



# MATHS

# **BOOKS - MODERN PUBLICATION**

# MATHEMATICAL INDUCTION

### Example

**1.** If P (n) is the statement : "n (n + 1) (n + 2) is divisible by 12", prove that

P(3) and P(4) are true, but P(5) is not true.

Watch Video Solution

**2.** If P (n) is the statement :  $2^{3n} - 1$  is an integral multiple of 7", prove

that P(1), P(2) and P (3) are true.





If P (n) is true, prove that P(n + 1) is true.



7. If P(n) is the statement that the sum of first n natural numbers

is divisible by n + 1, prove that P(2r) is true for all  $r = 1, 2, 3, \dots$ .

Watch Video Solution

**8.** Let P(n) be the statement : " $n^2 + n$  is even".

Prove that P(n) is true for all  $n \in N$  by Mathematical Induction.

Watch Video Solution

**9.** By Principle of Mathematical Induction, prove that  $:2^n>n$  for all  $\mathsf{n}~\in$ 

N.



10. Use principle of mathematical induction to prove that:  $1+2+3+\ldots\ldots+n=rac{n(n+1)}{2}$ 

Watch Video Solution

11. 
$$1^2 + 2^2 + 3^3 + .... + n^2 = rac{n(n+1)(2n+1)}{6}$$

Watch Video Solution

**12.** Prove the following by using the principle of mathematical induction

for all 
$$n \in N$$
 :-  $1^2 + 3^2 + 5^2 + ... + \left(2n - 1
ight)^2 = rac{n(2n - 1)(2n + 1)}{3}$ 

13. Using principle of mathematical induction, prove that

$$rac{1}{1.2} + rac{1}{2.3} + rac{1}{3.4} + \ldots + rac{1}{n(n+1)} = rac{n}{n+1}$$

Watch Video Solution

14. Prove the following by using the principle of mathematical induction



**15.** For every positive integer n, prove that  $7^n - 3^n$  is divisible by 4.



16. Use the Principle of Mathematical Induction to prove that

n(n + 1) (2n + 1) is divisible by 6 for all  $n \in N$ .



**18.** By the Principle of Mathematical Induction, prove that for all  $n \in N$ ,

 $3^{2n}$  when divided by 8, the remainder is 1 always.

Watch Video Solution

19. Prove the rule of exponents ,  $(ab)^n=a^nb^n$  by using Principle of

Mathematical Induction for every natural number.



for all 
$$n\in N$$
 :-  $1+2+3+...+n<rac{1}{8}(2n+1)^2.$ 



**21.** Prove by the principle of mathematical induction  $10^{2n-1} + 1$  is divisible by 11.



23. Using Principle of Mathematical Induction, prove that :  

$$\cos \alpha \cos 2\alpha \cos 4\alpha$$
..... $\cos (2^{n-1}\alpha) = \frac{\sin(2^n\alpha)}{2^n \sin \alpha}$  for all  $n \in N$ .  
  
Watch Video Solution  
24. Prove by Principle of Mathematical Induction, that  
 $\left(\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}\right)$  is a natural number for all  $n \in N$ .  
  
Watch Video Solution  
25. For the proposition P(n), given by ,  
 $1 + 3 + 5 + \dots + (2n - 1) = n^2 + 2$ , prove that P(k) is true  
 $\Rightarrow P(k + 1)$  is true. But, P(n) is not true for all  $n \in N$ .  
  
Watch Video Solution

**26.** Prove by Induction, that  $2^n < n!$  for all  $n \ge 4$ .





P(r) is true.

7. If P(n) is the statement '' $2^n \ge n$ '', prove that P(r +1) is true whenever P(r) is true.



**8.** Let P(n) be the statement '' $4^n > n$ ''. If P(r) is true, prove that P(r +1) is

also true.

Watch Video Solution

9. If P(n) is the statement '' $2^{3n}-1$  is an integral multiple of 7", prove

that P(r + 1) is true whenever P(r) is true.



10. If P(n) is the statement "sum of first n natural numbers is divisible by n

+ 1", prove that P(r + 1) is true if P(r) is true.

| <b>O</b> Watch Video Solution |  |  |
|-------------------------------|--|--|
|                               |  |  |

**11.** Give an example of a statement P(n), which is true for all  $n \ge 4$ , but P(1), P(2), P(3) are not true.

Watch Video Solution

12. Give an example of the following statement : P(n) such that it is true

 $\text{ for all } n \ \in \ N.$ 



13. Give an example of the following statement : P(n) such that P(3) is

true, but P(4) is not true.



14. If P(n) is the statement : '  $^{n}C_{r}\leq n!$  for  $1\leq r\leq n$  ", then : find P(n

+1).

Watch Video Solution

15. If P(n) is the statement : '  $^{n}C_{r}\leq n!$  for  $1\leq r\leq n$  ", then : show that

P(3) is true.

Watch Video Solution

16. Prove that the Principle of Mathematical Induction does not apply to

the following :

P(n) : "  $n^3 + n$  is divisible by 3" .

**17.** Prove that the Principle of Mathematical Induction does not apply to the following :

P(n) : "  $n^3 > 100$ ".



18. By the Principle of Mathematical Induction, prove the following for all

 $n \in N:$ 

The nth term of an A.P. whose first term is 'a' and common difference 'd' is

a + (n-1) d.

Watch Video Solution

19. By the Principle of Mathematical Induction, prove the following for all

 $n \in N$ :

1+3+5+...  $+(2n-1)=n^2$  i.e. the sum of first » odd natural

numbers is  $n^2$  .

$$n \in N$$
:

$$4 + 8 + 12 + \dots + 4n = 2n(n+1).$$

Watch Video Solution

21. By the Principle of Mathematical Induction, prove the following for all

$${\sf n}\ \in\ {\sf N}:$$
  
 $5+15+45+....\ +\ 5(3)^{n-1}=rac{5}{2}(3^n-1).$ 

Watch Video Solution

22. By the Principle of Mathematical Induction, prove the following for all

$$n \in N$$
:

$$1+4+7+.....\,+(3n-2)=rac{n(3n-1)}{2}$$
 .

for all 
$$n \in N$$
 :-  $1^3 + 2^3 + 3^3 + ... + n^3 = \left(rac{n(n+1)}{2}
ight)^2$  .



24. By the Principle of Mathematical Induction, prove the following for all  $n \in N$ :  $1^2 + 2^2 + 3^2 + \dots + n^2 > \frac{n^3}{3}.$ Watch Video Solution

25. Prove the following by using the principle of mathematical induction

for all 
$$n \in N$$
 :-  $1 + 3 + 3^2 + .... + 3^{n-1} = rac{(3^n-1)}{2}.$ 

for all 
$$n \in N$$
 :- $1.3 + 3.5 + 5.7 + ... + (2n-1)(2n+1) = rac{nig(4n^2 + 6n - 1ig)}{3}$ 



27. By the Principle of Mathematical Induction, prove the following for all

 $n~\in~N$  :

$$3.6 + 6.9 + 9.12 + \ldots + 3n(3n+3) = 3n(n+1)(n+2).$$

Watch Video Solution

28. Prove the following by using the principle of mathematical induction



 $n~\in~N$  :

$$1.2 + 2.2^2 + 3.2^3 + \dots + n.2^n = (n-1)2^{n+1} + 2.$$

30. By the Principle of Mathematical Induction, prove the following for all

$${\sf n}\ \in\ {\sf N}$$
 : $1.3+2.3^2+3.3^3+\ldots\, +n.3^n=rac{(2n-1)3^{n+1}+3}{4}.$ 

Watch Video Solution

31. By the Principle of Mathematical Induction, prove the following for all

$${f n} \in {f N}$$
 : $rac{1}{1.3}+rac{1}{3.5}+rac{1}{5.7}+.....+rac{1}{(2n-1)(2n+1)}=rac{n}{2n+1}.$ 

for all 
$$n \in N$$
 :-  
 $\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + ... + \frac{1}{(3n-1)(3n+2)} = \frac{n}{(6n+4)}$   
Vatch Video Solution

### 33. Prove the following by using the principle of mathematical induction

for all 
$$n \in N$$
 :- $rac{1}{1.4} + rac{1}{4.7} + rac{1}{7.10} + ... + rac{1}{(3n-2)(3n+1)} = rac{n}{(3n+1)}.$ 

Watch Video Solution

## 34. Prove the following by using the principle of mathematical induction

for all 
$$n \in N$$
 :-  
 $\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}.$ 

$$egin{array}{ll} ext{for} & ext{all} & n\in N & : & \cdot \ \left(1+rac{3}{1}
ight) \left(1+rac{5}{4}
ight) \left(1+rac{7}{9}
ight) ... \left(1+rac{(2n+1)}{n^2}
ight) = (n+1)^2. \end{array}$$

Watch Video Solution

36. By the Principle of Mathematical Induction, prove the following for all

n 
$$\in$$
 N:  
 $\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\dots\left(1+\frac{1}{n}\right) = (n+1).$   
Watch Video Solution

37. By the Principle of Mathematical Induction, prove the following for all

$$n \in N$$
:

$$a+(a+d)+(a+2d)+....+[a+(n-1)d]=rac{n}{2}[2a+(n-1)d].$$

$${\sf n}\ \in\ {\sf N}:$$
 $b+br+br^2+.....+br^{n-1}=rac{b(1-r^n)}{1-r}, r<1.$ 

39. Prove the following by using the principle of mathematical induction

for all 
$$n\in N$$
 :-  $a+ar+ar^2+...+ar^{n-1}=rac{a(r^n-1)}{r-1}.$ 

Watch Video Solution

Watch Video Solution

40. By the Principle of Mathematical Induction, prove the following for all

 $n\ \in\ N:$ 

$$x^n-y^n$$
 is divisible by (x-y) for every  $\mathsf{n}\ \in\ \mathsf{N}, x-y
eq 0.$ 

**41.** Prove the following by using the principle of mathematical induction for all  $n \in N$  :-  $x^{2n} - y^{2n}$  is divisible byx + y.



42. By the Principle of Mathematical Induction, prove the following for all

 $n\ \in\ N:$ 

 $2^{3n}-1$  is divisible by 7 .

Watch Video Solution

43. By the Principle of Mathematical Induction, prove the following for all

 $n~\in~N$  :

 $3^{2n}-1$  is divisible by 8 .

 $n\ \in\ N:$ 

 $5^{2n} - 1$  is divisible by 24.

Watch Video Solution

45. By the Principle of Mathematical Induction, prove the following for all

- $n\ \in\ N:$
- $4^n 3n 1$  is divisible by 9.

Watch Video Solution

46. By the Principle of Mathematical Induction, prove the following for all

- $n\ \in\ N:$
- $4^n + 15n 1$  is divisible by 9.

 $n\ \in\ N:$ 

 $10^{2n-1} + 1$  is divisible by 11.

Watch Video Solution

**48.** Prove the following by using the principle of mathematical induction

for all  $n\in N$  :-  $3^{2n+2}-8n-9$  is divisible by 8.

Watch Video Solution

49. By the Principle of Mathematical Induction, prove the following for all

 $n\ \in\ N:$ 

 $3^{4n+1}+2^{2n+2}$  is divisible by 7.

 $n~\in~N$  :

 $a^{2n-1}-1$  is divisible by a-1.

Watch Video Solution

51. By the Principle of Mathematical Induction, prove the following for all

 $n\ \in\ N:$ 

 $15^{2n-1} + 1$  is multiple of 16.

Watch Video Solution

52. Prove the following by using the principle of mathematical induction

for all  $n \in N$  :-  $41^n - 14^n$  is a multiple of 27.

- $n\ \in\ N:$
- $n^2 n + 41$  is prime.

Watch Video Solution

**54.** Prove by Induction, for all  $n \in N$ :

 $2^n > n.$ 

Watch Video Solution

**55.** Prove by Induction, for all  $n \in N$ :

 $2^n < 3^n$ .

for all  $n\in N$  :-  $(2n+7)<(n+3)^2.$ 



**57.** Prove by Induction, for all  $n \in N$ :

 $(n+3)^2 \leq 2^{n+3}.$ 

Watch Video Solution

58. Prove by Induction, that  $(2n+7) \leq (n+3)^2$  for all n  $\in$  N. Using

this, prove by induction that  $:(n+3)^2 \le 2^{n+3}$  for all  $n \in N$ .

### Watch Video Solution

59. Prove the following by using the principle of mathematical induction

$$1 + \frac{1}{(1+2)} + \frac{1}{(1+2+3)} + \dots + \frac{1}{(1+2+3+\dots n)} = \frac{2n}{(n+1)}.$$
Watch Video Solution

**60.** Use method of induction, prove that : If  $n^3 + \left(n+1
ight)^3 + \left(n+2
ight)^3$  is

divisible by 9 for every  $n~\in~N$ 

Watch Video Solution

**61.** Using mathematical induction , show that n(n+1)(n+5) is a multiple of 3.

Watch Video Solution

**62.** Use method of induction, prove that : n(n + 1)(n + 2) is divisible by

6.

63. Use method of induction, prove that :

 $n^3+3n^2+5n+3$  is divisible by 3.



**64.** Prove, by Induction, on the inequality  $(1 + x)^n \ge 1 + nx$ 

for all natural numbers n, where x > -1.

Watch Video Solution

**65.** Let P(n) be the statement " $n^2 - n + 41$ " is prime. Prove that P(1), P(2) and P(3) are true. Also prove that P(41) is not true. How does this not contradict the Principle of Induction ?

**66.** Let P(n) be the statement : "the arithmetic mean of n and (n + 2) is the same as their geometric mean". Prove that P(1) is not true. Also prove that if P(n) is true, then P(n + 1) is also true. How does this contradict the principle of Induction ?

Watch Video Solution

67. If n straight lines in a plane are such that no two of them are parallel and no three of them are concurrent, prove that they intersect each other in  $\frac{n(n-1)}{2}$  points.

Watch Video Solution

**68.** Let P (n) denote the statement : " $2^n \ge n!$ ". Show that P(1), P(2) and P(3) are true but P(4) is not true.

for all 
$$n \in N$$
:  

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}.$$
Watch Video Solution
70. By using the Principle of Mathematical Induction, prove the following for all  $n \in N$ :  

$$x + 4x + 7x + \dots + (3n - 2)x = \frac{1}{2}n(3n - 1)x.$$
Watch Video Solution

71. Prove the following by using the principle of mathematical induction

for all 
$$n \in N$$
 :- $1.2.3 + 2.3.4 + ... + n(n+1)(n+2) = rac{n(n+1)(n+2)(n+3)}{4}.$ 

Watch Video Solution

**73.** By using the Principle of Mathematical Induction, prove the following for all  $n \ \in \ N$  :

Watch Video Solution

74. By using the Principle of Mathematical Induction,

prove the following for all  $n\ \in\ N$  :

$$7 + 77 + 777$$
+...... to n terms =  $\frac{7}{81} (10^{n+1} - 9n - 10)$ .



**79.** Prove, by Mathematical Induction, that for all  $n \in N$ ,

n(n+1)(n+2)(n+3) is a multiple of 24.

Watch Video Solution

80. By Mathematical Induction, prove the following :

 $(4^n+15n-1)$  is divisible by 9 .

Watch Video Solution

81. By Mathematical Induction, prove the following :

 $12^{n} + 25^{n-1}$  is divisible by 13.

82. Prove the following by using induction for all  $n \in N$  .

 $11^{n+2} + 12^{2n+1}$  is divisible by 133.

Watch Video Solution  
83. For all 
$$n \in N$$
, prove that  $: \frac{n^2}{7} + \frac{n^5}{5} + \frac{2}{3}n^2 - \frac{n}{105}$  is an integer.  
Watch Video Solution  
84. Prove that :  
 $\cos A \cos 2A \cos 2^2 A \cos 2^3 A \dots \cos 2^{n-1} A = \frac{\sin 2^n A}{2^n \sin A}.$   
Watch Video Solution

85. Let  $U_1=1, U_2=1$  and  $U_{n+2}=U_{n+1}+U_n$  for  $n\geq 1$ . Use

 $\begin{array}{lll} \text{Mathematical} & \text{Induction} & \text{to} & \text{show} & \text{that:} \\ U_n = \frac{1}{\sqrt{5}} \Biggl[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{1-\sqrt{5}}{2} \right)^n \Biggr] \text{ for all } n \geq 1. \end{array}$ 

