©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

MATHEMATICAL INDUCTION

Example

1. If $P(n)$ is the statement : " $n(n+1)(n+2)$ is divisible by 12 ", prove that $P(3)$ and $P(4)$ are true, but $P(5)$ is not true.

- Watch Video Solution

2. If $P(n)$ is the statement : $2^{3 n}-1$ is an integral multiple of 7 ", prove that $P(1), P(2)$ and $P(3)$ are true.
3. $P(n)$ is the statement ${ }^{\prime} 2^{n}>3 n^{\prime \prime}$ and if $P(r)$ is true, then prove that $P(r+1)$ is also true, $n \in N$.

Watch Video Solution

4. Let $P(n)$ be the statement ' ' $3^{n}>n^{\prime \prime}$.

Is $P(1)$ true?

- Watch Video Solution

5. Let $P(n)$ be the statement ' ' $3^{n}>n^{\prime \prime}$.

What is $\mathrm{P}(\mathrm{n}+1)$?
(Watch Video Solution
6. Let $\mathrm{P}(\mathrm{n})$ be the statement ' $3^{n}>n^{\prime}$ '.

If $P(n)$ is true, prove that $P(n+1)$ is true.

- Watch Video Solution

7. If $\mathrm{P}(\mathrm{n})$ is the statement that the sum of first n natural numbers is divisible by $n+1$, prove that $P(2 r)$ is true for all $r=1,2,3, \ldots \ldots$.

- Watch Video Solution

8. Let $\mathrm{P}(\mathrm{n})$ be the statement : " $n^{2}+n$ is even".

Prove that $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \in \mathrm{N}$ by Mathematical Induction.

- Watch Video Solution

9. By Principle of Mathematical Induction, prove that : $2^{n}>n$ for all $\mathrm{n} \in$ N.
10. Use principle of mathematical induction to prove that:
$1+2+3+\ldots \ldots \ldots+n=\frac{n(n+1)}{2}$

- Watch Video Solution

11. $1^{2}+2^{2}+3^{3}+\ldots .+n^{2}=\frac{n(n+1)(2 n+1)}{6}$

- Watch Video Solution

12. Prove the following by using the principle of mathematical induction for all $n \in N:-1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$.

- Watch Video Solution

13. Using principle of mathematical induction, prove that

$$
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

- Watch Video Solution

14. Prove the following by using the principle of mathematical induction for all

$$
n \in N
$$

$\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}$.

- Watch Video Solution

15. For every positive integer n , prove that $7^{n}-3^{n}$ is divisible by 4 .

- Watch Video Solution

16. Use the Principle of Mathematical Induction to prove that $n(n+1)(2 n+1)$ is divisible by 6 for all $n \in N$.
17. Prove, by Principle of Mathematical Induction, that the sum of the cubes of three consecutive natural numbers is divisible by 9 .

- Watch Video Solution

18. By the Principle of Mathematical Induction, prove that for all $n \in N$, $3^{2 n}$ when divided by 8 , the remainder is 1 always.

- Watch Video Solution

19. Prove the rule of exponents, $(a b)^{n}=a^{n} b^{n}$ by using Principle of Mathematical Induction for every natural number.

- Watch Video Solution

20. Prove the following by using the principle of mathematical induction for all $n \in N:-1+2+3+\ldots+n<\frac{1}{8}(2 n+1)^{2}$.

- Watch Video Solution

21. Prove by the principle of mathematical induction $10^{2 n-1}+1$ is divisible by 11 .

- Watch Video Solution

22. Prove by Principle of Mathematical Induction, that :
$\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots \ldots .+\sin n \theta=\frac{\sin (n+1) \frac{\theta}{2} \sin \frac{n \theta}{2}}{\sin \frac{\theta}{2}}$ for all n $\in \mathrm{N}$.

- Watch Video Solution

23. Using Principle of Mathematical Induction, prove that : $\cos \alpha \cos 2 \alpha \cos 4 \alpha \ldots \ldots \ldots \ldots \cos \left(2^{n-1} \alpha\right)=\frac{\sin \left(2^{n} \alpha\right)}{2^{n} \sin \alpha}$ for all $\mathrm{n} \in \mathrm{N}$.

- Watch Video Solution

24. Prove by Principle of Mathematical Induction, that $\left(\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}\right)$ is a natural number for all $\mathrm{n} \in \mathrm{N}$.

- Watch Video Solution

25. For the proposition $P(n)$, given by
$1+3+5+\ldots \ldots \ldots+(2 n-1)=n^{2}+2$, prove that $\mathrm{P}(\mathrm{k})$ is true $\Rightarrow P(k+1)$ is true. But, $\mathrm{P}(\mathrm{n})$ is not true for all $\mathrm{n} \in \mathrm{N}$.

- Watch Video Solution

26. Prove by Induction, that $2^{n}<n$! for all $n \geq 4$.
27. Prove, by Induction, that the number of all the subsets of a set containing n distinct elements, is 2^{n}.

- Watch Video Solution

Exercise

1. Let $P(n)$ be the statement : " $P(n): 10 n+3$ is prime". Is $P(3)$ true ?

(Watch Video Solution

2. Let $P(n)$ be the statement ${ }^{\prime} 2^{n}>1$ '. Is $P(1)$ true ?

- Watch Video Solution

3. If $P(n)$ is the statement " $n(n+1)$ is even", then what is $P(4)$?

- Watch Video Solution

4. Let $\mathrm{P}(\mathrm{n})$ be the statement ' ' $n^{3}+n$ is divisible by 3 ". Is the statement $P(3)$ true?

- Watch Video Solution

5. Let $\mathrm{P}(\mathrm{n})$ be the statement ' ' $n^{3}+n$ is divisible by 3 ". Is the statement $P(4)$ true ?

- Watch Video Solution

6. If $\mathrm{P}(\mathrm{n})$ is the statement " $n^{2}>100$ " prove that $\mathrm{P}(r+1)$ is true whenever $P(r)$ is true.
7. If $\mathrm{P}(\mathrm{n})$ is the statement " $2^{n} \geq n$ ", prove that $\mathrm{P}(\mathrm{r}+1)$ is true whenever $\mathrm{P}(\mathrm{r})$ is true.

- Watch Video Solution

8. Let $\mathrm{P}(\mathrm{n})$ be the statement " $4^{n}>n$ ". If $\mathrm{P}(\mathrm{r})$ is true, prove that $\mathrm{P}(\mathrm{r}+1)$ is also true.

- Watch Video Solution

9. If $\mathrm{P}(\mathrm{n})$ is the statement ' ${ }^{\prime} 2^{3 n}-1$ is an integral multiple of 7 ", prove that $P(r+1)$ is true whenever $P(r)$ is true.

- Watch Video Solution

10. If $\mathrm{P}(\mathrm{n})$ is the statement "sum of first n natural numbers is divisible by n
+1 ", prove that $P(r+1)$ is true if $P(r)$ is true.

Watch Video Solution

11. Give an example of a statement $\mathrm{P}(\mathrm{n})$, which is true for all $n \geq 4$, but $P(1), P(2), P(3)$ are not true.

- Watch Video Solution

12. Give an example of the following statement : $\mathrm{P}(\mathrm{n})$ such that it is true for all $n \in N$.

- Watch Video Solution

13. Give an example of the following statement : $P(n)$ such that $P(3)$ is true, but $P(4)$ is not true.
14. If $\mathrm{P}(\mathrm{n})$ is the statement : ${ }^{m} C_{r} \leq n$! for $1 \leq r \leq n{ }^{\prime}$, then : find $\mathrm{P}(\mathrm{n}$ $+1)$.

- Watch Video Solution

15. If $\mathrm{P}(\mathrm{n})$ is the statement : ${ }^{\prime m} C_{r} \leq n$! for $1 \leq r \leq n$ ", then : show that $P(3)$ is true.

- Watch Video Solution

16. Prove that the Principle of Mathematical Induction does not apply to the following :
$\mathrm{P}(\mathrm{n}):=n^{3}+n$ is divisible by 3 ".

Watch Video Solution
17. Prove that the Principle of Mathematical Induction does not apply to the following :

$$
\mathrm{P}(\mathrm{n}): \text { : } n^{3}>100 "
$$

- Watch Video Solution

18. By the Principle of Mathematical Induction, prove the following for all $\mathrm{n} \in \mathrm{N}:$

The nth term of an A.P. whose first term is 'a' and common difference ' d ' is $a+(n-1) d$.

(Watch Video Solution

19. By the Principle of Mathematical Induction, prove the following for all $\mathrm{n} \in \mathrm{N}:$
$1+3+5+\ldots \ldots+(2 n-1)=n^{2}$ i.e. the sum of first » odd natural numbers is n^{2}.
20. By the Principle of Mathematical Induction, prove the following for all $n \in N:$
$4+8+12+\ldots \ldots+4 n=2 n(n+1)$.

- Watch Video Solution

21. By the Principle of Mathematical Induction, prove the following for all
$n \in N:$
$5+15+45+\ldots .+5(3)^{n-1}=\frac{5}{2}\left(3^{n}-1\right)$.

- Watch Video Solution

22. By the Principle of Mathematical Induction, prove the following for all $n \in N:$
$1+4+7+\ldots .+(3 n-2)=\frac{n(3 n-1)}{2}$.
23. Prove the following by using the principle of mathematical induction for all $n \in N:-1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$.

- Watch Video Solution

24. By the Principle of Mathematical Induction, prove the following for all $\mathrm{n} \in \mathrm{N}:$
$1^{2}+2^{2}+3^{2}+\ldots \ldots \ldots . .+n^{2}>\frac{n^{3}}{3}$.

- Watch Video Solution

25. Prove the following by using the principle of mathematical induction for all $n \in N:-1+3+3^{2}+\ldots .+3^{n-1}=\frac{\left(3^{n}-1\right)}{2}$.

- Watch Video Solution

26. Prove the following by using the principle of mathematical induction $\begin{array}{ll}\text { for } \begin{array}{c}\text { all }\end{array} & n \in N \\ 1.3+3.5+5.7+\ldots+(2 n-1)(2 n+1) & =\frac{n\left(4 n^{2}+6 n-1\right)}{3}\end{array}$

- Watch Video Solution

27. By the Principle of Mathematical Induction, prove the following for all $n \in N:$
$3.6+6.9+9.12+\ldots \ldots+3 n(3 n+3)=3 n(n+1)(n+2)$.

- Watch Video Solution

28. Prove the following by using the principle of mathematical induction for all $\quad n \in N$
$1.2+2.3+3.4+\ldots+n .(n+1)=\left[\frac{n(n+1)(n+2)}{3}\right]$
29. By the Principle of Mathematical Induction, prove the following for all $\mathrm{n} \in \mathrm{N}:$
$1.2+2.2^{2}+3.2^{3}+\ldots . .+n .2^{n}=(n-1) 2^{n+1}+2$.

- Watch Video Solution

30. By the Principle of Mathematical Induction, prove the following for all
$\mathrm{n} \in \mathrm{N}$:
$1.3+2.3^{2}+3.3^{3}+\ldots .+n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}$.

- Watch Video Solution

31. By the Principle of Mathematical Induction, prove the following for all $\mathrm{n} \in \mathrm{N}$:

$$
\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots \ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1} .
$$

- Watch Video Solution

32. Prove the following by using the principle of mathematical induction

$$
\text { for all } \quad n \in N
$$

$\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{(6 n+4)}$

- Watch Video Solution

33. Prove the following by using the principle of mathematical induction for all $n \in N$
$\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}$.

- Watch Video Solution

34. Prove the following by using the principle of mathematical induction
for all $n \in N$
$\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}$.

- Watch Video Solution

35. Prove the following by using the principle of mathematical induction for all $n \in N$
$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 n+1)}{n^{2}}\right)=(n+1)^{2}$.

- Watch Video Solution

36. By the Principle of Mathematical Induction, prove the following for all $\mathrm{n} \in \mathrm{N}:$
$\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots \ldots\left(1+\frac{1}{n}\right)=(n+1)$.

- Watch Video Solution

37. By the Principle of Mathematical Induction, prove the following for all $\mathrm{n} \in \mathrm{N}:$
$a+(a+d)+(a+2 d)+\ldots+[a+(n-1) d]=\frac{n}{2}[2 a+(n-1) d]$.

- Watch Video Solution

38. By the Principle of Mathematical Induction, prove the following for all $n \in N:$
$b+b r+b r^{2}+\ldots \ldots \ldots+b r^{n-1}=\frac{b\left(1-r^{n}\right)}{1-r}, r<1$.

- Watch Video Solution

39. Prove the following by using the principle of mathematical induction for all $n \in N:-a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$.

- Watch Video Solution

40. By the Principle of Mathematical Induction, prove the following for all $\mathrm{n} \in \mathrm{N}:$
$x^{n}-y^{n}$ is divisible by ($\mathrm{x}-\mathrm{y}$) for every $\mathrm{n} \in \mathrm{N}, x-y \neq 0$.

- Watch Video Solution

41. Prove the following by using the principle of mathematical induction for all $n \in N:-x^{2 n}-y^{2 n}$ is divisible by $x+y$.

- Watch Video Solution

42. By the Principle of Mathematical Induction, prove the following for all $\mathrm{n} \in \mathrm{N}:$
$2^{3 n}-1$ is divisible by 7.

- Watch Video Solution

43. By the Principle of Mathematical Induction, prove the following for all
$\mathrm{n} \in \mathrm{N}:$
$3^{2 n}-1$ is divisible by 8 .

- Watch Video Solution

44. By the Principle of Mathematical Induction, prove the following for all $\mathrm{n} \in \mathrm{N}:$
$5^{2 n}-1$ is divisible by 24 .

- Watch Video Solution

45. By the Principle of Mathematical Induction, prove the following for all $n \in N:$
$4^{n}-3 n-1$ is divisible by 9 .

- Watch Video Solution

46. By the Principle of Mathematical Induction, prove the following for all $n \in N:$
$4^{n}+15 n-1$ is divisible by 9 .

- Watch Video Solution

47. By the Principle of Mathematical Induction, prove the following for all
$n \in N:$
$10^{2 n-1}+1$ is divisible by 11 .

- Watch Video Solution

48. Prove the following by using the principle of mathematical induction for all $n \in N:-3^{2 n+2}-8 n-9$ is divisible by 8 .

- Watch Video Solution

49. By the Principle of Mathematical Induction, prove the following for all
$\mathrm{n} \in \mathrm{N}:$
$3^{4 n+1}+2^{2 n+2}$ is divisible by 7 .

- Watch Video Solution

50. By the Principle of Mathematical Induction, prove the following for all $\mathrm{n} \in \mathrm{N}:$
$a^{2 n-1}-1$ is divisible by a-1.

- Watch Video Solution

51. By the Principle of Mathematical Induction, prove the following for all $\mathrm{n} \in \mathrm{N}$:
$15^{2 n-1}+1$ is multiple of 16.

- Watch Video Solution

52. Prove the following by using the principle of mathematical induction for all $n \in N:-41^{n}-14^{n}$ is a multiple of 27 .

- Watch Video Solution

53. By the Principle of Mathematical Induction, prove the following for all $n \in N:$
$n^{2}-n+41$ is prime.

- Watch Video Solution

54. Prove by Induction, for all $n \in N$:
$2^{n}>n$.

- Watch Video Solution

55. Prove by Induction, for all $n \in N$:
$2^{n}<3^{n}$.

- Watch Video Solution

56. Prove the following by using the principle of mathematical induction for all $n \in N:-(2 n+7)<(n+3)^{2}$.

Watch Video Solution

57. Prove by Induction, for all $n \in N$:
$(n+3)^{2} \leq 2^{n+3}$.

- Watch Video Solution

58. Prove by Induction, that $(2 n+7) \leq(n+3)^{2}$ for all $\mathrm{n} \in \mathrm{N}$. Using this, prove by induction that: $(n+3)^{2} \leq 2^{n+3}$ for all $\mathrm{n} \in \mathrm{N}$.

- Watch Video Solution

59. Prove the following by using the principle of mathematical induction for all $\quad n \in N$
$1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots+\frac{1}{(1+2+3+\ldots n)}=\frac{2 n}{(n+1)}$.

- Watch Video Solution

60. Use method of induction, prove that: If $n^{3}+(n+1)^{3}+(n+2)^{3}$ is divisible by 9 for every $\mathrm{n} \in \mathrm{N}$

- Watch Video Solution

61. Using mathematical induction, show that $n(n+1)(n+5)$ is a multiple of 3 .

- Watch Video Solution

62. Use method of induction, prove that : $n(n+1)(n+2)$ is divisible by
63.

Watch Video Solution

63. Use method of induction, prove that:
$n^{3}+3 n^{2}+5 n+3$ is divisible by 3 .

- Watch Video Solution

64. Prove, by Induction, on the inequality $(1+x)^{n} \geq 1+n x$ for all natural numbers n , where $\mathrm{x}>-1$.

- Watch Video Solution

65. Let $\mathrm{P}(\mathrm{n})$ be the statement " $n^{2}-n+41$ " is prime. Prove that $\mathrm{P}(1), \mathrm{P}(2)$ and $\mathrm{P}(3)$ are true. Also prove that $\mathrm{P}(41)$ is not true. How does this not contradict the Principle of Induction?

- Watch Video Solution

66. Let $P(n)$ be the statement : "the arithmetic mean of n and $(n+2)$ is the same as their geometric mean'". Prove that $\mathrm{P}(1)$ is not true. Also prove that if $\mathrm{P}(\mathrm{n})$ is true, then $\mathrm{P}(\mathrm{n}+1)$ is also true. How does this contradict the principle of Induction?

- Watch Video Solution

67. If n straight lines in a plane are such that no two of them are parallel and no three of them are concurrent, prove that they intersect each other in $\frac{n(n-1)}{2}$ points.

- Watch Video Solution

68. Let $\mathrm{P}(\mathrm{n})$ denote the statement: " $2^{n} \geq n$!". Show that $\mathrm{P}(1), \mathrm{P}(2)$ and $P(3)$ are true but $P(4)$ is not true.

- Watch Video Solution

69. By using the Principle of Mathematical Induction, prove the following for all $n \in N$:
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \ldots \ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$.

- Watch Video Solution

70. By using the Principle of Mathematical Induction, prove the following for all $n \in N$:
$x+4 x+7 x+\ldots \ldots+(3 n-2) x=\frac{1}{2} n(3 n-1) x$.

- Watch Video Solution

71. Prove the following by using the principle of mathematical induction for all

$$
n \in N
$$

$1.2+2.3+3.4+\ldots+n .(n+1)=\left[\frac{n(n+1)(n+2)}{3}\right]$

- Watch Video Solution

72. Prove the following by using the principle of mathematical induction for all $n \in N$
$1.2 \cdot 3+2.3 .4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$.

- Watch Video Solution

73. By using the Principle of Mathematical Induction, prove the following for all $n \in N:$
1.4.7 $+2.5 .8+3.6 .9+\ldots \ldots . .+n(n+3)(n+6)=\frac{n}{4}(n+1)(n+6)(n+$

- Watch Video Solution

74. By using the Principle of Mathematical Induction, prove the following for all $n \in N$:
$7+77+777+\ldots$. to n terms $=\frac{7}{81}\left(10^{n+1}-9 n-10\right)$.

- Watch Video Solution

75. By using the Principle of Mathematical Induction, prove the following for all $n \in N$:
$1.1!+2.2!+3.3!+\ldots \ldots . .+n . n!=(n+1)!-1$.

- Watch Video Solution

76. Prove, by Mathematical Induction, that for all $n \in N$, $3^{2 n}-1$ is divisible by 8 .

- Watch Video Solution

77. $10^{n}+3\left(4^{n+2}\right)+5$ is divisible by $(n \in N)$

- Watch Video Solution

78. Prove, by Mathematical Induction, that for all $\mathrm{n} \in \mathrm{N}$,
$2.7^{n}+3.5^{n}-5$ is divisible by 24 .
79. Prove, by Mathematical Induction, that for all $n \in N$, $n(n+1)(n+2)(n+3)$ is a multiple of 24 .

- Watch Video Solution

80. By Mathematical Induction, prove the following :
$\left(4^{n}+15 n-1\right)$ is divisible by 9 .

- Watch Video Solution

81. By Mathematical Induction, prove the following :
$12^{n}+25^{n-1}$ is divisible by 13 .

- Watch Video Solution

82. Prove the following by using induction for all $n \in N$. $11^{n+2}+12^{2 n+1}$ is divisible by 133 .

- Watch Video Solution

83. For all $\mathrm{n} \in \mathrm{N}$, prove that $: \frac{n^{2}}{7}+\frac{n^{5}}{5}+\frac{2}{3} n^{2}-\frac{n}{105}$ is an integer.

Watch Video Solution

84. Prove that :
$\cos A \cos 2 A \cos 2^{2} A \cos 2^{3} A \ldots \ldots . \cos 2^{n-1} A=\frac{\sin 2^{n} A}{2^{n} \sin A}$.

- Watch Video Solution

85. Let $U_{1}=1, U_{2}=1$ and $U_{n+2}=U_{n+1}+U_{n}$ for $n \geq 1$. Use Mathematical Induction to show that:
$U_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]$ for all $n \geq 1$.
