x-1|$ and $y=1$ is:
A. 1
B. 2
C. $2 \sqrt{2}$
D. 4

Answer:

375. The equation of the common tangent to the curves, $y^{2}=8 x$ and $x y=-1$ is :
A. $3 y=9 x+2$
B. $y=2 x+1$
C. $2 \mathrm{y}=\mathrm{x}+8$

D. $y=x+2$.

Answer:

- Watch Video Solution

376. If the tangent at the point P on the circle $x^{2}+y^{2}+6 x+6 y=2$ meets the straight line $5 x-2 y+6=0$ at a point Q on the y-axis, then the length of $P Q$ is:
A. 4
B. $2 \sqrt{5}$
C. 5
D. $2 \sqrt{5}$.

Answer:

- Watch Video Solution

377. A straight line through the origin O meets the parallel lines $4 x+2 y=$ 9 and $2 x+y+6=0$ at points P and Q respectively. Then the point O divides the segment PQ in the ratio :
A. 1:2
B. 3: 4
C. 2:1
D. 4: 3 .

Answer:

- Watch Video Solution

378. Let $P=(-1,0), Q=(0,0)$ and $R(3,3 \sqrt{3})$ be three point. The equation of the bisector of the angle PQR is
A. $\frac{\sqrt{3}}{2} x+y=0$
B. $x+\sqrt{3} y=0$
C. $\sqrt{3} x+y=0$
D. $x+\frac{\sqrt{3}}{2} y=0$.

Answer:

- Watch Video Solution

379. Let $0<\alpha<\frac{\pi}{2}$ be a fixed angle. If
$P=(\cos \theta, \sin \theta)$ and $Q=(\cos (\alpha-\theta), \sin (\alpha-\theta), \quad$ then $\quad \mathrm{Q}$ is obtanied from P by
A. clockwise rotation around origin through an angle α
B. anticlockwise rotation around origin through an angle α
C. reflection in the line through origin with slope $\tan \alpha$
D. reflection in the line through origin with slope $\tan \frac{\alpha}{2}$.

Answer:

380. A triangle with vertices $(2,0),(-1,-1),(1,0)$ is :
A. isosceles and right angled
B. isosceles but not right angled
C. right angled but not isosceles
D. neither right angled nor isosceles.

Answer:

- Watch Video Solution

381. The straight lines
$2 x+11 y-5=0,24 x+7 y-20=0$ and $4 x-3 y-2=0$
A. form a triangle
B. are only concurrent
C. are concurrent with one line bisecting the angle between the other two
D. None of these.

Answer:

- Watch Video Solution

382. A straight line through the point $(2,2)$ intersects the lines $\sqrt{3} x+y=0$ and $\sqrt{3} x-y=0$ at the points A and B . The equation to the line $A B$ so that the triangle $O A B$ is equilateral is ,
A. $x-2=0$
B. $y-2=0$
C. $x+y-4=0$
D. None of these.

Answer:

383. Find the incentre of the triangle with vertices $A(1, \sqrt{3}), B(0,0)$ and $C(2,0)$.
A. $\left(1, \frac{\sqrt{3}}{2}\right)$
B. $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$
C. $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$
D. $\left(1, \frac{1}{\sqrt{3}}\right)$.

Answer:

- Watch Video Solution

384. The equation of the tangent to the circle $x^{2}+y^{2}+4 x-4 y+4=0$, which makes equal intercepts on the positive axes, is :
A. $x+y=2$
B. $x+y=2 \sqrt{2}$
C. $x+y=4$
D. $x+y=8$.

Answer:

- Watch Video Solution

385. Find the area bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
A. 4
B. 3
C. $\sqrt{12}$
D. $\frac{7}{2}$.

Answer:

386. The equation of the chord joining two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the rectangular hyperbola $x y=c^{2}$ is
A. $\frac{x}{x_{1}+x_{2}}+\frac{y}{y_{1}+y_{2}}=1$
B. $\frac{x}{x_{1}-x_{2}}+\frac{y}{y_{1}-y_{2}}=1$
C. $\frac{x}{y_{1}+y_{2}}+\frac{y}{x_{1}+x_{2}}=1$
D. $\frac{x}{y_{1}-y_{2}}+\frac{y}{x_{1}-x_{2}}=1$.

Answer:

- Watch Video Solution

387. A square of side a lies above the X - axis and has one vertex at the origin. The side passing through the origin makes an angle $\pi / 6$ with the positive direction of X -axis .The equation of its diagonal not passing through the origin is
$y(\sqrt{3}-1)-x(1-\sqrt{3})=2 a$
$y(\sqrt{3}+1)+x(1-\sqrt{3})=2 a$
$y(\sqrt{3}+1)+x(1+\sqrt{3})=2 a$
$y(\sqrt{3}+1)+x(\sqrt{3}-1)=2 a$
A. $y(\cos \alpha+\sin \alpha)+x(\sin \alpha-\cos \alpha)=0$
B. $y(\cos \alpha+\sin \alpha)+x(\sin \alpha+\cos \alpha)=0$
C. $y(\cos \alpha+\sin \alpha)+x(\cos \alpha+\sin \alpha)=0$
D. $y(\cos \alpha-\sin \alpha)-x(\sin \alpha-\cos \alpha)=0$.

Answer:

- Watch Video Solution

388. Find the slope of the tangent to the curve $y=3 x^{4}-4$ at $\mathrm{x}=4$
A. 768
B. 234
C. 764
D. 0

Answer:

- Watch Video Solution

389. The lines $2 x-3 y=5$ and $3 x-4 y=7$ are the diameters of a circle of area 154 sq. units. Then the equation of the circle is
a. $x^{2}+y^{2}+2 x-2 y-62=0$
b. $x^{2}+y^{2}+2 x-2 y-47=0$
c. $x^{2}+y^{2}-2 x+2 y-62=0$
d. $x^{2}+y^{2}-2 x+2 y-47=0$
A. $x^{2}+y^{2}+2 x-2 y=47$
B. $x^{2}+y^{2}-2 x+2 y=47$
C. $x^{2}+y^{2}-2 x+2 y=62$
D. $x^{2}+y^{2}+2 x-2 y=62$.

Answer:

390. If the two circles $(x-1)^{2}+(y-3)^{2}=r^{2} \quad$ and $x^{2}+y^{2}-8 x+2 y+8=0$ intersect in two distinct points, then :
A. $r<2$
B. $r=2$
C. $r>2$
D. $2<r<8$.

Answer:

- Watch Video Solution

391. The normal at the point $\left(b t_{1}^{2}, 2 b t_{1}\right)$ on a parabola meets the parabola again in the point $\left(b t_{2}^{2}, 2 b t_{2}\right)$ then :
A. $t_{2}=-t_{1}+\frac{2}{t_{1}}$
B. $t_{2}=t_{1}-\frac{2}{t_{1}}$
C. $t_{2}+\frac{2}{t_{1}}$
D. $t_{2}=-t_{1}-\frac{2}{t_{1}}$.

Answer:

- Watch Video Solution

392. If the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide, then find the value b^{2}
A. 5
B. 7
C. 9
D. 1

Answer:

393. The orthocentre of the triangle with vertices $(0,0),(3,4)$, and $(4,0)$ is
(a) $\left(3, \frac{5}{4}\right)$ (b) $(3,12)\left(3, \frac{3}{4}\right)$ (d) $(3,9)$
A. $\left(3, \frac{7}{3}\right)$
B. $\left(3, \frac{5}{4}\right)$
C. $(5,-2)$
D. $\left(3, \frac{3}{4}\right)$.

Answer:

- Watch Video Solution

394. A square is formed by following two pairs of straight lines : $y^{2}-14 y+45=0$ and $x^{2}-8 x+12=0$. A circle is inscribed in it. The centre of the circle is :
A. $(7,4)$
B. $(4,7)$
C. $(3,7)$
D. $\left(\frac{3}{8}, 4\right)$.

Answer:

- Watch Video Solution

395. The focal chord of $y^{2}=16 x$ is tangent to $(x-6)^{2}+y^{2}=2$, then the possible values of the slope of this chord are :
A. $1,-1$
B. $-\frac{1}{2}, 2$
C. $-2, \frac{1}{2}$
D. $\frac{1}{2}, 2$.
396. The area (in sq units) of the quadrilateral formed by the tangents at the end points of the latus rectum to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ is
A. 27
B. $27 / 2$
C. $27 / 4$
D. $27 / 55$.

Answer:

- Watch Video Solution

397. Which one of the following is independent of α in the hyperbola ${ }^{\text {` }}$ ($<$ alpha
A. eccentricity
B. abscissa of foci
C. directrix
D. vertex.

Answer:

D Watch Video Solution

398. Angle between tangents drawn from the point $(1,4)$ to the parabola $y^{2}=4 a x$ is :
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$.

Answer:

399. The eccentricity of an ellipse, with its centre the origin, is $\frac{1}{2}$. If one of the directrices is $x=4$, the equation of the ellipse is :
A. $3 x^{2}+4 y^{2}=1$
B. $3 x^{2}+4 y^{2}=12$
C. $4 x^{2}+3 y^{2}=12$
D. $4 x^{2}+3 y^{2}=1$.

Answer:

- Watch Video Solution

400. If the line $2 x+\sqrt{6} y=2$ touches the hyperbola $x^{2}-2 y^{2}=4$, then the point of contact is
A. $(-2, \sqrt{6})$
B. $(-5,2 \sqrt{6})$
C. $\left(\frac{1}{2}, \frac{1}{\sqrt{6}}\right)$
D. $(4,-\sqrt{6})$.

Answer:

- Watch Video Solution

401. The line parallel to the x-axis and passing through the intersection of the lines $a x+2 b y+3 b=0$ and $\quad b x-2 y-3 a=0 \quad$, where $(a, b) \neq(0,0)$, is
A. below the x-axis at a distance of $\frac{2}{3}$ from it
B. below the x-axis at a distance of $\frac{3}{2}$ from it
C. above the x-axis at a distance of $\frac{2}{3}$ from it
D. above the x-axis at a distance of $\frac{3}{2}$ from it.

Answer:

402. If non-zero numbers a, b, c are in H.P., then the straight line $\frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0$ always passes through a fixed point. That point is :
A. $(-1,-2)$
B. $(-1,2)$
C. $\left(1,-\frac{1}{2}\right)$
D. (1,-2).

Answer:

- Watch Video Solution

403. If a vertex of a triangle is $(1,1)$ and the mid-points of two side through this vertex are $(-1,2)$ and $(3,2)$, then centroid of the triangle is
A. $\left(-\frac{1}{3}, \frac{7}{3}\right)$
B. $\left(-1, \frac{7}{3}\right)$
C. $\left(\frac{1}{3}, \frac{7}{3}\right)$
D. $\left(1, \frac{7}{3}\right)$.

Answer:

- Watch Video Solution

404. If the circles : $x^{2}+y^{2}+2 a x+c y+a=0 \quad$ and $x^{2}+y^{2}-3 a x+d y-1=0$ intersect in two distinct points P and Q , then the line $5 \mathrm{x}+\mathrm{by}-\mathrm{a}=0$ passes through P and Q for:
A. no value of a
B. exactly one value of a
C. exactly two values of a
D. infinitely many values of a.

Answer:

405. A circle touches the X-axis and also touches the centre at $(0,3)$ and radius 2 . The locus of the centre of the circle is
A. a circle
B. an ellipse
C. a parabola
D. a hyperbola.

Answer:

- Watch Video Solution

406. If a circle passes through the point (a, b) and cuts the circle $x^{2}+y^{2}=p^{2}$ orthogonally, then the equation of the locus of its centre is

$$
\text { A. } 2 a x+2 b y-\left(a^{2}-b^{2}+p^{2}\right)=0
$$

B. $x^{2}+y^{2}-3 a x-4 b y+\left(a^{2}+b^{2}-p^{2}\right)=0$
C. $2 a x+2 b y-\left(a^{2}+b^{2}+p^{2}\right)=0$
D. $x^{2}+y^{2}-2 a x-3 b y+\left(a^{2}-b^{2}-p^{2}\right)=0$.

Answer:

- Watch Video Solution

407. An ellipse has $O B$ as semi minor axis, F and F^{\prime} its focii eccentricity of the ellipse is
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{1}{4}$.

Answer:

408. The locus of a point $P(\alpha, \beta)$ moving under the condition that the line $y=\alpha x+\beta$ is tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is
A. a circle
B. an ellipse
C. a hyperbola
D. a parabola.

Answer:

- Watch Video Solution

409. A circle is given by $x^{2}+(y-1)^{2}=1$, another circle C touches it externally and also the x-axis, then the locus of its centre is:
A. $\left\{(x, y): x^{2}=4 y\right\} \cup\{(x, y): y \leq 0\}$
B. $\left\{(x, y): x^{2}+(y-1)^{2}=4\right\} \cup\{(x, y): y \leq 0\}$
C. $\left\{(x, y): x^{2}=y\right\} \cup\{(0, y): y \leq 0\}$
D. $\left\{(x, y): x^{2}=4 y\right\} \cup\{(0, y): y \leq 0\}$.

Answer:

- Watch Video Solution

410. The minimum area of the triangle formed by the tangent to $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the coordinate axes is
A. ab sq. units
B. $\frac{a^{2}+b^{2}}{2}$ sq. units
C. $\frac{(a+b)^{2}}{2}$ sq. units
D. $\frac{a^{2}+a b+b^{2}}{3}$ sq. units.

Answer:

411. A straight line through the point $A(3,4)$ is such that its intercept between the axes is bisected at A. Its equation is
A. $x+y=7$
B. $3 x-4 y+7=0$
C. $4 x+3 y=24$
D. $3 x+4 y=25$.

Answer:

- Watch Video Solution

412. If $\left(a, a^{2}\right)$ falls inside the angle made by the lines $y=\frac{x}{2}, x>0$ and $y=3 x, x>0$, then a belong to
A. $\left(0, \frac{1}{2}\right)$
B. $(3, \infty)$
C. $\left(\frac{1}{2}, 3\right)$
D. $\left(-3,-\frac{1}{2}\right)$.

Answer:

- Watch Video Solution

413. If the lines $3 x-4 y-7=0$ and $2 x-3 y-5=0$ are two diameters of a circle of area 49π square units, then the equation of the circle is :
A. $x^{2}+y^{2}+2 x-2 y-47=0$
B. $x^{2}+y^{2}+2 x-2 y-62=0$
C. $x^{2}+y^{2}-2 x+2 y-62=0$
D. $x^{2}+y^{2}-2 x+2 y-47=0$.

Answer:

414. Let C be the circle with centre $(0,0)$ and radius 3 units. The equation of the locus of the mid points of the chords of the circle C that subtend an angle of $\frac{2 \pi}{3}$ at its center is
A. $x^{2}+y^{2}=\frac{3}{2}$
B. $x^{2}+y^{2}=1$
C. $x^{2}+y^{2}=\frac{27}{4}$
D. $x^{2}+y^{2}=\frac{9}{4}$.

Answer:

- Watch Video Solution

415. The locus of the vertices of the family of parabolas $y=\frac{a^{3} x^{2}}{3}+\frac{a^{2} x}{2}-2 a$ is
A. $x y=\frac{105}{64}$
B. $x y=\frac{3}{4}$
C. $x y=\frac{35}{16}$
D. $x y=\frac{64}{105}$.

Answer:

- Watch Video Solution

416. Angle between the tangents to the curve $y=x^{2}-5 x+6$ at the points $(2,0)$ and $(3,0)$ is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{4}$.

Answer:

417. The axis of a parabola is along the line $y=x$ and the distance of its vertex from origin is $\sqrt{2}$ and that from its focus is $2 \sqrt{2}$. IF vertex and focus both lie in the first quadrant, the equation of the parabola is
A. $(x+y)^{2}=(x-y-2)$
B. $(x-y)^{2}=(x+y-2)$
C. ${ }^{\wedge}(x-y)^{\wedge} 2=4(x+y-2)$
D. $(x-y)^{2}=8(x+y-2)$.

Answer:

- Watch Video Solution

418. The equation of the common tangents to the parabola $y=x^{2}$ and $y=-(x-2)^{2}$ is/are :
A. $y=4(x-1)$
B. $y=0$
C. $y=-4(x-1)$
D. $y=-30 x-50$.

Answer:

- Watch Video Solution

419. Let a hyperbola passes through the focus of the ellipse $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$. The transverse and conjugate axes of this hyperbola coincide with the major and minor axes of the given ellipse, also the product of eccentricities of given ellipse and hyperbola is 1 , then
A. The equation of the hyperbola is : $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
B. The equation of the hyperbola is : $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$
C. Focus of hyperbola is $(5,0)$
D. Focus of hyperbola is $(5 \sqrt{3}, 0)$.

Answer:

420. If one of the lines of $m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between the lines $x y=0$, then m is
A. 2
B. 1
C. 3
D. $-\frac{1}{2}$.

Answer:

- Watch Video Solution

421. Let $A B C D$ be a quadrilateral with area 18 , with side $A B$ parallel to the side $C D$ and $A B=2 C D$. Let $A D$ be perpendicular to $A B$ and $C D$. If a circle is drawn inside the quadrilateral $A B C D$ touching all the sides, then its radius is :
A. 3
B. 2
C. $\frac{3}{2}$
D. 1

Answer:

- Watch Video Solution

422. Consider a family of circles which are passing through the point $(-1,1)$ and are tangent to X -axis. If (h, k) are the coordinate of the centre of the circles, then the set of vaues of k is given by the interval
A. $k \geq \frac{1}{2}$
B. $-\frac{1}{2} \leq k \leq \frac{1}{2}$
C. $k \leq \frac{1}{2}$
D. $0<k<\frac{1}{2}$.

- Watch Video Solution

423. The equation of a tangent to the parabola $y^{2}=8 x i s y=x+2$. The point on this line from which the other tangent to the parabola is perpendicular to the given tangent is
A. $(0,2)$
B. $(2,4)$
C. $(-2,0)$
D. $(-1,1)$.

Answer:

424. A hyperbola having the transverse axis of length $2 \sin \theta$, is confocal with the ellipse $3 x^{2}+4 y^{2}=12$. Then, its equation is
A. $x^{2} \operatorname{cosec} 2 \theta-y^{2} \sec ^{2} \theta=1$
B. $x^{2} \sec ^{2} \theta-y^{2} \cos e c^{2} \theta=1$
C. $x^{2} \sec ^{2} \theta-y^{2} \cos ^{2} \theta=1$
D. $x^{2} \cos ^{2} \theta-y^{2} \sin ^{2} \theta=1$.

Answer:

- Watch Video Solution

425. For the hyperbola $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$, which of the following remains constant when α varies
A. Directrix
B. Abscissae of vertices
C. Abscissae of foci
D. Eccentricity.

Answer:

- Watch Video Solution

426. The perpendicular bisector of the line segment joining $P(1,4)$ and $Q(k, 3)$ has y - intercept -4 Then a possible value of k is
A. -4
B. 1
C. 2
D. -2 .

Answer:
427. The point diametrically opposite to the point $\mathrm{P}(1,0)$ on the circle $x^{2}+y^{2}+2 x+4 y-3=0$ is
A. $(3,4)$
B. $(3,-4)$
C. $(-3,4)$
D. $(-3,-4)$.

Answer:

- Watch Video Solution

428. A parabola has the origin as its focus and the line $x=2$ as the directrix. The vertex of the parabola is at
A. $(2,0)$
B. $(0,2)$
C. $(1,0)$
D. $(0,1)$.

Answer:

- Watch Video Solution

429. A focus of an ellipse Is that the rigin. The directrix is the line $x=4$ and the eccentricity is $1 / 2$. Then, the length of the semi-major axis is
A. $\frac{5}{3}$
B. $\frac{8}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$.

Answer:

- Watch Video Solution

$P(-\sin (\beta-\alpha),-\cos \beta), Q=(\cos (\beta-\alpha), \sin \beta)$, and $R=(\cos (\beta-\iota$, where $0<\alpha, \beta, \theta<\frac{\pi}{4}$ Then
A. Plies on the line segment RQ
B. Q lies on the line segment PR
$C . R$ lies on the line segment $Q P$
D. P,Q, R are non-collinear.

Answer:

- Watch Video Solution

431. Consider two curves $C 1: y^{2}=4 x ; C 2=x^{2}+y^{2}-6 x+1=0$. Then,
A. C_{1} and C_{2} touch each other only at one point
B. C_{1} and C_{2} touch each other exactly at two points
C. C_{1} and C_{2} intersect (but do not touch) at exactly two points
D. C_{1} and C_{2} neither intersect nor touch each other.

Answer:

- Watch Video Solution

432. Let a and b be non-zero real numbers. Then the equation : $\left(a x^{2}+b y^{2}+c\right)\left(x^{2}-5 x y+6 y^{2}\right)=0$ represents:
A. our straight lines. when $\mathrm{c}=0$ and $\mathrm{a}=\mathrm{b}$ are of the same sign
B. two straight lines and a circle, where $a=b$ and c is of sign opposite to that of a.
C. two straight lines and a hyperbola when a and b are of the same sign and c is of sign opposite to that of a
D. a circle and an ellipse, when a and b are of the same sign and c is of sign opposite to that of a.

D Watch Video Solution

433. Consider a branch of the hyperbola : $x^{2}-2 y^{2}-2 \sqrt{2} x-4 \sqrt{2} y-6=0$ with vertex at the point A. Let B be one of the end points of the latus -rectum. If C is the focus of the hyperbola nearest to the point A, then the area of the traingle $A B C$ is :
A. $1-\sqrt{\frac{2}{3}}$
B. $\sqrt{\frac{3}{2}}-1$
C. $1+\sqrt{\frac{2}{3}}$
D. $\sqrt{\frac{3}{2}}+1$.

Answer:

434. Tangents drawn from the piont $P(1,8)$ to the circle $x^{2}+y^{2}-6 x-4 y-11=0$ touch the circle at the points A and B . The equation of the circumcircle of the triangle PAB is
A. $x^{2}+y^{2}+4 x-6 y+19=0$
B. $x^{2}+y^{2}-4 x-10 y+19=0$
C. $x^{2}+y^{2}-2 x+6 y-29=0$
D. $x^{2}+y^{2}-6 x-4 y+19=0$.

Answer:

- Watch Video Solution

435. The tangent PT and the normal PN to the parabola $y^{2}=4 a x$ at a point P on it meet its axis at points T and N respectively. The locus of the centroid of the triangle PTN is a parabola whose :
A. vertex is $\left(\frac{2 a}{3}, 0\right)$
B. directrix is $x=0$
C. latus rectum is y
D. focus is $(a, 0)$.

Answer:

- Watch Video Solution

436. The line passing through the extremity A of the major axis and extremity B of the minor axis of the ellipse $x^{2}+9 y^{2}=9$ meets its auxiliary circle at the point M. Then the area of the triangle with vertices at A, M and the origin O is :
A. $\frac{31}{10}$
B. $\frac{29}{10}$
C. $\frac{21}{10}$
D. $\frac{27}{10}$.

D Watch Video Solution

437. A triangle $A B C$ with fixed base $B C$, the vertex A moves such that $\cos B+\cos C=4 \sin ^{2}\left(\frac{A}{2}\right)$. If a, b and c, denote the length of the sides of the triangle opposite to the angles $A, B, a n d C$, respectively, then
(a) $b+c=4 a$
(b) $b+c=2 a$
(c)the locus of point A is an ellipse
(d)the locus of point A is a pair of straight lines
A. $b+c=4 a$
B. $b+c=2 a$
C. locus of A is an ellipse
D. locus of point A is a pair of Straight lines.

- Watch Video Solution

438. The normal at a point P , on the ellipse $x^{2}+4 y^{2}=16$ meets the x axis at Q. If M is the mid-point of the line segment $P Q$, then the locus of M intersects the latus-rectum of the given ellipse at the points :
A. $\left(\pm \frac{3 \sqrt{5}}{2}, \pm \frac{2}{7}\right)$
B. $\left(\pm \frac{3 \sqrt{5}}{2}, \pm \frac{\sqrt{19}}{4}\right)$
C. $\left(\pm 2 \sqrt{3}, \pm \frac{1}{7}\right)$
D. $\left(\pm 2 \sqrt{3}, \pm \frac{4 \sqrt{3}}{7}\right)$.

Answer:

- Watch Video Solution

439. The locus of the orthocentre of the triangle formed by the lines : $(1+p) x-p y+p(1+p)=0,(1+q) x-q y+q(1+q)=0$, and $y=0$, where $p \neq q$, is :
A. A hyperbola
B. A parabola
C. An ellipse
D. A straight line.

Answer:

- Watch Video Solution

440. An ellipse intersects the hyperbola $2 x^{2}-2 y^{2}=1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the co-ordinate axes, then :
A. Equation of ellipse is $x^{2} 2 y^{2}=2$
B. The foci of ellipse are $(\pm 1,0)$
C. Equation of ellipse is $x^{2} 2 y^{2}=4$
D. The foci of ellipse are $(\pm 2,0)$.

Answer:

- Watch Video Solution

441.

$p\left(p^{2}+1\right) x-y+q=0$ and $\left(p^{2}+1\right)^{2} x+\left(p^{2}+1\right) y+2 q=0 \quad$ are perpendicular to a common line for
A. no value of p
B. exactly one value of p
C. exactly two values of p
D. more than two values of p.

Answer:

442. If P and Q are the points of intersection of the circles $x^{2}+y^{2}+3 x+7 y+2 p-5=0$ and $x^{2}+y^{2}+2 x+2 y-p^{2}=0$ then there is a circle passing through P, Q and $(1,1)$ for:
A. all values of p
B. all except one value of p
C. all except two values of p
D. exactly one value of p.

Answer:

- Watch Video Solution

443. The ellipse $x^{2}+4 y^{2}=4$ is inscribed is a rectangle alligned with the co-ordinate axes, which in turn is inscribed in another ellipse that passes through the point $(4,0)$. Then the equation of the ellipse is :
A. $x^{2}+16 y^{2}=16$
B. $x^{2}+12 y^{2}=16$
C. $4 x^{2}+48 y^{2}=48$
D. $4 x^{2}+64 y^{2}=48$.

Answer:

- Watch Video Solution

444. The Line L given by $\frac{x}{5}+\frac{y}{b}=1$ passes through the point $(13,32)$. The line K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$. Then the distance between L and K is
A. $\frac{23}{\sqrt{15}}$
B. $\sqrt{17}$
C. $\frac{17}{\sqrt{15}}$
D. $\frac{23}{\sqrt{17}}$.

Answer:

- Watch Video Solution

445. The circle $x^{2}+y^{2 d}=4 x+8 y+5$ intersects the line $3 \mathrm{x}-4 \mathrm{y}=\mathrm{m}$ at two distinct points if
A. - 85 Itmlt -35
B. -35 lt m It 15
C. 15 It m It 65
D. 35 Itmlt85.

Answer:

- Watch Video Solution

446. If two tangents drawn from a point P to the parabola $y 2=4 x$ are at right angles, then the locus of P is
A. $x=1$
B. $2 x+1=0$
C. $x=-1$
D. $2 x+-1=0$.

Answer:

- Watch Video Solution

447. Let A and B be two distinct points on the parabola $y^{2}=4 x$. If the axis of the parabola touches a circle of radius r having $A B$ as its diameter, The slope of the line joining A and B can be
A. $-\frac{1}{r}$
B. $\frac{1}{r}$
C. $\frac{2}{r}$
D. $-\frac{2}{r}$.

- Watch Video Solution

448. A straight line L through the point $(3,-2)$ is incined at an angle 60° to the line $\sqrt{3} x+y=1$ If L also intersects the X -axis ,then the equation of L is
A. $y+\sqrt{3} x+2-3 \sqrt{3}=0$
B. $y-\sqrt{3} x+2+3 \sqrt{3}=0$
C. $\sqrt{3} y-x+3+2 \sqrt{3}=0$
D. $\sqrt{3} y+x-3+2 \sqrt{3}=0$.

Answer:

449. The lines $x+y=|a|$ and $a x-y=1$ intersect each other in the first quadrant. Then the set of all possible values of a is the interval.
A. $(0, \infty)$
B. $[1, \infty)$
C. $(-1, \infty)$
D. $(-1,1]$.

Answer:

- Watch Video Solution

450. If $A(2,-3)$ and $B(-2,1)$ are two vertices of a triangle and third vertex moves on the line $2 x+3 y=9$, then the locus of the centroid of the triangle is :
A. $x-y=1$
B. $2 x+3 y=1$
C. $2 x+3 y=3$
D. $2 x-3 y=1$.

Answer:

- Watch Video Solution

451. The two circles $x^{2}+y^{2}=a x$ and $x^{2}+y^{2}=c^{2}(c>0)$ touch each other if:
(1) $2|a|=c$
(2) $|a|=c$
(3) $a=2 c$
(4) $|a|=2 c$
A. $2|a|=c$
B. $|a|=c$
C. $a=2 c$
D. $|a|=2 c$.

Answer:

452. The circle passing through the point $(-1,0)$ and touching the Y-axis at $(0,2)$ also passes through the point.
A. $\left(-\frac{3}{2}, 0\right)$
B. $\left(-\frac{5}{2}, 0\right)$
C. $\left(-\frac{3}{2}, \frac{5}{2}\right)$
D. $(-4,0)$.

Answer:

- Watch Video Solution

453. Find the equation of the circle passing through $(1,0)$ and $(0,1)$ and having the smallest possible radius.
A. $x^{2}+y^{2}-2 x-2 y+1=0$
B. $x^{2}+y^{2}-x-y=0$
C. $x^{2}+y^{2}+2 x+2 y-7=0$
D. $x^{2}+y^{2}+x+y-2=0$.

Answer:

- Watch Video Solution

454. Let (x, y) be any point on the parabola $y^{2}=4 x$. Let P be the point that divides the line segment from $(0,0)$ to (x, y) in the ratio $1: 3$. Then the locus of P is:
A. $x^{2}=y$
B. $y^{2}=2 x$
C. $y^{2}=x$
D. $x^{2}=2 y$.

Answer:

455. Find the equation of the ellipse referred to its axes as the axes of coordinates:
which passes through the points $(-2,1)$ and eccentricity $=\sqrt{\frac{2}{5}}$
A. $3 x^{2}+5 y^{2}-32=0$
B. $5 x^{2}+3 y^{2}-48=0$
C. $3 x^{2}+5 y^{2}-15=0$
D. $5 x^{2}+3 y^{2}-32=0$.

Answer:

Watch Video Solution

456. The equation of the hyperbola whose foci are $(-2,0)$ and $(2,0)$ and eccentricity is 2 is given by :

$$
\text { A. } x^{2}-3 y^{2}=3
$$

B. $3 x^{2}-y^{2}=3$
C. $-x^{2}+3 y^{2}=3$
D. $-3 x^{2}+y^{2}=3$.

Answer:

- Watch Video Solution

457. Find the equation of the diagonal through the origin of the quadrilateral formed by $x=0, y=0, x+y=1$ and $6 x+y=3$.

- Watch Video Solution

458. Show that all chords of the curve $3 x^{2}-y^{2}-2 x+4 y=0$, which subtend a right angle at the origin, pass through a fixed point. Find the co-ordinates of the point.
459. A line is such that its segment between the straight line $5 x-y-4=0$ and $3 x+4 y-4=0$ is bisected at the point $(1,5)$ Obtain the equation.

- Watch Video Solution

460. Straight lines : $3 x+4 y=5$ and $4 x-3 y=15$ intersect at the point A. Points B and C are chosen on these two lines such that $|A B|=|A C|$. Determine the possible equations of the line $B C$ passing through the point (1, 2).

- Watch Video Solution

461. Find the locus of a point whose sum of the distances from the origin and the line $x=2$ is 4 units.

- Watch Video Solution

462. Given vertices $A(1,1), B(4,-2)$ and $C(5,5)$ of a triangle, find the equation of the perpendicular dropped from C to the interior bisector of the angle A .

- Watch Video Solution

463. If lines $5 \mathrm{x}+12 \mathrm{y}-10=0$ and $5 \mathrm{x}-12 \mathrm{y}-40=0$ touch a circle C_{1} of diameter 6 , and if the centre of C_{1} lies in the first quadrant, find the equation of a circle C_{2}, which is concentric with C_{1} and cuts intercept of length 8 on these lines.

- Watch Video Solution

464. Let $S=x^{2}+y^{2}+2 g x+2 f y+c=0$ be a gives circle. Find the locus of the foot of the perpendicular drawn from the origin upon any chord, which subtends a right angle at the origin.
465. The points $(1,3)$ and $(5,1)$ are the opposite vertices of a rectangle.

The other two vertices lie on the line $y=2 x+c$. Find c and the remaining vertices.

- Watch Video Solution

466. Let $P\left(x_{1}, y_{1}\right)$ be a point and let $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ be a line. If $\mathrm{L}(\mathrm{h}, \mathrm{k})$ is the foot of perpendicular drawn from P on this line and $Q(\alpha, \beta)$ is the image of P in the given line, then prove that : $\frac{h-x_{1}}{a}=\frac{k-y_{1}}{b}=-\left(\frac{a x_{1}+b y_{1}+c}{a^{2}+b^{2}}\right)$.

- Watch Video Solution

467. Let $P\left(x_{1}, y_{1}\right)$ be a point and let $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ be a line. If $\mathrm{L}(\mathrm{h}, \mathrm{k})$ is the foot of perpendicular drawn from P on this line and $Q(\alpha, \beta)$ is the image of P in the given line, then prove that : $\frac{h-x_{1}}{a}=\frac{k-y_{1}}{b}=-\left(\frac{a x_{1}+b y_{1}+c}{a^{2}+b^{2}}\right)$.
468. Let A be the centre of the circle $x^{2}+y^{2}-2 x-4 y-20=0$. If the tangents at the points $B(1,7)$ and $D(4,-1)$ on the circle meet at the point C find the area of the quadrilateral $A B C D$.

- Watch Video Solution

469. Find the equation of the circle passing through the point $(0,0)$ and the points, where the st. line $3 x+4 y=12$ meets the axes of co-ordinates.

- Watch Video Solution

470. Find the equation of the circle which touches the circle $x^{2}+y^{2}-6 x+6 y+17=0$ externally and to which the lines $x^{2}-3 x y-3 x+9 y=0$ are normals.

- Watch Video Solution

471. Three circles touch one another externally. The tangents at their points of contact meet at a point whose distance from a point of contact is 4 . Find the ratio of the product of the radii to the sum of the radii of the circles.

- Watch Video Solution

472. Find the centre and radius of the smaller of the two circles that touch the parabola $75 y^{2}=64(5 x-3)$ at $\left(\frac{6}{5}, \frac{8}{5}\right)$ and the x-axis.

- Watch Video Solution

473. C_{1} and C_{2} are two concentric circles, the radius of C_{2} being twice that of C_{1}. From a point P on C_{2}, tangents PA and PB are drawn to C_{1}. Prove that the centroid of the triangle PAB lies on C_{1}.

- Watch Video Solution

474. Show that the locus of a point that divides a chord of slope 2 of the parabola $y^{2}=4 x$ internally in the ratio $1: 2$ is a parabola. Find the vertex of this parabola.

- Watch Video Solution

475. From the point ($-1,2$), tangent lines are drawn to the parabola $y^{2}=4 x$. Find the equation of the chord of contact. Also find the area of the triangle formed by the chord of contact and the tangents.

- Watch Video Solution

476. From a point A , common tangents are drawn to the circle $x^{2}+y^{2}=\frac{a^{2}}{2}$ and parabola $y^{2}=4 x$. Find the area of the quadrilateral formed by the common tangents, the chord of contact of the circle and the chord of contact of the parabola.

- Watch Video Solution

477. Find the equatios of the tangents to the circle $x^{2}+y^{2}=16$ drawn from the piont (1,4).

- Watch Video Solution

478. Find the acute angle between the curves $y=\left|x^{2}-1\right|$ and $y=\left|x^{2}-3\right|$ at their points of intersection whe $x>0$
