©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

RELATIONS AND FUNCTIONS

Example

1. If $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=(3,4,5\}$, obtain $A \times B$ and represent it graphically.

- Watch Video Solution

2. If $\mathrm{A}:\{1,2\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, obtain $A \times B$ and represent it by an arrow diagram.
3. Find x and y, if $(2 x, x+y)=(6,2)$.

- Watch Video Solution

4. Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}\}, \mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. What is $A \times B$?

- Watch Video Solution

5. If $A \times B=\{(p, q),(p, r),(m, q),(m, r)\}$, find A and B .

- Watch Video Solution

6. Let A and B be two sets such that $n(A)=5$ and $n(B)=2$. If $\left(a_{1}, 2\right),\left(a_{2}, 3\right),\left(a_{3}, 2\right),\left(a_{4}, 3\right),\left(a_{5}, 2\right)$ are in $A \times B$ and $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5} are distinct, find A and B .
7. If $\mathrm{G}=\{7,8\}$ and $\mathrm{H}=\{5,4,2\}$, find $G \times H$ and $H \times G$.

- Watch Video Solution

8. If $\mathrm{P}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{Q}=\{\mathrm{r}\}$, form the sets $P \times Q$ and $Q \times P$. Are these two Products equal ?

- Watch Video Solution

9. Let A and B be two sets such that $n(A)=5$ and $n(B)=2$. If a, b, c, d, e are distinct and (a, 2), (6, 3), (c, 2), (d, 3), (e, 2) are in $A \times B$, find A and B .

- Watch Video Solution

10. If $\mathrm{P}=\{1,2\}$, form the set $P \times P \times P$.

- Watch Video Solution

11. Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{5,7,9\}$. Determine : $A \times B$ and represent it graphically.

Watch Video Solution

12. Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{5,7,9\}$. Determine : $B \times A$ and represent it graphically.

- Watch Video Solution

13. Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{5,7,9\}$. Determine : Is $A \times B=B \times A$?

- Watch Video Solution

14. Let $A=\{1,2,3,4\}$ and $B=\{5,7,9\}$. Determine : is $n(A \times B)=n(B \times A) ?$
15. Let $A=\{2,4,6\}$ and $B=\{a, b\}$. Represent the following product by arrow diagram :
$A \times B$.

- Watch Video Solution

16. Let $A=\{2,4,6\}$ and $B=\{a, b\}$. Represent the following product by arrow diagram :
$B \times A$.

- Watch Video Solution

17. Let $A=\{2,4,6\}$ and $B=\{a, b\}$. Represent the following product by arrow diagram :
$A \times A$.

- Watch Video Solution

18. Let $A=\{2,4,6\}$ and $B=\{a, b\}$. Represent the following product by arrow diagram :
$B \times B$.

- Watch Video Solution

19. If $\mathrm{A}=\{1,2\}, \mathrm{B}=\{3,4\}, \mathrm{C}=\{4,5\}$, find $A \times(B \cup C)$.

- Watch Video Solution

20. Let $\mathrm{A}=\{1,2,4\}, \mathrm{B}=\{3,5,7\}$ and $\mathrm{C}=\{5,7,9\}$, find $A \times(B \cap C)$.

- Watch Video Solution

21. Let $A=\{1,2,3\}, B=\{2,3,4\}$ and $C=\{4,5\}$. Verify that :
$A \times(B \cap C)=(A \times B) \cap(A \times C)$.
22. Let $A=\left\{\frac{1}{2}, 2\right\}, \mathrm{B}=\{2,3,5\}, \mathrm{C}=\{-1,-2\}$, then verify the following : $A \times(B \cup C)=(A \times B) \cup(A \times C)$.

- Watch Video Solution

23. Let $A=\left\{\frac{1}{2}, 2\right\}, \mathrm{B}=\{2,3,5\}, \mathrm{C}=\{-1,-2\}$, then verify the following :
$A \times(B-C)=(A \times B)-(A \times C)$.

- Watch Video Solution

24. For any three sets A, B, C, prove that :
$A \times(B \cap C)=(A \times B) \cap(A \times C)$.

- Watch Video Solution

25. For any three sets A, B, C, prove that :
$A \times(B-C)=(A \times B)-(A \times C)$.

- Watch Video Solution

26. For any sets A, B, C, D , prove that:
$(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$.

- Watch Video Solution

27. Determine the domain and range of the relation R defined by $R=\{(x, x$
$+5): x \in\{0,1,2,3,4,5\}\}$.

- Watch Video Solution

28. LetA $=\{1,2,3,4,6\}$. Let R be the relation on A defined by $\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, b \in A$, b is exactly divisible by a\}. Find the range of R.

- Watch Video Solution

29. Let $A=\{1,2,3,4,6\}$. Let R be the relation on A defined by $\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, b \in A$ $, b$ is exactly divisible by $a\}$. Find the domain of R

Watch Video Solution

30. Let $A=\{1,2,3,4,6\}$. Let R be the relation on A defined by $\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, b \in A$, b is exactly divisible by $a\}$. Find the range of R.

- Watch Video Solution

31. If $A=\{4,9,16,25\}, B=\{1,2,3,4\}$ and R is the relation "is square of" from A to B, write down the set corresponding to R. Also find the domain and range of R .

- Watch Video Solution

32. If R is a relation "is divisor of" from the set $A=\{1,2,3\}$ to $B=\{4,10,15\}$, write down the set of ordered pairs corresponding to R.

Watch Video Solution

33. Let R be the relation on the set N of natural numbers defined by a+ $3 b=12$. Find : R.

- Watch Video Solution

34. Let R be relation on the set N of natural numbers defined by $a+3 b=12$.

Find : (i) R (ii) domain of R (iii) Range of R

- Watch Video Solution

35. Let R be relation on the set N of natural numbers defined by $a+3 b=12$.

Find : (i) R (ii) domain of R (iii) Range of R
36. Let $A=\{1,2\}$ and $B=\{3,4\}$. Find the number of relations from A to B.

- Watch Video Solution

37. If R is the relation 'lessthan from $A=\{1,2,3,4,5\}$ to $B=\{1,4,5\}$. Write down the cartesion product corresponding to R. Also find the inverse relation to R .

- Watch Video Solution

38. Let $A=\{1,2,3,4,5,6\}$. Define a relation R from A to A by : $R=\{(x, y): y=x$ +1\}. Depict this relation by arrow diagram.

- Watch Video Solution

39. Let $A=\{1,2,3,4,5,6\}$. Define a relation R from A to A by : $R=\{(x, y): y=x$ $+1\}$. Write down the domain, co-domain and range of R .

- Watch Video Solution

40. The figure given below shows the relationship between the sets P and
Q.

Write this
relation in set builder form.'

- Watch Video Solution

41. The figure given below shows the relationship between the sets P and
Q.

Write this
relation in roster form.

- Watch Video Solution

42. The figure given below shows the relationship between the sets P and
Q.

Write this
relation What is its domain and range?

- Watch Video Solution

43. Show that the relation ' $>$ ' on the set R of all real numbers is transitive but it is neither reflexive nor symmetric.

- Watch Video Solution

44. Consider the set $A=\{a, b, c\}$. Give an example of a relation R on A.
which is : reflexive and symmetric but not transitive.
45. Consider the set $A=\{a, b, c\}$. Give an example of a relation R on A. which is : Symmetric and transitive but not reflexive.

- Watch Video Solution

46. Consider the set $A=\{a, b, c\}$. Give an example of a relation R on A. which is : reflexive and transitive but not symmetric.

- Watch Video Solution

47. The relation 'is parallel to', on the set A of all coplanar straight lines is an equivalence relation.

- Watch Video Solution

48. Let ' m ' be a given positive integer. Prove that the relation, Congruence modulo m^{\prime} on the set Z of all integers defined by : $a \equiv b(\bmod m) \Leftrightarrow(a-b)$ is divisible by m is an equivalence relation.

- Watch Video Solution

49. Let Z be the set of all integers and R be the relation on Z defined as $R=(a, b): a, b \mathrm{in} \mathrm{Z}^{`} \mathrm{z}$ and $\mathrm{a}-\mathrm{b}$ is divisible by 5) Prove that R is an equivalence relation.

- Watch Video Solution

50. If R is a relation in $N \times N$, show that the relation R defined by (a, b) R (c, d) if and only if $a d=b c$ is an equivalence relation.

- Watch Video Solution

51. Which of the following graphs represent the function of x ? Why ?

- Watch Video Solution

52. Let N be the set of natural numbers and the relation R be defined on N such that $R=\{(x, y): y=2 x, x, y \in N\}$. What is the domain, codomain and Range of R ?

- Watch Video Solution

53. Let N be the set of natural numbers and the relation R be defined on N such that $R=\{(x, y): y=2 x, x, y \in N\}$. Is this relation a function ?
54. Which of the following relations are functions ? Give reasons. If it is a function, determine its domain and range. $R=\{(2,1),(3,1),(4,2),(5,7),(6$, 9)\}.

- Watch Video Solution

55. Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range. $R=\{(2,2),(2,4),(3,3),(4,4),(5$, 8)\}.

Watch Video Solution

56. Which of the following relations are functions ? Give reasons. If it is a function, determine its domain and range. $R=\{(1,3),(1,5),(2,5),(3,6),(3$, 7)\}.

- Watch Video Solution

57. Let $f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a linear function from Z into Z. Find $\mathrm{f}(\mathrm{x})$.

- Watch Video Solution

58. Let $A=\{1,2,3\}, B=\{4,5\}$ and let $f=\{(1,4),(2,5),(3,5)\}$. Show that ' f ' is an onto function from A into B .

- Watch Video Solution

59. Let $\mathrm{N} \rightarrow \mathrm{N}$ be defined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}$. Show that f is not an onto function.

- Watch Video Solution

60. Let $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{4,5,6,7\}$ and let $\mathrm{f}=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. Show that f is one-one.
61. If $f(x)=x^{3}-\frac{1}{x^{3}}$, find the value of $f(x)+f\left(\frac{1}{x}\right)$.

- Watch Video Solution

62. If ' f ' is a real function defined by : $f(x)=\frac{x-1}{x+1}$, then prove that $f(2 x)=\frac{3 f(x)+1}{f(x)+3}$.

- Watch Video Solution

63. If $f(x)=\frac{1}{2 x+1}, x \neq-\frac{1}{2}$, then show that , $f(f(x))=\frac{2 x+1}{2 x+3}, x \neq-\frac{3}{2}$.

- Watch Video Solution

64. If $f(x)=\log _{e}\left(\frac{1+x}{1-x}\right)$, prove that: $f(x)+f(y)=f\left(\frac{x+y}{1+x y}\right)$.
65. The function ' t ', which maps temperature in Celsius into temperature in Fahrenheit is defined by $t(c)=\frac{9 c}{5}+32$. Find : $\mathrm{t}(5)$.

- Watch Video Solution

66. The function ' t ', which maps temperature in Celsius into temperature in Fahrenheit is defined by $t(c)=\frac{9 c}{5}+32$. Find : $\mathrm{t}(25)$.

- Watch Video Solution

67. The function ' t ', which maps temperature in Celsius into temperature in Fahrenheit is defined by $t(c)=\frac{9 c}{5}+32$. Find : $\mathrm{t}(-5)$.

- Watch Video Solution

68. The function ' t ', which maps temperature in Celsius into temperature in Fahrenheit is defined by $t(c)=\frac{9 c}{5}+32$. Find : the value of c when $\mathrm{t}(\mathrm{c})$ $=210$.

- Watch Video Solution

69. If the function $f: R \rightarrow R$ is defined by ,
$f(x)=\left\{\begin{array}{lll}3 x-1 & \text { if } & x>3 \\ x^{2}-2 & \text { if } & -2 \leq x \leq 3 \text { Find }: \mathrm{f}(2) . \\ 2 x+3 & \text { if } & x<-2\end{array}\right.$

- Watch Video Solution

70. If the function $f: R \rightarrow R$ is defined by ,
$f(x)=\left\{\begin{array}{lll}3 x-1 & \text { if } & x>3 \\ x^{2}-2 & \text { if } & -2 \leq x \leq 3 \text { Find }: \mathrm{f}(4) . \\ 2 x+3 & \text { if } & x<-2\end{array}\right.$

- Watch Video Solution

71. If the function $f: R \rightarrow R$ is defined by , $f(x)=\left\{\begin{array}{lll}3 x-1 & \text { if } & x>3 \\ x^{2}-2 & \text { if } & -2 \leq x \leq 3 \text { Find }: \mathrm{f}(-1) . \\ 2 x+3 & \text { if } & x<-2\end{array}\right.$

- Watch Video Solution

72. If the function $f: R \rightarrow R$ is defined by ,
$f(x)=\left\{\begin{array}{lll}3 x-1 & \text { if } & x>3 \\ x^{2}-2 & \text { if } & -2 \leq x \leq 3 \\ 2 x+3 & \text { if } & x<-2\end{array}\right.$ Find : $\mathrm{f}(-3)$.

(Watch Video Solution

73. For the relation $y=\sqrt{x}$, say whether it is a function or not. If it is a function, find its domain and range.

- Watch Video Solution

74. Find the domain and range of the following functions : $f(x)=\sqrt{(x-1)(3-x)}$.

Watch Video Solution

75. Find the domain and range of the following function : $f(x)=11-7 \sin x$.

- Watch Video Solution

76. Find the domain and range of the following function : $f(x)=1-|x|$.

- Watch Video Solution

77. Find the range of the following function : $f(x)=\frac{1}{(2 x-3)(x+1)}$.

- Watch Video Solution

78. Find the domain of the function $f(x)=\frac{x^{2}+3 x+5}{x^{2}-5 x+4}$

- Watch Video Solution

79. Which of the following functions are odd or even or neither :
$f(x)=\tan x+3 \operatorname{cosec} x+x$

Watch Video Solution

80. Which of the following functions are odd or even or neither:
$f(x)=|x|+1$

- Watch Video Solution

81. Which of the following functions are odd or even or neither :
$f(x)=|x-2|$
82. Prove that $f(x)=x-[x]$, where $[x]$ denotes the integral part of x not exceeding and is periodic and find its period.

- Watch Video Solution

83. Solve : $[2 x-3]=5$.

- Watch Video Solution

84. Whether the following relation is function? Give reason. If it is a function, determine its domain and range :
$\{(2,1),(3,1),(4,2)\}$.

- Watch Video Solution

85. Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range. $\{(1,3),(1,5),(2,5)\}$.
86. Whether the following relation is function? Give reason. If it is a function, determine its domain and range :
$\{(2,2),(2,4),(3,3),(4,4)\}$.

- Watch Video Solution

87. Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.
$\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$

- Watch Video Solution

88. Whether the following relation is function? Give reason. If it is a function, determine its domain and range :
$\{(2,1),(5,1),(8,1),(11,2),(14,2),(17,2)\}$.
89. Whether the following relation is function? Give reason. If it is a function, determine its domain and range :
$\{(1,2),(2,3),(3,4),(4,5),(5,6),(6,7)\}$.

- Watch Video Solution

90. Whether the following relation is function? Give reason. If it is a function, determine its domain and range :
$\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$

- Watch Video Solution

91. Whether the following relation is function? Give reason. If it is a function, determine its domain and range :
$\{(2,1),(4,2),(6,3),(8,4),(10,5)\}$.
92. Whether the following relation is function? Give reason. If it is a function, determine its domain and range :
$\{(1,2),(2,3),(3,4),(3,5),(3,7),(4,8)\}$.

- Watch Video Solution

93. Let $f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a function from Z to Z defined by $f(x)=a x+b$, for some integers a, b. Determine a, b.

- Watch Video Solution

94. Determine function given below is one-to-one :

To each state of India assign its capital.

- Watch Video Solution

95. Determine function given below is one-to-one :

To each person on earth assign the number, which corresponds to his height.

- Watch Video Solution

96. Determine function given below is one-to-one : To each country in the world assign the latitude and longitude of its capital.

- Watch Video Solution

97. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ be one-to-one function such that range of f is (b). Determine the number of elements in A .

- Watch Video Solution

98. If $f(x)=3 x^{4}-5 x^{2}+7$, find $\mathrm{f}(\mathrm{x}-1)$.
99. If $f(x)=x^{2}-3 x+4$, then find the values of x satisfying $\mathrm{f}(\mathrm{x})=\mathrm{f}$ $(2 x+1)$.

- Watch Video Solution

100. If $f(x)=x^{2}$, find $\frac{f(1.1)-f(1)}{(1.1-1)}$.

(Watch Video Solution

101. If $f(x)=x+\frac{1}{x}$, prove that: $[f(x)]^{3}=f\left(x^{3}\right)+3 f\left(\frac{1}{x}\right)$.

- Watch Video Solution

102. If $f(x)=x^{3}-\frac{1}{x^{3}}$, find the value of $f(x)+f\left(\frac{1}{x}\right)$.
103. If $f(x)=\frac{1-x^{2}}{1+x^{2}}$, prove that $f(\tan \theta)=\cos 2 \theta$.

- Watch Video Solution

104. If $y=f(x)=\frac{3 x-1}{5 x-3}$, prove that $\mathrm{f}(\mathrm{y})=\mathrm{x}$.

- Watch Video Solution

105. If $y=f(x)=\frac{a x-b}{b x-a}$, prove that $\mathrm{f}(\mathrm{y})=\mathrm{x}$.

- Watch Video Solution

106. If $f(x)=\log _{e}\left(\frac{1+x}{1-x}\right)$, prove that $f\left(\frac{2 x}{1+x^{2}}\right)=2 f(x)$.

- Watch Video Solution

107. What are the real numbers x such that $[x]=2$?

- Watch Video Solution

108. What are the values taken by the function $|x|$?

- Watch Video Solution

109. What values does the function $x \rightarrow 2 x^{2}-1$ associate with the number 7 in the range ?

- Watch Video Solution

110. Given $f(x)=\left\{\begin{array}{ll}3 x-8 & f \text { or } \\ 7 & f \text { or } \\ 7>5\end{array}\right.$.What is the value of the function : at $\mathrm{x}=3$?

- Watch Video Solution

111. Given $f(x)=\left\{\begin{array}{lll}3 x-8 & f \text { or } & x \leq 5 \\ 7 & f \text { or } & x>5\end{array}\right.$.What is the value of the function : at $\mathrm{x}=7$?

- Watch Video Solution

112. A function ' f ' is defined by $f(x)=2 x-5$, find : $f(0)$.

- Watch Video Solution

113. A function ' f ' is defined by $f(x)=2 x-5$, find : $f(7)$.

- Watch Video Solution

114. A function ' f ' is defined by $f(x)=2 x-5$, find: $f(-3)$.

- Watch Video Solution

115. If $\mathrm{f}(\mathrm{x})=|\mathrm{x}|+|\mathrm{x}-1|$, find the value of : $f\left(-\frac{1}{3}\right)$.

- Watch Video Solution

116. If $f(x)=|x|+|x-1|$, find the value of : $f(0)$.

- Watch Video Solution

117. If $\mathrm{f}(\mathrm{x})=|\mathrm{x}|+|\mathrm{x}-1|$, find the value of: $f\left(\frac{1}{3}\right)$.

- Watch Video Solution

118. If $f(x)=|x|+|x-1|$, find the value of: $f(1)$.

- Watch Video Solution

119. If $f(x)=|x|+|x-1|$, find the value of: $f(2)$.

(D) Watch Video Solution

120. Let $A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$ and $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$. Is the following true? Justify your answer. f is a relation from A to B

- Watch Video Solution

121. Let $A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$ and $f=\{(1,5),(2,9),(3,1),(4,5),(2,1)\}$. Is the following true? Justify your answer. f is a function from A to B.

- Watch Video Solution

122. Let $\mathrm{A}=\{9,10,11,12,13\}$ and let $f: A \rightarrow N$ be defined by $\mathrm{f}(\mathrm{n})=$ the highest prime factor of n. Find the range of f.

- Watch Video Solution

123. Let f be the subset of $Z \times Z$ defined by $f=\{(a b, a+b): a, b \in Z\}$.Is f a function from Z to Z ? Justify your answer.

- Watch Video Solution

124. Whether the following function is odd or even or neither:
$f(x)=\cot x+4 \cos e c x+x$.

- Watch Video Solution

125. Whether the following function is odd or even or neither:
$f(x)=\sec x+4 \cos x+3 x^{2}$.

- Watch Video Solution

126. Whether the following function is odd or even or neither :
$f(x)=\sin x+\cos x$.
127. Whether the following function is odd or even or neither :
$f(x)=|x-1|$.

- Watch Video Solution

128. Whether the following function is odd or even or neither :
$f(x)=\frac{|x|}{x}$ for all $x \in R-\{0\}$.

- Watch Video Solution

129. Whether the following function is odd or even or neither :
$f(x)=\frac{|x|}{x^{2}+1}$ for all $x \in R$.

- Watch Video Solution

130. Whether the following function is odd or even or neither :
$f(x)=\log \left(x+\sqrt{x^{2}+1}\right)$.

Watch Video Solution

131. Whether the following function is odd or even or neither :
$f(x)=x\left(\frac{a^{x}-1}{a^{x}+1}\right)$.

- Watch Video Solution

132. Whether the following function is odd or even or neither :
$f(x)=x^{2}-|x|$.

- Watch Video Solution

133. What is the domain of the function $\frac{x}{x^{2}-3 x+2}$?
134. What is the range of the constant function 1 ?

- Watch Video Solution

135. For what value of x is the following function not defined ?
$\frac{3 x}{4 x-3}$.

- Watch Video Solution

136. For what value of x is the following function not defined ?
$\sqrt{x-2}$.

- Watch Video Solution

137. For what value of x is the following function not defined ?
$\frac{1}{\sqrt{x-3}}$.
138. For what value of x is the following function not defined ?
$\sin x$
x

- Watch Video Solution

139. For what value of x is the following function not defined ?
$\sin \frac{1}{x}$.

- Watch Video Solution

140. For what value of x is the following function not defined?
$\sqrt{(x+2)(x-3)}$.
141. Find the period of the following function, if periodic: |cos $\mathrm{x} \mid$.

Watch Video Solution

142. Find the period of the following function, if periodic: $\tan 4 \mathrm{x}$.

- Watch Video Solution

143. Find the period of the following function, if periodic :
$2 \cos \frac{1}{3}(x-\pi)$.

- Watch Video Solution

144. Determine whether the following function $f R \rightarrow R$ are onto :

$$
f(x)=x+1 .
$$

145. Determine whether the following function $f R \rightarrow R$ are onto :
$f(x)=x^{3}$.

- Watch Video Solution

146. Determine whether the following function $f R \rightarrow R$ are onto :
$f(x)=|x|+x$.

- Watch Video Solution

147. Determine whether the following function $f R \rightarrow R$ are onto :
$f(x)=1$, if x is rational.

- Watch Video Solution

148. Determine whether the following function $f R \rightarrow R$ are onto :
$f(x)=-1$, if x is irrational.

Watch Video Solution

149. Show that $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ defined by: $f(n)=\left\{\begin{array}{ll}\frac{n+1}{2} & \text { if nisodd } \\ \frac{n}{2} & \text { if niseven }\end{array}\right.$ is many-one onto function.

- Watch Video Solution

150. If $f(x)=\cos \left(\log _{e} x\right)$, find the value of :
$f(x) f(y)-\frac{1}{2}\left[f\left(\frac{x}{y}\right)+f(x y)\right]$.

(Watch Video Solution

151. If $f(x)=\sqrt{x}$, prove that: $\frac{f(x+h)-f(x)}{h}=\frac{1}{\sqrt{x+h}+\sqrt{x}}$.
152. Find the domain and range of the following function:
$f(x)=x^{2}$.

- Watch Video Solution

153. Find the domain and range of the following function:
$f(x)=\frac{3-x}{x-3}$.

- Watch Video Solution

154. Find the domain and range of the following function :
$f(x)=\frac{x^{2}-1}{x-1}$.

- Watch Video Solution

155. Find the domain and range of the following real function:-
$f(x)=\sqrt{9-x^{2}}$

Watch Video Solution

156. Find the domain and range of the following real function:-
$f(x)=-|x|$

- Watch Video Solution

157. Find the domain and range of the following function:
$|x-1|$.

- Watch Video Solution

158. Find the domain and range of the following function:
$f(x)=\frac{|x-3|}{x-3}$.
159. Find the domain and range of the following function :
$f(x)=\frac{|x-2|}{2-x}$.

- Watch Video Solution

160. Find the domain and range of the following function :
$f(x)=\sqrt{x-1}$.

- Watch Video Solution

161. Find the domain and range of the following function :
$f(x)=\sqrt{3-2 x}$.

- Watch Video Solution

162. Find the domain and range of the following function :
$f(x)=\frac{1}{\sqrt{x+2}}$.

(Watch Video Solution

163. Find the domain and range of the following function :
$f(x)=1+x-[x-2]$.

- Watch Video Solution

164. Find the domain of the following :
$f(x)=\sqrt{-16 x^{2}+24 x}$.

- Watch Video Solution

165. Find the domain of the following :
$f(x)=\frac{1}{|x|-x}$.
166. Find the domain of the following :
$f(x)=\sqrt{\log \left(\frac{5 x-x^{2}}{6}\right)}$.

Watch Video Solution

167. Find the domain of the function $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$.

- Watch Video Solution

168. Find the range of the following function:-
$f(x)=2-3 x, x \in R, x>0$.

- Watch Video Solution

169. Find the range of the following function:- $f(x)=x^{2}+2, \mathrm{x}$ is a real number.

- Watch Video Solution

170. Find the range of the following function:- $f(x)=x, \mathrm{x}$ is a real number.

- Watch Video Solution

171. Let $f=\left\{\left(x, \frac{x^{2}}{1+x^{2}}\right): x \in R\right\}$ be a function from R into R . Determine the range of ' f '.

- Watch Video Solution

172. State, giving justification for your answer, whether the following pair is equal :
$f(x)=\frac{x}{x^{2}}, g(x)=1$.

- Watch Video Solution

173. State, giving justification for your answer, whether the following pair is equal :
$f(x)=\sqrt{x^{2}}, g(x)=|x|$.

- Watch Video Solution

174. Is the following function invertible in the respective domain ? If so, find the inverse :
$f(x)=-\frac{1}{3} x+4$.

- Watch Video Solution

175. Are the following function invertible in their respective domains? If so,find the inverse in each case $f(x)=\frac{x-1}{x+1}, x \neq-1$
176. Is the following function invertible in the respective domain ? If so, find the inverse :
$f(x)=\sqrt{1-x^{2}}, 0 \leq x \leq 1$.

- Watch Video Solution

177. Let $\mathrm{f}=\mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-7$. Show that f is invertible.

- Watch Video Solution

178. Let $\mathrm{f}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be defined respectively by :
$f(x)=x+1, g(x)=2 x-3$. Find $f+g, f-g, f o g$ and $\frac{f}{g}$.

- Watch Video Solution

179. Let f and g be two functions defined by $f(x)=\sqrt{x-1}$ and $g(x)=\sqrt{4-x^{2}}$. Find : $f+g$.

Watch Video Solution

180. Let f and g be two functions defined by $f(x)=\sqrt{x-1}$ and $g(x)=\sqrt{4-x^{2}}$. Find : $f+g$.

- Watch Video Solution

181. Let f and g be two functions defined by $f(x)=\sqrt{x-1}$ and $g(x)=\sqrt{4-x^{2}}$. Find : $f-g$.

- Watch Video Solution

182. Let f and g be two functions defined by $f(x)=\sqrt{x-1}$ and $g(x)=\sqrt{4-x^{2}}$. Find : $g-f$.
183. Let f and g be two functions defined by $f(x)=\sqrt{x-1}$ and $g(x)=\sqrt{4-x^{2}}$. Find : fg.

- Watch Video Solution

184. Let f and g be two functions defined by $f(x)=\sqrt{x-1}$ and $g(x)=\sqrt{4-x^{2}}$. Find : gf.

- Watch Video Solution

185. Let f and g be two functions defined by $f(x)=\sqrt{x-1}$ and $g(x)=\sqrt{4-x^{2}}$. Find : $\frac{f}{g}$.

(Watch Video Solution

186. Let f and g be two functions defined by $f(x)=\sqrt{x-1}$ and $g(x)=\sqrt{4-x^{2}}$. Find : $\frac{g}{f}$.

- Watch Video Solution

187. Find the domain of the function : $f(x)=\frac{\sin ^{-1} x}{[x]}$.

- Watch Video Solution

188. Draw the graph of the function : $f: R \rightarrow R$ defined by $f(x)=x^{3}, x \in R$.

- Watch Video Solution

189. Let R be the set of real numbers. Define a real function $f: R \rightarrow R$ by $f(x)=x+10$. Sketch the graph of this function.
190. The function f is defined by : $f(x)=\left\{\begin{array}{ll}1-x & x<0 \\ 1 & x=0 \\ x+1 & x>0\end{array}\right.$. Draw the graph of $f(x)$.

Watch Video Solution

191. Draw the graph of the function : $1-x$.

- Watch Video Solution

192. Draw the graph of the function : $1-x$.

- Watch Video Solution

$$
\begin{aligned}
& \text { 193. Draw the graph of the function } \\
& f(x)=|1-x|+|1+x|,-2 \leq x \leq 2
\end{aligned}
$$

194. If $f(x)=\frac{1+x}{1-x}$, show that $f(f(\tan \theta))=-\cot \theta$.

- Watch Video Solution

195. If for non-zero $\mathrm{x}, l f(x)+m f\left(\frac{1}{x}\right)=\frac{1}{x}-5$, where $1 \neq \mathrm{m}$, then obtain $f(x)$.

- Watch Video Solution

196. If $f(x)$ is defined on $[-2,2]$ and is given by
$f(x)=\left\{\begin{array}{ll}-1, & -2 \leq x<0 \\ x-1, & 0<x \leq 2\end{array}\right.$ and $g(x)=f|x|+|f(x)|$, then $g(x)$ is defined as

- Watch Video Solution

197. Find the period of $f(x)=\sin ^{4} x+\cos ^{4} x$.

- Watch Video Solution

198. Find the domain and range of the function:
$f(x)= \begin{cases}x^{2} & \text { when } x<0 \\ x & \text { when } 0 \leq x \leq 1 \\ \frac{1}{x} & \text { when } x>1\end{cases}$

- Watch Video Solution

199. Find the domain of the following :
$f(x)=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2}$.

- Watch Video Solution

200. Find the domain of the following :
$f(x)=\sqrt{1-2 x}+3 \sin ^{-1}\left(\frac{3 x-1}{2}\right)$.
201. Find the domain of $F(x)=\frac{1}{x}+2^{\sin ^{-1} x}+\frac{1}{\sqrt{x-2}}$.

D Watch Video Solution

Exercise

1. If $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{B}=\{\mathrm{p}, \mathrm{q}\}$, find $B \times A$.

- Watch Video Solution

2. Let $\mathrm{A}=\{1,2,3,4,5,6\}$ and $\mathrm{B}=\{2,4,6,8\}$. Find $A \times B$.

- Watch Video Solution

3. Find x and y if : $(x+1, y-2)=(3,1)$

- Watch Video Solution

4. Find x and y if: $(x+2,4)=(5,2 x+y)$

- Watch Video Solution

5. If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$, find the values of x and y .

- Watch Video Solution

6. Let $A=\{1,2,3,4\}$ and $S=\{(a, b): a \in A, b \in A$, a divides $b\}$. Write S explicitly.

- Watch Video Solution

7. Let $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{3,4\}$. Write $A \times B$. How many subsets will $A \times B$ have? List them.

- Watch Video Solution

8. Let A and B be two sets such that $n(A)=3$ and $n(B)=2$. If $(x, 1),(y, 2),(z, 1)$ are in $A \times B$, find A and B . where x, y and z are distinct elements.

- Watch Video Solution

9. If the set A has 3 elements and the set $B=\{3,4,5\}$, then find the number of elements in $(A \times B)$.

D Watch Video Solution

10. The Cartesian product $A \times A$ has 9 elements among which are found
$(-1,0)$ and (0,1). Find the setA and the remaining elements of $A \times A$.

- Watch Video Solution

11. If $\mathrm{A}=\{-1,1\}$, find $A \times A \times A$.

D Watch Video Solution

12. If R is the set of all real numbers. what do the cartesian products $R \times R$ and $R \times R \times R$ represent ?

- Watch Video Solution

13. If $A \times B=\{(\mathrm{a}, \mathrm{x}) .(\mathrm{a}, \mathrm{y}) .(\mathrm{b}, \mathrm{x}),(\mathrm{b}, \mathrm{y})\}$. Find A and B .

- Watch Video Solution

14. If $\mathrm{A}=\{1,2\}, \mathrm{B}=\{3,4\}, \mathrm{C}=\{4,5\}$, find $A \times(B \cup C)$.

- Watch Video Solution

15. If $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{B}=\{\mathrm{c}, \mathrm{d}\}$ and $\mathrm{C}=\{\mathrm{d}, \mathrm{e}, \mathrm{f}\}$, find : $(A \cap B) \times C$.

- Watch Video Solution

16. If $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{B}=\{\mathrm{c}, \mathrm{d}\}$ and $\mathrm{C}=\{\mathrm{d}, \mathrm{e}, \mathrm{f}\}$, find $:(A \times B) \cap(B \times C)$.

- Watch Video Solution

17. Let $\mathrm{A}=\{1,2,4\}, \mathrm{B}=\{3,5,7\}$ and $\mathrm{C}=\{5,7,9\}$, find $A \times(B \cap C)$.

- Watch Video Solution

18. Let $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{3,4\}$ and $\mathrm{C}=\{4,5,6\}$. Find : $(A \times B) \cap(A \times C)$.

- Watch Video Solution

19. Let $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{3,4\}$ and $\mathrm{C}=\{4,5,6\}$. Find : $(A \times B) \cap(A \times C)$.

- Watch Video Solution

20. Let $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{3,4\}$ and $\mathrm{C}=\{4,5,6\}$. Find : $A \times(B \cup C)$.

Watch Video Solution

21. Let $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{3,4\}$ and $\mathrm{C}=\{4,5,6\}$. Find : $(A \times B) \cap(A \times C)$.

- Watch Video Solution

22. Let $\mathrm{A}=\{2,4,6\}, \mathrm{B}=\{6,8,10\}$ and $\mathrm{C}=\{10,12,14\}$. Find $B \times(A \cup C)$.

- Watch Video Solution

23. Let $A=\left\{\frac{1}{2}, 2\right\}, \quad B=\{2,3,5\}, \quad C=\{-1,-2\}$. Verify that: $A \times(B \cap C)=(A \times B) \cap(A \times C)$.

- Watch Video Solution

24. Let A and B be two sets such that $n(A)=3$ and $n(B)=2$. If $(x, 1),(y, 2),(z$,
1) are in $A \times B$, find A and B . where x, y and z are distinct elements.
25. The Cartesian product $A \times A$ has 9 elements among which are found $(-1,0)$ and $(0,1)$. Find the setA and the remaining elements of $A \times A$.

- Watch Video Solution

26. Let $A=\{1,2,3\}, B=\{2,3,4\}$ and $C=\{4,5\}$. Verity that : $A \times(B \cup C)=(A \times B) \cup(A \times C)$.

- Watch Video Solution

27. If $A=\{1,2,3\}, B=\{4\}, C=\{5\}$. then verify that :
$A \times(B \cup C)=(A \times B) \cup(A \times C)$.

- Watch Video Solution

28. If $A=\{1,2,3\}, B=\{4\}, C=\{5\}$. then verify that : $A \times(B \cap C)=(A \times B) \cap(A \times C)$.

- Watch Video Solution

29. If $A=\{1,2,3\}, B=\{4\}, C=\{5\}$. then verify that :
$A \times(B-C)=(A \times B)-(A \times C)$.

- Watch Video Solution

30. Let $\mathrm{A}=\{1,2\}, \mathrm{B}=\{1,2,3,4\}, \mathrm{C}=\{5,6\}$ and $\mathrm{D}=\{5,6,7,8\}$. Verify that $A \times C$ is a subset of $B \times D$.

- Watch Video Solution

31. Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\}$. Verify that $A \times(B \cap C)=(A \times B) \cap(A \times C)$.
32. Let $A=\{1,2,3\}, B=\{-1,0,1,2,3\}$ and $C=\{1\}, D=\{-1,1\}$. Then Verify the following : $(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$.

- Watch Video Solution

33. Let $A=\{1,2,3\}, B=\{-1,0,1,2,3\}$ and $C=\{1\}, D=\{-1,1\}$. Then Verify the following : If $A \subset B$ and $C \subset D$, then $(A \times C) \subset(B \times D)$.

- Watch Video Solution

34. Let $P=\{1,4,9\}$ and $Q=\{2,4,6\}$. Write the elements of $(P \cap Q) \times(P \cup Q)$. Also find $(P \times Q) \cap(Q \times P)$.

- Watch Video Solution

35. IfA and B are non-empty sets and $A \times B=B \times A$, then

- Watch Video Solution

36. Let A be a non-empty set such that $A \times B=A \times C$. Show that $\mathrm{B}=\mathrm{C}$.

- Watch Video Solution

37. Prove that $A \subseteq B$ and $C \subseteq D$ imply : $(A \times C) \subseteq(B \times D)$.

- Watch Video Solution

38. If $A \subseteq B$, prove that $A \times A \subseteq(A \times B) \cap(B \times A)$.

- Watch Video Solution

39. If $A \subseteq B$, prove that $A \times C \subseteq B \times C$ for any set C.

- Watch Video Solution

40. For any three sets A, B, C prove that : $A \times(B \cup C)=(A \times B) \cup(A \times C)$.

- Watch Video Solution

41. For any three sets A, B, C prove that : $(A-B) \times C=(A \times C)-(B \times C)$.

- Watch Video Solution

42. For any three sets A, B, C prove that :
$A \times(B \cup C)=(A \times B) \cup(A \times C)$.

- Watch Video Solution

43. For any three sets A, B, C prove that : $(A \cap B) \times C=(A \times C) \cap(B \times C)$.

- Watch Video Solution

44. For any four sets A, B, C and D, prove that : $(A \cap B) \times(C \cap D)=(A \times C) \cap(B \times D)$.

- Watch Video Solution

45. For any three sets A, B, C prove that :
$A \times\left(B^{c} \cup C^{c}\right)^{c}=(A \times B) \cap(A \times C)$.

- Watch Video Solution

46. For any three sets A, B,C prove that :
$A \times\left(B^{c} \cap C^{c}\right)^{c}=(A \times B) \cup(A \times C)$.
47. State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.) If $P=\{m, n\}$ and $Q=\{\mathrm{n}, \mathrm{m}\}$, then $P \times Q=\{(\mathrm{m}, \mathrm{n}),\{\mathrm{n} . \mathrm{m})\}$.

- Watch Video Solution

48. State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly. If A and B are non-empty sets, then $A \times B$ is a non-empty set of ordered pairs (x, y) such that $x \in A$ and $y \in B$.

- Watch Video Solution

49. State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly. If $A=\{1,2\}, B=\{3$, 4\}, then $A \times(B \cap \phi)=\phi$.

Watch Video Solution

50. If $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{1,2\}$, then find : $A \times B$.

- Watch Video Solution

51. If $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{1,2\}$, then find : $B \times A$.

- Watch Video Solution

52. If $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{1,2\}$, then find : Is $A \times B=B \times A$?

- Watch Video Solution

53. If $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{1,2\}$, then find : Represent $A \times B$ graphically and by arrow diagram.
54. Let $\mathrm{X}=\{-2,0,1\}, \mathrm{Y}=\{2,3\}$. Represent $X \times Y$ and $Y \times X$ graphically.Also find $n(X \times Y)$ and $n(Y \times X)$.

- Watch Video Solution

55. Let $A=\{2,3,5,7\}, B=(1,12,13,15\}$. How many elements are there in $A \times B$? $\operatorname{In} B \times A$? Is $A \times B=B \times A$? Is $n(A \times B)=n(B \times A)$?

- Watch Video Solution

56. If A and B are two non-empty sets having n elements in common, then prove that $A \times B$ and $B \times A$ have n^{2} elements in common.

- Watch Video Solution

57. Let $A=\{x, y, z\}$ and $B=\{1,2\}$. Find the number of relations from A to B.
58. Let $\mathrm{A}=\{1,2\}$. List all relations on A .

- Watch Video Solution

59. $A=\{1,2,3,5\}$ and $B=\{4,6,9\}$. Define a relation R Ifom A to B by $R=\{(x, y)$: the difference between x and y is odd, $x \in A, y \in B\}$. Write R in roster form.

- Watch Video Solution

60. Write the relation $\mathrm{R}=\left\{\left(\mathrm{x}, x^{3}\right): \mathrm{x}\right.$ is a prime number less than 10$\}$ in roster form.

- Watch Video Solution

61. Let R be the relation on Z defined by $R=\{(a, b): a, b \in Z, a-b$ is an integer\}. Find the domain and range of R.

Watch Video Solution

62. Let $\mathrm{A}=\{3,5\}$ and $\mathrm{B}=\{7,11\}$. Let $R=\{(a, b): a \in A, b \in B, a-b$ is odd\}. Show that R is an empty relation from A into B.

- Watch Video Solution

63. Which of the following graphs of relations defines a transitive relation in $A=\{1, \quad 2, \quad 3, \quad 4\} \quad ? \quad R_{1}=\{(1,2),(3,4),(2,3),(2,4)\}$, $\left.R_{2}=(1,2),(3,4),(2,4)\right\}$.

- Watch Video Solution

64. Let R be the relation on Z defined by $a R b$ if and only if $a-b$ is an even integer. Find: R.

Watch Video Solution

65. Let R be the relation on Z defined by $a R b$ if and only if $a-b$ is an even integer. Find : domain of R.

- Watch Video Solution

66. Let R be the relation on Z defined by $a R b$ if and only if $a-b$ is an even integer. Find : range of R.

- Watch Video Solution

67. Let R be the relation on Z defined by :
$R=\left\{(a, b): a \in Z, b \in Z, a^{2}=b^{2}\right\}$. Find $: \mathrm{R}$.
68. Let R be the relation on Z defined by : $R=\left\{(a, b): a \in Z, b \in Z, a^{2}=b^{2}\right\}$. Find : domain of R.

- Watch Video Solution

69. Let R be the relation on Z defined by : $R=\left\{(a, b): a \in Z, b \in Z, a^{2}=b^{2}\right\}$. Find : range of R.

- Watch Video Solution

70. Let $A=\{1,2,3,4,5\}$ and $B=\{2,4,6,8,10\}$. Let $R=\{(a, b): a \in A, b \in B$, a divides b$\}$ be a relation from A into B . Find R. Show that domain of R is A and range of R is B.

- Watch Video Solution

71. Determine the domain and range of the relation R defined by : $R=\{(x+1, x+5): x \in\{0,1,2,3,4,5\}\}$.

- Watch Video Solution

72. Determine the domain and range of the relation R defined by : $R=\left\{\left(x, x^{3}\right): x\right.$ is prime number less than 10$\}$.

- Watch Video Solution

73. Determine the domain and range of the following relation : $\{(1,2),(1,4)$, $(1,6),(1,8)$ \}.

- Watch Video Solution

74. Determine the domain and range of the following relation : $\{(x, y): x \in N, y \in N$ and $x+y=10\}$.
75. Determine the domain and range of the following relation : $\{(x, y): x \in N, x<5, y=3\}$.

- Watch Video Solution

76. Determine the domain and range of the following relation : $\{(x, y): y=|x-1|, x \in Z$ and $|x| \leq 3\}$.

- Watch Video Solution

77. Let $A=\{1,2,3,4\}$ and $B=\{x, y, z\}$. Let R be a relation from A into B defined by : $R=\{(1, x),(1, z),(3, x),(4, y)\}$. Find the domain and range of R.

- Watch Video Solution

78. Show that the relation 'is perpendicular to' on the set A of all coplanar straight lines is symmetric but it is neither reflexive nor transitive.

Watch Video Solution

79. Show that $R=\{(a, b): a \geq b\}$ is reflexive and transitive but not symmetric.

- Watch Video Solution

80. Show that the relation 'is a factor of' on the set N of all natural numbers is reflexive and transitive but not symmetric.

- Watch Video Solution

81. Let $A=\{1,2,3, \ldots, 14\}$. Define a relation R from A to A by $R=\{(x, y): 3 x-$ $y=0$, where $x, y \in A\}$. Depict this relationship using an arrow diagram.
82. Define a relation R on the set N of natural numbers by: $R=\{(x, y): y=x$ $+5, x$ is a natural number less than $4, x, y \in N\}$. Depict this relationship using (i) roster form (ii) an arrow diagram.

- Watch Video Solution

83. Let $A=\{1,2,3,4,6\}$. Let R be the relation on A defined by $\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, b \in A$, b is exactly divisible by $a\}$. Write R in roster form

- Watch Video Solution

84. Let $A=\{1,2,3,4,6\}$. Let R be the relation on A defined by $\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, b \in A$, b is exactly divisible by a. Find the domain of R

- Watch Video Solution

85. Let $A=\{1,2,3,4,6\}$. Let R be the relation on A defined by $\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, b \in A$, b is exactly divisible by $a\}$. Find the range of R.

- Watch Video Solution

86. The following figure shows a relation between P and Q. Write the relation in : set builder form. What is its domain and range ?

- Watch Video Solution

87. The following figure shows a relation between P and Q . Write the relation in : roster form. What is its domain and range ?

- Watch Video Solution

88. For the given relation R on a set S, determine which are equivalence relations : (i) S is the set of all rational numbers $a \mathrm{R}$ iff $a=b$. (ii) S is the set of all real numbers iff : (I) $|a|=|b|$ (II) $a \geq b$.

- Watch Video Solution

89. For the given relation R on a set S, determine which are equivalence relations: (i) S is the set of all rational numbers $a \mathrm{R} b$ iff $a=b$. (ii) S is the set of all real numbers iff : (I) $|a|=|b|$ (II) $a \geq b$.
90. If R is the relation in $N \times N$ defined by (a, b) $\mathrm{R}(\mathrm{c}, \mathrm{d})$ if and only if (a + d) $=(b+c)$, show that R is an equivalence relation.

- Watch Video Solution

91. Is inclusion of a subset in another, in the context of a universal set, an equivalence relation in the class of subsets of the sets ? Justify your answer.

- Watch Video Solution

92. Given the relation $R=\{(1,2),(2,3)\}$ on the set of natural numbers, add a minimum of ordered pairs so that the enlarged relation is symmetric, transitive and reflexive.

- Watch Video Solution

93. Let $f(x)=x^{2}$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}+1$ be two real functions. Find : $(\mathrm{f}+\mathrm{g})(\mathrm{x})$, $(\mathrm{f}-\mathrm{g})(\mathrm{x}),(\mathrm{fg})(\mathrm{x})$ and $\left(\frac{f}{g}\right)(\mathrm{x})$.

- Watch Video Solution

94. Let $f(x)=\sqrt{x}$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}$ be two functions defined over the set of non-negative real numbers. Find $(\mathrm{f}+\mathrm{g})(\mathrm{x}),(\mathrm{f}-\mathrm{g})(\mathrm{x}),(\mathrm{fg})(\mathrm{x})$ and $\left(\frac{f}{g}\right)(\mathrm{x})$.

- Watch Video Solution

95. If f and g are functions defined by : $f(x)=\sqrt{x-1}, g(x)=\frac{1}{x}$, then describe the following : $f+\mathrm{g}$.

- Watch Video Solution

96. If f and g are functions defined by $: f(x)=\sqrt{x-1}, g(x)=\frac{1}{x}$, then describe the following : f-g.
97. If f and g are functions defined by : $f(x)=\sqrt{x-1}, g(x)=\frac{1}{x}$, then describe the following : fg.

- Watch Video Solution

98. If f and g are functions defined by : $f(x)=\sqrt{x-1}, g(x)=\frac{1}{x}$, then describe the following : $\frac{f}{g}$.

(Watch Video Solution

99. Define the real valued function $f: R-\{0\} \rightarrow R$ defined by $f(x)=\frac{1}{x}, x \in R-\{0\}$. Complete the table given below using this definition. What is the domain and range of this function.

$x:$	-2	-1.5	-1	-0.5	0.25	0.5	1	1.5	2
$y=\frac{1}{x}:$									

100. Sketch the graph of the following function : $f(x)=4-2 x$. Also find its domain and range.

- Watch Video Solution

101. Sketch the graph of the following function : (i) $f(x)=|x+2|$ (ii) $f(x)=|x-2|$
(iii) $f(x)=x|x|$. Also find its domain and range.

Watch Video Solution

102. Draw the graph of $f(x)=\operatorname{sgn}(x-2)$.

- Watch Video Solution

103. Draw the graph of $y=[x]+x$.
104. Draw the graph of the function
$f(x)=\left\{\begin{array}{lll}0 & \text { if } & \text { xisaneveninteger } \\ 1 & \text { if } & \text { xisanoddinteger }\end{array}\right.$.

(Watch Video Solution

105. Let R be a relation from Q to Q defined by : $R=\{(a, b): a, b \in Q$ and $a-b \in Z\}$. Show that: $(\mathrm{a}, \mathrm{a}) \in \mathrm{R}$ for all $\mathrm{a} \in \mathrm{Q}$.

- Watch Video Solution

106. Let R be a relation from Q to Q defined by : $R=\{(a, b): a, b \in Q$ and $a-b \in Z$. Show that $:(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ implies that $(\mathrm{b}, \mathrm{a}) \in \mathrm{R}$.

- Watch Video Solution

107. Let R be a relation from Q to Q defined by : $R=\{(a, b): a, b \in Q$ and $a-b \in Z\}$. Show that $:(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and $(\mathrm{b}, \mathrm{c}) \in \mathrm{R}$ implies $(\mathrm{a}, \mathrm{c}) \in \mathrm{R}$.

- Watch Video Solution

108. Let R be a relation from N to N defined by: $R=\{(a, b): a, b \in N$ and $\left.a=b^{2}\right\}$. Is the following true?
$(0, a) \in R$, for all $a \in N$.Justify your answer.

- Watch Video Solution

109. Let R be a relation from N to N defined by $R=\{(a, b): a, b \in N$ and $\left.a=b^{2}\right\}$. Is the following true? $(a, b) \in R$, implies $(b, a) \in R$. Justify your answer

- Watch Video Solution

110. Let R be a relation from N to N defined by $R=\{(a, b): a, b \in N$ and $a=$ $\left.b^{2}\right\}$. Is the following true? $(a, b) \in R,(b, c) \in R$ implies $(a, c) \in R$. Justify your answer

- Watch Video Solution

111. The relation ' f ' is defined by $f(x)=\left\{\begin{array}{ll}x^{2} & 0 \leq x \leq 3 \\ 3 x & 3 \leq x \leq 10\end{array}\right.$ The relation ' g ' is defined by $g(x)=\left\{\begin{array}{ll}x^{2} & 0 \leq x \leq 2 \\ 3 x & 2 \leq x \leq 10\end{array}\right.$ Show that ' f ' is a function and 'g' is not a function.

- Watch Video Solution

112. If $f(x)=\log _{e}\left(\frac{1+x}{1-x}\right)$, prove that $f\left(\frac{2 x}{1+x^{2}}\right)=2 f(x)$.

- Watch Video Solution

113. If $f(x)=\frac{2 x}{1+x^{2}}$, prove that $f(\tan \theta)=\sin 2 \theta$.
114. If $f(x)=\log _{e} x, x>0$, prove that : $\mathrm{f}(\mathrm{uvw})=\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})+\mathrm{f}(\mathrm{w})$.

- Watch Video Solution

115. Is the function: $f(x)=\frac{x^{2}-8 x+18}{x^{2}+4 x+30}$ one-one ?

- Watch Video Solution

116. Prove that $\mathrm{f}:(-1,1) \rightarrow R$ defined by, $f(x)=\{(x /(1+x),-1$

- Watch Video Solution

117. Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ be defined by: $f(n)=\left\{\begin{array}{ll}n+1 & \text { if nisodd } \\ n-1 & \text { if niseven }\end{array}\right.$.Show that f is a bijective function.
118. Let $f: N \cup\{0\} \rightarrow N \cup\{0\}$ be defined by : $f(n)=\left\{\begin{array}{ll}n+1 & \text { if niseven } \\ n-1 & \text { if nisodd }\end{array}\right.$.Show that f is invertible and $f=f^{-1}$.

Watch Video Solution

119. The set of numbers which are mutiples of 5 is :
A. a finite set
B. an infinite set
C. a universal set
D. None of these.

Answer:

120. The set of prime numbers less than 100 is :
A. Null set
B. Finite set
C. Infinite set
D. None of these.

Answer:

- Watch Video Solution

121. The set of circles passing through $(0,0)$ is :
A. Infinite set
B. Finite set
C. Null set
D. None of these.

Answer:

(D) Watch Video Solution

122. The set $A \cup A^{\prime}$ is:
A. A
B. A^{\prime}
C. ϕ
D. U.

Answer:

123. The set $A \cap A^{\prime}$ is:
A. ϕ
B. U
C. A
D. A'.

Answer:

- Watch Video Solution

124. The set ϕ is
A. ϕ
B. U
C. U'
D. None of these.

Answer:

125. Let $A=\{1,2\}, B=\{3,4\}$, then the number of relations from A to B will be:
A. 2
B. 2^{2}
C. 2^{3}
D. 2^{4}.

Answer:

126. Let $A=\{x, y, z\}$ and $B=\{1,2\}$. Find the number of relations from A to B.
A. 2^{3}
B. 2^{4}
C. 2^{5}
D. 2^{8}.

- Watch Video Solution

127. A function ' f ' is defined by $f(x)=2 x-5$, find: $f(-3)$.
A. -3
B. 3
C. -11
D. -15 .

Answer:

128. If $U=\{1,2,3,4,5,6,7,8,9,10\}$ and $A=\{3,4,7,9\}$, then A^{\prime} equals :
A. $\{1,2,8,10\}$
B. $\{1,2,5,8,10\}$
C. $\{1,2,5,6,8,10\}$
D. None of these.

Answer:

- Watch Video Solution

129. If $A=\{1,2,3,4,5,6,7\}$ and $B=\{7,8,9,10\}$, then $A-B$ equals :
A. $\{7,9\}$
B. $\{3,4,8,10\}$
C. \{7\}
D. None of these.

Answer:

130. If $A=\{1,2,3,4,5,6,7\}$ and $B=\{3,5,7,9,11\}$, then $A \cap B$ equals :
A. $\{1,3,4,7,9\}$
B. $\{3,5,7\}$
C. $\{1,3,5,7,9\}$
D. None of these.

Answer:

- Watch Video Solution

131. Which of the following are sets ? Justify your answer. A collection of novels written by the writer Munshi Prem Chand.
A. an ampty set
B. a finite set
C. an infinite set
D. Not a well defined collection.

Answer:

- Watch Video Solution

132. Set of even prime number is a
A. a void set
B. an infinite set
C. Not a set
D. a singleton set.

Answer:

133. A collection of most dangerous animals of the word is :
B. a finite set
C. a singleton set
D. Not a set.

Answer:

- Watch Video Solution

134. Let $f(x)=[x]$, then $f\left(-\frac{3}{2}\right)$ is equal to :
A. -3
B. -2
C. -1.5
D. None of these.

Answer:

135. Let $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$, then $f\left(-\frac{5}{2}\right)$ is :
A. 2.5
B. -2.5
C. -5
D. 2

Answer:

- Watch Video Solution

136. Let $f(x)=\frac{|x|}{x}$, then $f(-3)$ equals:
A. -3
B. 3
C. 1
D. -1 .

Answer:

D Watch Video Solution

137. State whether each of the following set is finite or infinite: The set of lines which are parallel to the x-axis
A. finite set
B. infinite set
C. null set
D. None of these.

Answer:

- Watch Video Solution

138. State whether each of the following set is finite or infinite: The set of letters in the English alphabet
A. finite set
B. infinite set
C. singleton set
D. None of these.

Answer:

D Watch Video Solution

139. The set of circles passing through $(0,0)$ is :
A. finite set
B. infinite set
C. power set
D. None of these.

Answer:

140. The number of subsets of the set $\{a, b\}$ is :
A. 7
B. 4
C. 12
D. 10

Answer:

- Watch Video Solution

141. The number of subsets of the set $\{1,2,3\}$ is:
A. 8
B. 6
C. 4
D. 16

Answer:

- Watch Video Solution

142. The number of subsets of the set $(a, e, i, o, u\}$ is:
A. 32
B. 16
C. 8
D. 48

Answer:

- Watch Video Solution

143. If $(x+1, y-2)=(3,1)$, the value of:
A. $x=1, y=3$
B. $x=2, y=1$
C. $x=2, y=3$
D. None of these.

Answer:

- Watch Video Solution

144. If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$, find the values of x and y .
A. $x=2, y=0$
B. $x=1, y=3$
C. $x=2, y=4$
D. $\mathrm{x}=2, \mathrm{y}=1$.

Answer:

145. State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly. If $A=\{1,2\}, B=\{3$, 4\}, then $A \times(B \cap \phi)=\phi$.
A. $\{1,2,3,4\}$
B. $\{(1,3),(1,4),(2,3),(2,4)\}$
C. $\{(1,3),(2,4)\}$
D. ϕ.

Answer:

- Watch Video Solution

146. The set $\{x: x$ is a prime number and divisor of 6$\}$ is equal to:
A. ϕ
B. $\{1,2,3,6\}$
C. $\{1,2,3,4\}$
D. $\{2,3\}$.

Answer:

- Watch Video Solution

147. The set $\mathrm{A}=\{\mathrm{x}: \mathrm{x}$ is an odd number less than 10$\}$ equals :
A. ϕ
B. $\{2,3\}$
C. $\{1,3,5,7,9\}$
D. $\{1,2,3,6\}$.

Answer:

148. The set $\{\mathrm{x}: \mathrm{x}$ is an integer and $-3<x \leq 2\}$ is equal to:
A. ϕ
B. $\{-3,-2,-1,0,1\}$
C. $\{-3,-2,-1,0,1,2\}$
D. None of these.

Answer:

- Watch Video Solution

149. The set of right-angled triangles in a plane is :
A. a null set
B. a singleton set
C. finite set
D. well defined set.

D Watch Video Solution

150. The set of poor students in the class is:
A. a null set
B. finite set
C. not well-defined set
D. singleton set.

Answer:

151. State whether the following set is finite or infinite: $B=\{x: x \in N$ and
$\left.x^{2}=4\right\}$.
A. infinite set
B. singleton set
C. ϕ
D. None of these.

Answer:

- Watch Video Solution

152. Write the solution set of the equation : $x^{2}+x-2=0$ in Roster

Form.
A. $\{1,-2\}$
B. $\{-1,-2\}$
C. $\{0,1\}$
D. $\{-1,2\}$.

Answer:

153. Solution set of equation $x^{2}+5 x+6=0$ in Roster form is:
A. $\{2,3\}$
B. $\{-2,-3\}$
C. $\{-3,2\}$
D. $\{-2,3\}$.

Answer:

154. Solution set of equation $x^{2}-5 x+6=0$ in Roster form is :
A. $\{-2,-3\}$
B. $\{2,3\}$
C. $\{-3,2\}$
D. $\{-2,3\}$.

Answer:

- Watch Video Solution

155. The set $\mathrm{A}=\left\{\mathrm{x}: x^{2}=4, \mathrm{x}\right.$ is odd $\}$ is :
A. a singleton set
B. null set
C. an infinite set
D. a finite set.

Answer:

- Watch Video Solution

156. Set of even prime number is a
A. Null set
B. a singleton set
C. a finite set
D. an infinite set.

Answer:

D Watch Video Solution

157. Which of the following are examples of the null set :- Set of odd natural numbers divisible by 2
A. null set
B. a singleton set
C. a finite set
D. an infinite set.

Answer:

158. Find the range of the following function:- $f(x)=x, \mathrm{x}$ is a real number.
A. N
B. W
C. Z
D. R.

Answer:

- Watch Video Solution

159. Find the range of the following function:-
$f(x)=2-3 x, x \in R, x>0$.
A. $[2, \infty)$
B. $[2, \infty]$
C. $(-2, \infty)$
D. $(-\infty, 2]$.

Answer:

- Watch Video Solution

160. Find the range of the following function:- $f(x)=x^{2}+2, \mathrm{x}$ is a real number.
A. $[2, \infty)$
B. $(2, \infty]$
C. $(-2, \infty]$
D. $[2, \infty]$.

Answer:

161. The set of $A=\left\{x: x \in R, x^{2}=16\right.$ and $\left.2 x=6\right\}$ equals:
A. ϕ
B. $\{14,3,4\}$
C. $\{3\}$
D. $\{4\}$.

Answer:

162. The set of intelligent students in a class is
A. a null set
B. a singleton set
C. a finite set
D. not a well defined collection.

D Watch Video Solution

163. Let $f=\{(1,5),(2,6),(3,4)\} g=\{(4,7),(5,8),(6,9)\}$. Then gof is :
A. $\{(4,7),(5,8),(6,9),(1,5),(2,6),(3,4)\}$
B. $\}$
C. $\{(1,8),(2,9),(3,7)\}$
D. None of these.

Answer:

Watch Video Solution

164. The set of $A=\left\{u: u \varepsilon R, u^{2}=49,2 u=14\right\}$ is
A. ϕ
B. $\{7\}$
C. $\{-7\}$
D. $\{-7,7\}$.

Answer:

- Watch Video Solution

165. The set of $A=\left\{x: x \varepsilon R, x^{2}=25\right)$ is
A. $\{5\}$
B. $\{-5\}$
C. $\{-5,5\}$
D. ϕ.

Answer:

166. The set of principals in a school is :
A. a null set
B. a singleton set
C. an infinite set
D. None of these.

Answer:

- Watch Video Solution

167. The set of Girls in a Boys school is
A. a null set
B. a singleton set
C. a finite set
D. Not a well defined collection.

Answer:

D Watch Video Solution

168. The set of weak students in a class is:
A. a null set
B. a singleton set
C. a finite set
D. Not a well defined collection.

Answer:

169. $(A \cup B)^{c}$ is equal to :

$$
\text { A. } A^{c} \cup B^{c}
$$

B. $A^{c} \cap B^{c}$
C. $A^{c}-B^{c}$
D. None of these.

Answer:

- Watch Video Solution

170. If $f(x)=2 x-5$, then $f(0)$ is :
A. 2
B. 3
C. -5
D. 0

Answer:

171. The range of $f(x)=\frac{1+x^{2}}{x^{2}}$
A. $[0,1]$
B. $(0,1]$
C. $(1, \infty)$
D. $[1, \infty)$.

Answer:

172. If $f(x)=2 x-5$, then $f(1)$ is
A. 5
B. -3
C. -5
D. 3

- Watch Video Solution

173. Suppose $A_{1}, A_{2}, \ldots, A_{30}$ are thirty sets each with five elements and
$B_{1}, B_{2}, \ldots ., B_{n}$ are n sets each with three elements.
Let $\bigcup_{i=1}^{30} A_{i}=\bigcup_{j=1}^{n} B_{j}=S$
Assume that each element of S belongs to exactly ten of the $A_{i}{ }^{\prime} s$ and exactly to nine of the B_{j} ' s. Find n.
A. 45
B. 35
C. 40
D. 30

Answer:

174. For any two sets A and $B, A-(A-B)$ equals :
A. B
B. $A-B$
C. $A \cap B$
D. $A \cap B^{c}$.

Answer:

- Watch Video Solution

175. The domain of definition of the function : $f(x)=\sqrt{1+\log _{e}(1-x)}$ is :
A. $-\infty<x \leq 0$
B. $-\infty \leq x \leq \frac{e-1}{e}$
C. $-\infty<x \leq 1$
D. $x \geq 1-e$.

D Watch Video Solution

176. Two finite sets A and B have m and n elements respectively. If the total number of subsets of A is 112 more than the total number of subsets of B, then the value of m is :
A. 7
B. 9
C. 10
D. 12

Answer:

177. If $\mathrm{f}(\mathrm{x})$ satisfies the relation: $2 f(x)+f(1-x)=x^{2}$ for all real x , then $f(x)$ is :
A. $\frac{x^{2}+2 x-1}{6}$
B. $\frac{x^{2}+2 x-1}{3}$
C. $\frac{x^{2}+4 x-1}{3}$
D. $\frac{x^{2}-3 x+1}{6}$.

Answer:

- Watch Video Solution

178. $f(x)=\frac{1}{[\sqrt{|x|-x}]}$. Domain of the function is :
A. $(-\infty, 0]$
B. $(-\infty, 0)$
C. $(0, \infty)$
D. $[0, \infty)$.

Answer:

- Watch Video Solution

179. Let A and B be sets. If $A \cap X=B \cap X=\phi$ and $A \cup X=B \cup X$ for some set X , show that $\mathrm{A}=\mathrm{B}$. (Hints $A=A \cap(A \cup X)$, $B=B \cap(B \cup X)$ and use Distributive law $)$
A. $A-B=A \cap B$
B. $A=B$
C. $B-A=A \cap B$
D. None of these.

Answer:

- Watch Video Solution

180. If S is a set with 10 elements and $A=\{(x, y): x, y \in S, x \neq y\}$, then the number of elements in A is :
A. 100
B. 90
C. 50
D. 45

Answer:

- Watch Video Solution

181. If A and B are subsets of a set X , then what is : $(A \cap(X-B)) \cup B$ equal to
A. $A \cup B$
B. $A \cap B$
C. A
D. B.

Answer:

- Watch Video Solution

182. If $\vee=\{\mathrm{x}: \mathrm{x}+2=0\} R=\left\{x: x^{2}+2 x=0\right\} S=\left\{x: x^{2}+x-2=0\right\}$. then for what value of $x, V=R=S$?
A. 0
B. -1
C. -2
D. 1

Answer:
183. What is the total number of proper subsets of a set containing n elements?
A. $2 n-1$
B. $2 n-2$
C. $2^{n}-1$
D. $2^{n}-2$.

Answer:

- Watch Video Solution

184. Which one of the following is correct?
A. $A \times(B-C)=(A-B) \times(A-C)$
B. $A \times(B-C)=(A \times B)-(A \times C)$
C. $A \cap(B \cup C)=(A \cap B) \cup C$
D. $A \cup(B \cap C)=(A \cup B) \cap C$.

- Watch Video Solution

185. Let $R=\{x \mid x \in N, \mathrm{x}$ is a multiple of 3 and $x \leq 100\}$ $S=\{x \mid x \in N, \mathrm{x}$ is a multiple of 5 and $x \leq 100\}$. What is the number of elements in: $(R \times S) \cap(S \times R)$?
A. 36
B. 33
C. 20
D. 6

Answer:

Watch Video Solution
186. If X and Y are two non-empty sets, then what is $(X-Y)$ ' equal to
A. $X^{\prime}-Y^{\prime}$
B. $X^{\prime} \cap Y$
C. $X^{\prime} \cup Y$
D. $X-Y^{\prime}$.

Answer:

- Watch Video Solution

187. If A, B and C are three finite sets, then what is , $[(A \cup B) \cap C]$ ' equal to?
A. $A^{\prime} \cup B^{\prime} \cup C^{\prime}$
B. $A^{\prime} \cap B^{\prime} \cap C^{\prime}$
C. $A^{\prime} \cap B^{\prime} \cup C^{\prime}$
D. $A \cap B \cap C$.

Answer:

188. The total number of subsets of a finite set A has 56 more elements then the total number of subsets of another finite set B. What is the number of elements in the set A ?
A. 5
B. 6
C. 7
D. 8

Answer:

Watch Video Solution

189. Out of a group of 20 teachers in a school, 10 teach Mathematics, 9 teach Physics and 7 teach Chemistry. 4 teachers both Mathematics and

Physics but none teaches both Mathematics and Chemistry. What is the number of teachers who teach both Chemistry and Physics ?
A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

190. Let $E=\{1,2,3,4\}$ and $F=\{1,2\}$. Then the number of onto functions from E to F is :
A. 14
B. 16
C. 12
D. 8

Answer:
191. The domain of $\sin ^{-1}\left[\log _{3}(x / 3)\right]$ is :
A. [1, 9]
B. [-1, 9$]$
C. [-9, 1]
D. $[-9,-1]$.

Answer:

- Watch Video Solution

192. Find the period of $f(x)=\sin ^{4} x+\cos ^{4} x$.
A. π
B. $\frac{\pi}{2}$
C. 2π
D. None of these.

Answer:

- Watch Video Solution

193. The range of the function $f(x)=\frac{x^{2}+x+2}{x^{2}+x+1}, x \in R$, is
(a) $(1, \infty)$
(b) $\left(1, \frac{11}{7}\right)$
(c) $\left(1, \frac{7}{3}\right)$
(d) $\left(1, \frac{7}{5}\right)$
A. $[1, \infty)$
B. $(1, \infty)$
C. $\left[1, \frac{7}{5}\right)$
D. $\left(1, \frac{7}{3}\right]$.

Watch Video Solution

194. Let $R=\{(1,3),(4,2),(2,4),(2,3)(3,1)\}$ be a a relation on the set $A=\{1$, $2,3,4\}$. The relation R is :
A. a function
B. transitive
C. not symmetric
D. reflexive.

Answer:

- Watch Video Solution

195. If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{S}$, defined by: $f(x)=\sin x-\sqrt{3} \cos x+1$ is onto, then the interval of S is :
A. $[0,3]$
B. $[-1,1]$
C. $[0,1]$
D. $[-1,3]$.

Answer:

- Watch Video Solution

196. The domain of the function : $f(x)=\frac{\sin ^{-1}(x-3)}{\sqrt{9-x^{2}}}$ is :
A. [2,3]
B. $[2,3)$
C. [1,2]
D. [1,2).

Answer:

197. The range of the function $f(x)={ }^{7-x} P_{x-3}$ is :
A. $\{1,2,3\}$
B. $\{1,2,3,4,5,6\}$
C. $\{1,2,3,4\}$
D. $\{1,2,3,4,5\}$.

Answer:

- Watch Video Solution

198. The graph of the function $y=f(x)$ is symmetrical about the line $x=2$, then:
A. $f(x+2)=f(x-2)$
B. $f(2+x)=f(2-x)$
C. $f(x)=f(-x)$
D. $f(x)=-f(-x)$.

- Watch Video Solution

199. If $f(x)=\sin x+\cos x, g(x)=x^{2}-1$, then $g\{f(x)\}$ is invertible in the domain
A. $\left[0, \frac{\pi}{2}\right]$
B. $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
C. $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
D. $[0, \pi]$.

Answer:

- Watch Video Solution

200.

$R=\{(3,3),(6,6),(9,9),(6,12),(3,9),(3,12),(12,12),(3,6)\} \quad$ is \quad a relation on set $A=\{3,6,9,12\}$ then R is a) an equivalence relation b)
reflexive and symmetric only c) reflexive and transitive only d) reflexive only
A. reflexive only
B. reflexive and transitive only
C. reflexive and symmetric only
D. an equivalence relation.

Answer:

- Watch Video Solution

201. Let $\mathrm{f}:(-1,1) \rightarrow \mathrm{B}$ be a function defined by $(x)=\tan ^{-1} \frac{2 x}{1+x^{2}}$, then f is both one-one and onto when B is the interval:
A. $\left[0, \frac{\pi}{2}\right)$
B. $\left(0, \frac{\pi}{2}\right)$
C. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
D. $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$.

Answer:

- Watch Video Solution

202. The set $S=\{1,2,3, \ldots \ldots ., 12)$ is to be partitioned into three sets
A,
B,
C
of
equal size.
Thus,
$A \cup B \cup C=S, A \cap B=B \cap C=A \cap C=\varphi$. The number of ways to partition S is
A. $\frac{12!}{3!(3!)^{4}}$
B. $\frac{12!}{(4!)^{3}}$
C. $\frac{12!}{(3!)^{4}}$
D. $\frac{12!}{3!(4!)^{3}}$

Answer:

203. The largest Interval lying in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for which the function : $f(x)=\left[4^{-x^{2}}+\cos ^{-1}\left(\frac{x}{2}-1\right)+\log (\cos x)\right]$ is defined is :
A. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
B. $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right)$
C. $\left[0, \frac{\pi}{2}\right)$
D. $[0, \pi]$.

Answer:

- Watch Video Solution

204. Let R be the real number. Consider the following subsets of the plane $R \times R$
$S=\{(x, y)\}: y=x+1$ and $0<x<2$
$T=\{(x, y)\}: x-y$ is an integer.
Which one of the following is true?
A. T is an equivalence relation on R but S is not
B. Neither S nor T is an equivalence relation on R
C. Both S and T are equivalence relations on R
D. S is an equivalence relation on R but T is not.

Answer:

- Watch Video Solution

205. If A, B and C are three sets such that $A \cap B=A \cap C$ and $A \cup B=A \cup C$, then
A. $A=C$
B. $B=C$
C. $A \cap B=\phi$
D. $A=B$.

Answer:

206. For real x , let $f(x)=x^{3}+5 x+1$, then:
A. f is onto R but not one-one
B. f is one-one and onto R
C. f is neither one-one nor onto R
D. f is one-one but nor onto R .

Answer:

- Watch Video Solution

207. Consider the following relations: $R=\{(x, y) \mid x, y$ are real numbers and
$x=$ wy for some rational number w; $S=\left\{\left(\frac{m}{n}, \frac{p}{q}\right) \mathrm{m}, \mathrm{n}, \mathrm{p}\right.$ and q are integers such that $\mathrm{n}, \mathrm{q} \neq 0$ and $\mathrm{q} \mathrm{m}=\mathrm{p}$
. Then (1) neither R nor S is an equivalence relation (2) S is an equivalence relation but R is not an equivalence relation (3) R and S both are
equivalence relations (4) R is an equivalence relation but S is not an equivalence relation
A. is an equivalence relation but S is not an equivalence relation
B. neither R nor S is an equivalence relation
C. S is an equivalence relation but R is not an equivalence relation
D. R and S are both equivalence relations.

Answer:

- Watch Video Solution

208. Let $S=\{1,2,3,4\}$. The total number of unordered pairs of disjoint subsets of S is equal to :
A. 25
B. 34
C. 42
D. 41

Answer:

- Watch Video Solution

209. The domain of the function $f(x)=\frac{1}{\sqrt{|x|-x}}$ is :
A. $(-\infty, \infty)$
B. $(0, \infty)$
C. $(-\infty, 0)$
D. $(-\infty, \infty)-\{0\}$.

Answer:

- Watch Video Solution

210. Let

$$
P=\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}
$$

$Q=\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ be two sets. Then :
A. $P \subset Q$ and $Q-P \neq \phi$
B. $Q \nearrow \subset$
C. $P \nearrow Q$
D. $\mathrm{P}=\mathrm{Q}$.

Answer:

- Watch Video Solution

211. Let $f(x)=x^{2} \operatorname{andg}(x)=\sin x$ for all x in R Then the set of all x satisfying $($ fogogof $)(x)=(\operatorname{gogof})(x)$, where $(f o g)(x)=f(g(x))$, is
A. $\pm \sqrt{n} \pi, n \in\{0,1,2 \ldots \ldots \ldots\}$
B. $\pm \sqrt{n} \pi, n \in\{1,2 \ldots \ldots \ldots\}$
C. $\frac{\pi}{2}+2 n \pi, n \in\{\ldots \ldots-2,-1,0,1,2\}$
D. $2 n \pi, n \in\{\ldots \ldots \ldots-2,-1,0,1,2 \ldots \ldots\}$

Answer:

- Watch Video Solution

212. In a town of 10,000 families, it was found that 40% families buy newspaper A, 20\% by newspaper B and 10% buy newspaper C. Further 5% buy A and $B, 3 \%$ buy B and $C, 4 \%$ buy A and C. If 2% of the families buy all the three newspaper find:

Number of families that buy none of the three newspapers.

- Watch Video Solution

213. In a town of 10000 families, it was found that 40% families buy newspaper A, 20\% families buy newspaper B and 10% families buy newpaper C, 5% families buy newspaper A and $B, 3 \%$ buy newspapers B and C and 4% buy newspaper A and C. If 2% families buy all the three newspapers, then number of families which buy A only is

(D) Watch Video Solution

214. In a town of 10000 families, it was found that 40% families buy newspaper A, 20\% families buy newspaper B and 10% families buy newpaper C, 5% families buy newspaper A and $B, 3 \%$ buy newspapers B and C and 4% buy newspaper A and C . If 2% families buy all the three newspapers, then number of families which buy A only is

- Watch Video Solution

215. In a town of 10,000 families, it was found that 40% families buy newspaper A, 20\% by newspaper B and 10% buy newspaper C. Further 5% buy A and $B, 3 \%$ buy B and $C, 4 \%$ buy A and C. If 2% of the families buy all the three newspaper find:

Number of families that buy none of the three newspapers.

- Watch Video Solution

216. Given $A=\left\{x: \frac{\pi}{6} \leq x \leq \frac{\pi}{3}\right\}$ and $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}-\mathrm{x}(1+\mathrm{x})$, find $\mathrm{f}(\mathrm{A})$.

- Watch Video Solution

217. Prove that $f(x)=x-[x]$, where $[x]$ denotes the integral part of x not exceeding and is periodic and find its period.

- Watch Video Solution

218. Find the domain of the function $f(x)=\frac{[x]+1}{[x]-1}$, where $[\mathrm{x}]$ denotes the greatest integer $\leq x$. Is the function one-one ? Support your answer.

- Watch Video Solution

219. Find the domain of the following function:
$f(x)=\frac{1}{\sqrt{|x|-x}}$.
220. Find the domain of the following function:
$f(x)=\sqrt{\cos (\sin x)}+\sin ^{-1}\left(\frac{1+x^{2}}{2 x}\right)$.

- Watch Video Solution

221. Find the domain of the following :
$f(x)=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2}$.

- Watch Video Solution

222. Find the domain and range of the following function :
$f(x)=\frac{1}{\sqrt{x-[x]}}$.

- Watch Video Solution

223. Find the domain and range of the following function :

$$
f(x)=\sin \left(\log \left(\frac{\sqrt{4-x^{2}}}{1-x}\right)\right)
$$

- Watch Video Solution

224. Find the domain of definition of the function $f(x)$ given by : $f(x)=\log _{4}\left\{\log _{5}\left(\log _{3}\left(18 x-x^{2}-77\right)\right)\right\}$.

Watch Video Solution

225. Find the natural number a for which $\sum_{k=1}^{n} f(a+k)=16\left(2^{n}-1\right)$, where the function f satisfies $f(x+y)=f(x) f(y)$ for all natural numbers x, y and further $f(1)=2$.

- Watch Video Solution

226. A function $f: R \rightarrow R$, where R is the set of real numbers, is defined by : $f(x)=\frac{\alpha x^{2}+6 x-8}{\alpha+6 x-8 x^{2}}$. Find the interval of values of α for which f is onto. Is the function one-one for $\alpha=3$? Justify your answer.
\square
\square
\square
\square
\square
號
\square

$$
\square
$$

