©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

STRAIGHT LINES

Example

1. Plot the points (2,3), (-2,3), (-2,-3), (2,-3), (0,5), (-2,0).

- Watch Video Solution

2. If three verticles of a rectangle are $(0,0),(2,0)$, and $(0,3)$, find the coordinates of the fourth vertex?
3. The base of an equilateral triangle with side $2 a$ lies along the y-axis such that the mid-point of the base is at the origin. Find the vertices of triangle.

Watch Video Solution

4. Find the distance between the pair of points (5, -12) , (9,-9).

- Watch Video Solution

5. Find a point on the x-axis which is equidistant from the points $(7,6)$ and $(3,4)$.

- Watch Video Solution

6. Determine, by distance formula whether the points $(0,0),(3,2),(9,6)$ lie on line?
7. Show that $(8,2),(5,-3)$ and $(0,0)$ are the vertices of an isosceles triangle.

- Watch Video Solution

8. Without using the pythagorus, show that the points $(4,4),(3,5)$ and $(-1$,
$-1)$ are the vertices of a right angled triangle.

- Watch Video Solution

9. Find the coordinates of a point which divides externally the line joining
$(1,-3)$ and $(-3,9)$ in the ratio $1: 3$.

- Watch Video Solution

10. In what ratio, the line joining $(-1,1)$ and $(5,7)$ is divided by the line $x+y=4 ?$

Watch Video Solution

11. The vertices of a quadrilateral are at $(-2,4),(1,3)(4,3)$ and $(1,2)$. Show that the quadrilateral is a parallelogram.

- Watch Video Solution

12. Find the point of intersection of the medians of the triangle with vertices at $(-1,0),(5,-2)$ and $(8,2)$.

- Watch Video Solution

13. Find the area of the triangle whose vertices are $(3,8),(-4,2)$ and $(5,1)$.
14. Show that the following triple of points are collinear : $(2,4),(0,1),(4$, 7).

- Watch Video Solution

15. Find the values of x for which the points $(x,-1),(2,1)$ and $(4,5)$ are collinear.

- Watch Video Solution

16. Draw a quadrilateral in the cartesian plane whose vertices are $(-4,5)$, $(0,7),(5,5)$ and $(-4,-2)$. Also find its area.

- Watch Video Solution

17. Prove that in a right angled triangle the mid-point of the hypotenuse is equidistant from its vertices.

- Watch Video Solution

18. Find the equation of the set of all points equidistant from the point
$(4,2)$ and the x-axis.

- Watch Video Solution

19. Find the equation of the set of points such that the sum of its distances from $(0,2)$ and $(0,-2)$ is 6.

- Watch Video Solution

20. A point moves such that the sum of its distance from two fixed points (ae, 0) and (-ae, 0) is always, 2a. Prove that the equation of the locus is
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $b^{2}=a^{2}\left(1-e^{2}\right)$

Watch Video Solution

21. The Slope m of a line is given by : $m=\sqrt{3}$. Find its inclination.

- Watch Video Solution

22. The slope of the line passing through the points $(3,-2)$ and $(-1,4)$ is:

- Watch Video Solution

23. Find the slope of the line passing through the points:
($3,-2$) and ($7,-2$).

- Watch Video Solution

24. Determine λ, so that 2 is the slope of the line through $(2,5)$ and $(\lambda, 3)$

- Watch Video Solution

25. A line passes through $\left(x_{1}, y_{1}\right)$ and (h, k). If slope of the line is m , show that $k-y_{1}=m\left(h-x_{1}\right)$.

- Watch Video Solution

26. State whether the two lines in the following problem is parallel, perpendicular or neither parallel nor perpendicular :
through $(5,6)$ and $(2,3)$, through $(9,-2)$ and $(6,-5)$.

- Watch Video Solution

27. State whether the two lines in the following problem is parallel, perpendicular or neither parallel nor perpendicular :

Through (2, -5) and ($-2,5$), through (6,3) and (1,1).
28. Line through the points $(-2,6)$ and $(4,8)$ is perpendicular to the line through the points $(8,12)$ and ($x, 24$). Find the value x.

- Watch Video Solution

29. Show that the points $(1,1),(2,3)$ and $(3,5)$ are collinear.

- Watch Video Solution

30. A quadrilateral has the vertices at the points $(-4,2),(2,6)(8,5)$ and $(9,-$
7). Show that the mid-points of the sides of the quadrilateral are the vertices of a parallelogram.

- Watch Video Solution

31. Without using the distance formula, show that $(-2,-1),(4,0),(3,3)$ and $(-3,2)$ are the vertices of a parallelogram .
32. If $A(2,0), B(0,2)$ and $C(0,7)$ are three vertices, taken in order, of an isosceles trapezium $A B C D$ In which $A B$ is parallel to $D C$. Obtain the coordinates of D.

- Watch Video Solution

33. In the figure, time- distance graph of a linear relation is given :

of time and distance recorded as: When $\mathrm{T}=0, \mathrm{D}=2$ and when $\mathrm{T}=3, \mathrm{D}=8$.

Using the concept of slope, find the law of motion i.e. how distance depends upon time.

- Watch Video Solution

34. Find the equation of the straight line, which is parallel to x-axis and 2 units above it.

- Watch Video Solution

35. Find the equation of the straight line, which is parallel to y-axis and 3 units to the right of it.

- Watch Video Solution

36. Find the equation of the line, which is parallel to y-axis and passing through the point (3,-4).
37. Find the equation of the st. line passing through the point $(4,3)$ with slope 2.

- Watch Video Solution

38. Find the equation of the straight line bisecting the segment joining the points $(5,3)$ and $(4,4)$ and making an angle of 45° the positive direction of X - axis .

- Watch Video Solution

39. Find the equation of the st. line passing through points ($0,-4$) and $(-6$, 2).
40. Find the equations of the sides of the triangle whose vertices are (-1, 8), (4, - 2) and (-5,-3).

- Watch Video Solution

41. The perpendicular from the origin to a line meet at the point $(-2,9)$, find the equation of the line.

- Watch Video Solution

42. $A(-3,-1)$ and $B(2,2)$ are two adjacent vertices and $O(3,0)$ is the point of intersection of the diagonals of a parallelogram $A B C D$. Write down the equations of the four sides of the parallelogram.

- Watch Video Solution

43. Show that the points $(1,4),(3,-2)$ and $(-3,16)$ are collinear and find the equation of the st. line an which they lie.

- Watch Video Solution

44. Find the equation of the st. line with slope 3 and y-intercept -2 .

- Watch Video Solution

45. Find the equation of a line through the origin, which makes an angle of 45° with the positive direction of x-axis.

- Watch Video Solution

46. Write the equation of the line for which $\tan \theta=\frac{1}{2}$, where θ is the inclination of the line and y-intercept is $-\frac{3}{2}$.
47. Write the equation of the line for which $\tan \theta=\frac{1}{2}$, where θ is the inclination of the line and x-intercept is 4 .

- Watch Video Solution

48. Find the equations of the lines passing through the point $(2,2)$ such that the sum of their intercepts on the axes is 9 .

- Watch Video Solution

49. Find the equations of the lines which cut off intercepts on the axes whose sum and product are 1 and -6 respectively.

- Watch Video Solution

50. Find the equation of the line through $(2,3)$ so that the segment of the line intercepted between the axes is bisected at this point

Watch Video Solution

51. Find the perpendicular form of the equation of the lines from the given values of p and α :
$\mathrm{p}=3$ and $\alpha=45^{\circ}$.

- Watch Video Solution

52. Find the perpendicular form of the equation of the lines from the given values of p and α : $\mathrm{p}=5$ and $\alpha=135^{\circ}$.

- Watch Video Solution

53. If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b , then show that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.

- Watch Video Solution

54. Find the equation of a st. line, which passes through the point $(-2,3)$ and makes an angle of 60° with the positive direction of x-axis.

- Watch Video Solution

55. The length L (in centimetres) of a copper rod is a linear function of its

Celsius temperature C . In an experiment, if $\mathrm{L}=124.942$ when $\mathrm{C}=20$ and $\mathrm{L}=$ 125.134 when $C=110$, express L in terms of C.

- Watch Video Solution

56. Find the distance of the line $4 x-y=0$ from the point $P(4,1)$ measured along the line making an angle of 135° with the positive x-axis.

D Watch Video Solution

57. Find the equation of the st. line through $(3,4)$ and $(2,-1)$.

- Watch Video Solution

58. Reduce the equation to $\sqrt{3} x+y+1=0$ to the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ and hence find the slope, the inclination to the x-axis and the intercept on the y-axis.

- Watch Video Solution

59. Find the slope and y-intercept of the st. line $5 x+6 y=7$.
60. Reduce the equation $2 x-7 y+3=0$ to the intercept form and hence find the intercepts on the axes.

- Watch Video Solution

61. Equation of a line is $3 x-4 y+10=0$. Find its : slope .

- Watch Video Solution

62. Equation of a line is $3 x-4 y+10=0$. Find its : x and y-intercepts.

- Watch Video Solution

63. Reduce the equation $\sqrt{3} x+y-8=0$ into normal form and find : length of the perpendicular from origin to the line.
64. Reduce the equation $\sqrt{3} x+y-8=0$ into normal form and find: angle between the normal and positive x-axis.

- Watch Video Solution

65. Find the angle between the straight lines : $y-\sqrt{3} x-5=0$ and
$\sqrt{3} y-x+6=0$.

- Watch Video Solution

66. Two lines Passing through the point $(2,3)$ make an angle of 45°. If the slope of one of the lines is 2 , find the slope of the other.

- Watch Video Solution

67. Determine the angle B of the triangle with vertices $A(-2,1), B(2,3)$ and $C(-2,-4)$.

Watch Video Solution

68. Find tha angle between the lines joining the points $(0,0)(2,3)$ and $(2,-2),(3,5)$

- Watch Video Solution

69. The line $7 x-9 y-19=0$ is perpendicular to the line through the points (h, $3)$ and (4, 1). Find the value of h.

- Watch Video Solution

70. Find the equation of the st. line through the origin making angle of 60° with the st. line $x+\sqrt{3} y+3 \sqrt{3}=0$.

- Watch Video Solution

71. Find the equation of a line passing through the point $(0,1)$ and parallel to : $3 x-2 y+5=0$.

Watch Video Solution

72. Find the equation of line perpendicular to $x-2 y+3=0$ and passing through the point $(3,-2)$.

- Watch Video Solution

73. Find the equation of the right bisector of the line segment joining the points (3,4) and ($-1,2$).

- Watch Video Solution

74. Find the image of the point $(3,8)$ with respect to the line $x+3 y=7$, assuming line as a plane mirror.
75. Assuming that straight line works as the plane mirror for a point, find the image of the point $(1,2)$ in the line $x-3 y+4=0$.

- Watch Video Solution

76. For the triangle $A B C$ whose vertices are $A(-2,3), B(4,-3)$ and $C(6,5)$, find the equation of :
the perpendicular bisector of the side $B C$.

- Watch Video Solution

77. For the triangle $A B C$ whose vertices are $A(-2,3), B(4,-3)$ and $C(6,5)$, find the equation of : the altitude from A .
78. For the triangle $A B C$ whose vertices are $A(-2,3), B(4,-3)$ and $C(4,5)$, find the equation of :
the st. line through A parallel to the opposite side BC.

- Watch Video Solution

79. Find the point of intersection of the st. lines $x-4 y=3$ and $6 x-y=11$.

- Watch Video Solution

80. If $3 x-b y+2=0$ and $9 x+3 y+a=0$ represent the same straight line, find the values of a and b.

- Watch Video Solution

81. The sides of quadrilateral taken in order, are given by $3 x+11 y-65=0,5 x+y-39=0,-x+5 y+13=0$ and $11 x-3 y+$
.Find the co-ordinates of the vertices of the quadrilateral.

- Watch Video Solution

82. Find the point of intersection of the medians of the triangle with vertices at $(-1,0),(5,-2)$ and $(8,2)$.

- Watch Video Solution

83. Find the coordinates of the foot of perpendicular from a point $(-1,3)$ to the line $3 x-4 y-16=0$.

- Watch Video Solution

84. Find the centroid and incentre of the triangle whose vertices are (1,2),
$(2,3)$ and (3,4).
85. The vertices of a triangle are $(4,-3),(-2,1)$ and $(2,3)$. Find the coordinates of the circumcentre of the triangle. [Circumcentre is the point of concurrence of the right-bisectors of the sides of a triangle.]

- Watch Video Solution

86. Show that the area of the triangle formed by the lines whose equations are : $y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $\mathrm{x}=0$ is : $\frac{\left(c_{1}-c_{2}\right)^{2}}{2\left|m_{1}-m_{2}\right|}$.

- Watch Video Solution

87. Prove that the three st. lines: $2 x-3 y=7,3 x-4 y=13$ and $8 x-11 y=33$ meet in a point.

- Watch Video Solution

88. Show that the perpendicular bisectors of the sides of the triangle with vertices (7,2), ($5,-2$) and ($-1,0$) are concurrent. Also find the co-ordinates of the point of concurrence (circumcentre).

- Watch Video Solution

89. Prove analytically that the altitudes of a triangle are concurrent.

- Watch Video Solution

90. The line-segment joining the mid-points of two sides of a triangle is parallel to the third side and \qquad Of it.

- Watch Video Solution

91. The diagonals of a rectangle are of the equal length.
92. The diagonals of a rhombus are perpendicular to each other .

- Watch Video Solution

93. Prove that the figure formed by joining the points of the adjacent sides of a quadrilateral parallelogram.

- Watch Video Solution

94. Find the distance between two Parallel lines:
$y=m x+c_{1}$ and $y=m x+c_{2}$.

- Watch Video Solution

95. Find the distance between two Parallel lines:
$a x+b y+c_{1}=0$ and $a x+b y+c_{2}=0$.
96. Find the distance between the st. line $4 x+3 y-5=0$ and the point ($-2,-$ 1).

- Watch Video Solution

97. Find the perpendicular distance of the point (b, a) from the st. line $\frac{x}{a}-\frac{y}{b}=1$.

- Watch Video Solution

98. Find the point on the x-axis, whose distances from the line $\frac{x}{3}+\frac{y}{4}=1$ are 4 units.

- Watch Video Solution

99. Show that the origin is equidistant from the three straight lines : $4 \mathrm{x}+$ $3 y+10=0,5 x-12 y+26=0$ and $7 x+24 y=50$.

- Watch Video Solution

100. Find the distance between the parallel lines : $3 x-4 y+5=0$ and $3 x-4 y+7=0$.

- Watch Video Solution

101. Prove that st. line $5 x-2 y-1=0$ is mid-parailel to the st. lines : $5 x-2 y-9$
$=0$ and $5 x-2 y+7=0$.

- Watch Video Solution

102. Two sides of a square lie on the lines $x+y-1=0$ and $x+y+2$ then its area is:
103. Prove that the parallelogram formed by the lines $\frac{x}{a}+\frac{y}{b}=1, \frac{x}{b}+\frac{y}{a}=1, \frac{x}{a}+\frac{y}{b}=2$ and $\frac{x}{b}+\frac{y}{a}=2$ is a rhombus.

- Watch Video Solution

104. Show that the path of a moving point such that its distance from the lines: $3 x-2 y=5$ and $3 x+2 y=5$ are equal, is a straight line.

- Watch Video Solution

105. Find the equations of the bisectors of the angles formed by the lines
$3 x-4 y+12=0$ and $4 x+3 y+2=0$.

- Watch Video Solution

106. Find the equations of the bisectors of the angles, between the lines through $(0,0)$ with slopes 1 and 2.

- Watch Video Solution

107. Find the equations of the bisectors of the internal angles of the triangle \quad whose
$3 x+4 y-6=0,12 x-5 y-3=0$,
$3 x-3 y+12=0$.

- Watch Video Solution

108. Find the equations of the bisectors of the interior angles of the triangle whose vertices are $A(0,0), B(4,0)$ and $C(0,3)$ and prove that they are concurrent.

- Watch Video Solution

109. Find the new co-ordinates of the points:
$(1,1)$ when the origin is shifted to the point $(-3,-2)$ by translation of axes.

Watch Video Solution

110. Find the new co-ordinates of the points:
$(5,0)$ when the origin is shifted to the point $(-3,-2)$ by translation of axes.

- Watch Video Solution

111. Find the new co-ordinates of the points:
$(-2,1)$ when the origin is shifted to the point $(-3,-2)$ by translation of axes.

- Watch Video Solution

112. Find the transformed equation of the curve : $x^{2}+y^{2}+4 x-6 y+16=0$ when the origin is shifted to the point

- Watch Video Solution

113. On shifting the origin to the point $(1,-1)$, the axes remaining parallel to the original axes the equation of a curve becomes : $4 x^{2}+y^{2}+3 x-4 y+2=0$. Find its original equation.

- Watch Video Solution

114. Find the point to which the origin should be shifted so that the equation : $y^{2}-6 y-4 x+13=0$ is transformed to form : $y^{2}+A x=0$.

- Watch Video Solution

115. Prove that the slope of a straight line is invariant under the translation of axes.
116. Write the equations for the family of lines with slope 3 .

- Watch Video Solution

117. Write the equations for the family of lines with x-intercept 2 .

- Watch Video Solution

118. Write the equations for the family of lines perpendicular to $2 x-5 y-6=$
119.

- Watch Video Solution

119. Find the equation of the line passing through the point of intersection of $x+2 y=5$ and $x-3 y=7$, and passing through the point : (0 , -1).
120. Find the equation of the line passing through the point of intersection of $x+2 y=5$ and $x-3 y=7$, and passing through the point : (2, $-3)$.

- Watch Video Solution

121. Find the equation of the line passing through the intersection of the lines $x+2 y-3=0$ and $4 x-y+7=0$ and which is parallel to $5 x+4 y-20=0$.

- Watch Video Solution

122. Find the equation of the line passing through the intersection of the lines $2 x+3 y-4=0$ and $x-5 y+7=0$ that has its x-intercept equal to -4 .

- Watch Video Solution

1. What is the slope of the line whose inclination is:
0° ?

- Watch Video Solution

2. What is the slope of the line whose inclination is :
60° ?

- Watch Video Solution

3. What is the slope of the line whose inclination is:
45° ?

- Watch Video Solution

4. What is the slope of the line whose inclination is : $90^{\circ} ?$

Watch Video Solution

5. What is the slope of the line whose inclination is:
120° ?

- Watch Video Solution

6. What is the slope of the line whose inclination is : 150° ?

- Watch Video Solution

7. Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis, measured anticlockwise.
8. Find the inclination of the line whose slope is :
9.

- Watch Video Solution

9. Find the inclination of the line whose slope is :
$\frac{1}{4}$.

- Watch Video Solution

10. Find the inclination of the line whose slope is :
11.
12. Find the inclination of the line whose slope is:
13.

- Watch Video Solution

12. Find the angle between x-axis and the line joining the points ($3,-1$) and
$(4,-2)$.

- Watch Video Solution

13. Find the slope of the line through the points:
$(1,2),(4,2)$.

- Watch Video Solution

14. Find the slope of the line through the points:
(0, -4), (-6, 2).
15. Find the slope of the line through the points $(4,-6)(-2,-5)$

- Watch Video Solution

16. Find the slope of the line through the points:
$(4,6),(2,12)$

- Watch Video Solution

17. Find the slope of the line through the points:
$(3,-2),(3,4)$.

- Watch Video Solution

18. Find the slope of a line, whch passes through the origin and the midpoint of the line segment joining the points $\mathrm{P}(0,-4)$ and $\mathrm{B}(8,0)$.

- Watch Video Solution

19. What acute angle does a line of slope $\frac{-2}{3}$ make with a vertical line ?

- Watch Video Solution

20. Show that the line joining the points $(2,-3)$ and $(-5,1)$ is parallel to the line joining $(7,-1)$ and $(0,3)$

- Watch Video Solution

21. Show that the line joining $(2,-3)$ and $(-5,1)$ is :
perpendicular to the line joining $(4,5)$ and $(0,-2)$.
22. Three points $\mathrm{P}(\mathrm{h}, \mathrm{k}), Q\left(x_{1}, y_{1}\right)$ and $\mathrm{R}\left(x_{2}, y_{2}\right)$ lie on a line. Show that : $\left(h-x_{1}\right)\left(y_{2}-y_{1}\right)=\left(k-y_{1}\right)\left(x_{2}-x_{1}\right)$.

- Watch Video Solution

23. Show that the line:
through $(0,0)$ and $(2,3)$ is parallel to the line through $(2,2)$ and $(4,5)$.

- Watch Video Solution

24. Show that the line:
through $(-2,6)$ and $(4,8)$ is perpendicular to the line through $(8,12)$ and $(4,24)$.

- Watch Video Solution

25. Show that the line:
through $(2,-3)$ and $(-1,2)$ is perpendicular to the line joining $(3,7)$ and $(-2$, 4).

- Watch Video Solution

26. State whether the two lines of the following problem is parallel, perpendicular or neither parallel nor perpendicular :

Through $(8,2)$ and $(-5,3)$, through $(16,6)$ and $(3,15)$

- Watch Video Solution

27. State whether the two lines of the following problem is parallel, perpendicular or neither parallel nor perpendicular :

Through $(9,5)$ and $(-1,1)$, through $(8,-3)$ and $(3,-5)$.

- Watch Video Solution

28. State whether the two lines of the following problem is parallel, perpendicular or neither parallel nor perpendicular :

Through $(-2,6)$ and $(4,8)$, through $(8,12)$ and $(4,24)$.

- Watch Video Solution

29. What is the value of y so that the line through $(3, y)$ and $(2,7)$ is parallel to the line through $(-1,4)$ and $(0,6) ?$

D Watch Video Solution

30. Without using the pythagorus, show that the points $(4,4),(3,5)$ and $(-1,-1)$ are the vertices of a right angled triangle.

- Watch Video Solution

31. Find the values of x for which the points $(x,-1),(2,1)$ and $(4,5)$ are collinear.
32. If three points $A(h, 0), B(a, b)$ and $C(0, k)$ lie on line, show that $\frac{a}{h}+\frac{b}{k}=1$.

- Watch Video Solution

33. If points (a, 0), ($0, b$) and (x, y) are collinear, then write correct answer from the following :

- Watch Video Solution

34. Find the equation of the line, which is parallel to x-axis at a distance of :

4 units above it.
35. Draw the graph of the equations represented by a straight line which is parallel to the x-axis and at a distance of 3 units below it.

- Watch Video Solution

36. Find the equation of the line, which is parallel to y-axis at a distance of :

2 units to the right of it.

- Watch Video Solution

37. Find the equation of the line, which is parallel to y-axis at a distance of :

4 units to the left of it.

- Watch Video Solution

38. Find the equation of the line parallel to x-axis and : passing through the point $(3,-4)$.

- Watch Video Solution

39. Write the equation of the line which is parallel to x-axis and passing through
$(0,2)$

- Watch Video Solution

40. Find the equation of the line parallel to x-axis and :
has Intercept on the y-axis as -2 .

- Watch Video Solution

41. Find the equations of the lines parallel to axes and passing through $(-2,3)$.

- Watch Video Solution

42. Find the equation of the line perpendicular to the x-axis and : passing through the origin.

- Watch Video Solution

43. Find the equation of the line perpendicular to the x-axis and : passing through the point ($-1,-1$).

- Watch Video Solution

44. Find the equation of the line perpendicular to the x-axis and:
passing through the point $\left(-3, \frac{1}{2}\right)$.
45. Find the equation of the straight line perpendicular to y-axis and : passing through the origin.

- Watch Video Solution

46. Find the equation of the straight line perpendicular to y-axis and : passing through the point $(-2,-3)$.

- Watch Video Solution

47. Find the value of k for which the line
$(k-3) x-\left(4-k^{2}\right) y+k^{2}-7 k+6=0$.
(a) parallel to x-axis (b) parallel to y-axis.

- Watch Video Solution

48. Find the value of k for which the line
$(k-3) x-\left(4-k^{2}\right) y+k^{2}-7 k+6=0$.
(a) parallel to x-axis (b) parallel to y-axis.

- Watch Video Solution

49. Find the values of k for which the line
$(k-3) x-\left(4-k^{2}\right) y+k^{2}-7 k+6=0$ is
passing through the origin.

- Watch Video Solution

50. Find the equation of the st. line of the following problem :

Through the point (-1-2) with slope $\frac{4}{7}$.

- Watch Video Solution

51. Find the equation of the st. line of the following problem :

Through the point $(-2,3)$ with slope -4 .

Watch Video Solution

52. Find the equation of the line which satisfying the given conditions:
passing through the point $(-4,3)$ with slope $\frac{1}{2}$.

- Watch Video Solution

53. Find the equation of the st. line of the following problem :

Through the point $(\sqrt{2}, 2 \sqrt{2})$ with slope $\frac{2}{3}$.

- Watch Video Solution

54. Find the equation of the line which satisfying the given conditions: passing through $(2,2 \sqrt{3})$ and inclined with the x-axis at an angle of 75°.
55. Find the equation of the line, which intersects :
the x-axis at a distance of 3 units to the left of origin with slope -2 .

- Watch Video Solution

56. Find the equation of the line which satisfying the given conditions: intersecting the y-axis at a distance of 2 units above the origin and making an angle of 30° with positive direction of the x-axis.

- Watch Video Solution

57. Show that the st. line, which passes through the point $(4,12)$ and makes an angle $\tan ^{-1} 3$ with the x-axis passes through the origin.

- Watch Video Solution

58. Find the equation of the st. line passing through points:
$(2,3)$ and ($5,-2$).

- Watch Video Solution

59. Find the equation of the st. line passing through points :
$(1,-1)$ and (3,5).

- Watch Video Solution

60. Find the equation of the st. line passing through points :
$(-1,-2)$ and ($-5,-2$).

- Watch Video Solution

61. Find the equation of the line passing through the point $(-1,1)$ and $(2,4)$.
62. Find the equation of the st. line passing through points :
$(0,-3)$ and (5,0).

Watch Video Solution

63. The vertices of a triangle $P Q R$ are $P(2,1), Q(-2,3)$ and $R(4,5)$. Find the equation of the median through the vertex R.

- Watch Video Solution

64. The vertices of a triangle $P Q R$ are $P(2,1), Q(-2,3)$ and $R(4,5)$. Find the equation of the median through the vertex R.

- Watch Video Solution

65. Be using the concept of equation of a line prove that the three points
$(3,0),(-2,-2)$ and $(8,2)$ are collinear.
66. Show that the points $\left(a t_{1}^{2}, 2 a t_{1}\right),\left(a t_{2}^{2}, 2 a t_{2}\right)$ and $(\mathrm{a}, 0)$ are collinear if $t_{1} t_{2}=-1$.

- Watch Video Solution

67. Find the equations of the straight lines which pass through the origin and trisect the portion of the st. line $\frac{x}{a}+\frac{y}{b}=1$, which is intercepted between the axis.

- Watch Video Solution

68. A line passing through the point $(3,0)$ makes an angle 30° with the positive direction of x-axis. If this line is rotated through an angie of 15° in clockwise direction, find its equation in new position.
69. The mid-points of the sides of a triangle are (2,1), (-5,7), (-5, -5). Find the equations of the sides.

D Watch Video Solution

70. Find the equation of the st. line :
with slope 5 and y-intercept $=5$.

- Watch Video Solution

71. Find the equation of the st. line :
with slope 3 and y-intercept $=-4$.

- Watch Video Solution

72. Find the equation of the st. line :
with slope $\frac{1}{2}$ and y-intercept $=-5$.
73. Find the equation of the st. line :
with slope 3 and y -intercept $=-2$.

- Watch Video Solution

74. Find the equation of the line, which makes intercepts -3 and 2 on the x and y-axis respectively.

- Watch Video Solution

75. Find the equations of the bisectors of the angle between the coordinate axes.
76. Find the equation of the line, which cuts off intercept 4 on the x-axis and makes an angle 60° with positive direction of the x-axis.

Watch Video Solution

77. Find the equation of the st. line, which passes through the point $(0,1)$ and has an inclination of 60°.

- Watch Video Solution

78. Find the equation of the straight line, which passes through (2,2) and is inclined to x-axis at 45°.

- Watch Video Solution

79. Find the equation of the line, which intersects :
the x-axis at a distance of 3 units to the left of origin with slope -2 .
80. Find the equation of the line which satisfying the given conditions: intersecting the y-axis at a distance of 2 units above the origin and making an angle of 30° with positive direction of the x-axis.

- Watch Video Solution

81. Find the equation of a straight line cutting off an intercept -2 from the y-axis and being equally inclined to the axes.

- Watch Video Solution

82. Find the equation of a line that cuts off equal intercepts on the coordinate axes and passes through the point $(5,6)$.

- Watch Video Solution

83. Find the equation of a line that cuts off equal intercepts on the coordinate axes and passes through $(2,3)$.

- Watch Video Solution

84. Find the st. lines through ($5,-3$), which cut the axes so that the intercepts are equal in magnitude.

- Watch Video Solution

85. Obtain the perpendicular form of the equation of st. lines from the given values of p and $\alpha: p=5, \alpha=30^{\circ}$.

- Watch Video Solution

86. Obtain the perpendicular form of the equation of st. lines from the given values of p and $\alpha: p=1, \alpha=90^{\circ}$.
87. Obtain the perpendicular form of the equation of st. lines from the given values of p and $\alpha: p=4, \alpha=15^{\circ}$.

- Watch Video Solution

88. Find the equation of the line through $(-2,1)$ in symmetrical form when the angle made by the line with positive direction of x-axis is 45°.

- Watch Video Solution

89. Find the equations of the st. lines, which pass through the point $(3,4)$ and have intercepts on the axes : equal in magnitude but opposite in sign .

- Watch Video Solution

90. Find the equations of the st. lines, which pass through the point $(3,4)$ and have intercepts on the axes: such that their sum is 14 .

- Watch Video Solution

91. $P(a, b)$ is the mid-point of a line segment between axes. Show that equation of the line is $\frac{x}{a}+\frac{y}{b}=2$.

- Watch Video Solution

92. Find the equation of the straight line, which passes through the point $(1,4)$ and is such that the segment of the line intercepted between the axes is divided by the point in the ratio $1: 2$.

- Watch Video Solution

93. Point $\mathrm{R}(\mathrm{h}, \mathrm{k})$ divides a line segment between the axes in the ratio 1:2.

Find the equation of the line.

- Watch Video Solution

94. Find the equation of the straight line for which : $p=2, \cos \alpha=\frac{3}{5}$.

- Watch Video Solution

95. Find the equation of the st. line, which has length of perpendicular segment from the origin to the line 4 units and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.

- Watch Video Solution

96. The perpendicluar distance of a st. line from the origin is 5 cm and its slope is -1 . Find the equation of the st. line .
97. Find the equation of a st. line through the point $\mathrm{A}(3,4)$ and is inclined to the x-axis at an angle of $\frac{3 \pi}{4}$. Find also the co-ordinates of two points on it on opposite sides of A at a distance $\sqrt{2}$ from it .

- Watch Video Solution

98. A st. line is drawn through the point $P(\sqrt{3}, 2)$ making an angle of $\frac{\pi}{6}$ with positive direction of the x-axis. If meets the st. line $\sqrt{3} x-4 y+8=0$ in Q , find the length of $[\mathrm{PQ}]$.

- Watch Video Solution

99. Find the distance of the line $4 x+7 y+5=0$ from the point $(1,2)$ along the line $2 x-y=0$.

- Watch Video Solution

100. Find the equation of the straight line bisecting the segment joining the points $(5,3)$ and $(4,4)$ and making an angle of 45° the positive direction of X - axis .

- Watch Video Solution

101. Find the locus of middle points of the variable line $x \cos \alpha+y \sin \alpha-p=0$ intercepted by the axes given that p remains constant.

- Watch Video Solution

102. Consider the following Population-Year Graph :

slope of the line $A B$ and using it, find what will be the population in the year 2010 ?

- Watch Video Solution

103. The owner of a milk store finds that, he can sell 980 litres of milk each week at Rs. $14 /$ litre and 1220 litres of milk each week at Rs.16/litre.

Assuming linear relationship between selling price and demand, how many litres could he sell weekly at Rs. 17/litre?
104. The Fahrenheit temperature F and absolute temperature K satisfy a linear equation. Given that $\mathrm{K}=273$ when $\mathrm{F}=32$ and that $\mathrm{K}=373$ when $\mathrm{F}=$ 212. Express K in terms of F and find the value of F , when $\mathrm{K}=0$.

- Watch Video Solution

105. Find the equation of the straight line through two points:
$(0,2)$ and (0,4).

- Watch Video Solution

106. Find the equation of the straight line through two points:
$(2,6)$ and $(2,5)$.

- Watch Video Solution

107. Reduce the following into slope-intercept form and find their slopes and y-intercepts :
$\mathrm{y}=0$.

- Watch Video Solution

108. Reduce the following into slope-intercept form and find their slopes and y-intercepts :
$x+7 y=0$.

- Watch Video Solution

109. Reduce the following into slope-intercept form and find their slopes and y-intercepts :
$3 x+3 y=5$.

- Watch Video Solution

110. Reduce the following into slope-intercept form and find their slopes and y-intercepts :
$7 x+3 y-6=0$.

- Watch Video Solution

111. Reduce the following into slope-intercept form and find their slopes and y-intercepts :
$2 x-4 y=5$.

- Watch Video Solution

112. Reduce the following into slope-intercept form and find their slopes and y-intercepts :
$6 x+3 y-5=0$.

- Watch Video Solution

113. Find the slope and y-intercept of the st. line of the following : $x+y=0$.

- Watch Video Solution

114. Find the slope and y-intercept of the st. line of the following :
$y+2=0$.

- Watch Video Solution

115. Find the slope and y-intercept of the st. line of the following :
$\frac{y}{x}=2$.

- Watch Video Solution

116. Find the slope and y-intercept of the st. line $5 x+6 y=7$.
117. Reduce the following equations into intercept form and find their intercepts on the axes.

$$
3 x+2 y-12=0
$$

- Watch Video Solution

118. Reduce the following equations into intercept form and find their intercepts on the axes.
$4 x-3 y=6$

- Watch Video Solution

119. Reduce the equation $x+2 y=3$ to the intercept form .

- Watch Video Solution

120. Find the inclination to the x-axis of the lines:
$\sqrt{3} x-y+2=0$.

Watch Video Solution

121. Find the inclination to the x-axis of the lines:
$x \cos \alpha+y \sin \alpha=p$.

Watch Video Solution

122. Find the intercepts on the axes made by the straight lines:
$2 x-3 y+6=0$.

- Watch Video Solution

123. Find the intercepts on the axes made by the straight lines:
$x \cos \alpha+y \sin \alpha=\sin 2 \alpha$.
124. Show that the equation $l x+m y=1(l \neq 0, m \neq 0)$ represents a straight line.

- Watch Video Solution

125. The slope of line which cuts off intercepts of equal lengths on the axis is:

- Watch Video Solution

126. Find the slope of a straight line, which cuts off from the axes: intercepts equal in magnitude but opposite in sign.

- Watch Video Solution

127. Reduce the following to the perpendicular form and find p :
$x+y-2=0$.

- Watch Video Solution

128. Reduce the following to the perpendicular form and find p :
$4 x+3 y-9=0$.

- Watch Video Solution

129. Reduce the following to the perpendicular form and find p :
$x-4=0$.

- Watch Video Solution

130. Reduce the following to the perpendicular form and find p :
$\sqrt{3} x+y-8=0$.
131. Reduce the following to the perpendicular form and find p :
$3 x-4 y+10=0$.

- Watch Video Solution

132. Reduce the following to the normal form. Find their perpendiculardistances from the origin and angle between perpendicular and the positive x-axis.
$x-y=4$.

- Watch Video Solution

133. Reduce the following to the normal form. Find their perpendiculardistances from the origin and angle between perpendicular and the positive x-axis.
$y-2=0$.

(D) Watch Video Solution

134. Reduce the following equations into the normal form. Find their perpendicular distance from the origin and angle between perpendicular and positive direction of x-axis.
$(i) x-\sqrt{3} y+8=0$
(ii) $x-y=4$.

- Watch Video Solution

135. Find the values of θ and p , if the equation $x \cos \theta+y \sin \theta=p$ is the normal form of the line $\sqrt{3} x+y+2=0$.

- Watch Video Solution

136. A line forms a triangle with co-ordinate axes. If the area of this triangle is $54 \sqrt{3}$ square units and the perpendicular drawn from the origin to the line makes an angle of 60° with the x-axis, find the equation of the line.

Watch Video Solution

137. Write the slope of the st. line, which is perpendicular to $x+2 y=4$.

- Watch Video Solution

138. Find the acute angles between the st. lines:
$2 x-y+3=0$ and $x+y-2=0$.

- Watch Video Solution

139. Find the acute angles between the st. lines:
$y-3 x-5=0$ and $3 y-x+6=0$.

- Watch Video Solution

140. Find the acute angles between the st. lines:
$\sqrt{3} x+y=1$ and $x+\sqrt{3} y=1$.

D Watch Video Solution

141. Find the acute angles between the st. lines:
$y-\sqrt{3} x-5=0$ and $3 y-x+6=0$.

(Watch Video Solution

142. Find the tangent of the angle between the lines whose intercepts on the axes are respectively, $p,-q$ and $q,-p$.

- Watch Video Solution

143. Prove that the angle between the st. lines :
$(a+b) x+(a-b) y=2 a b \quad$ and $\quad(a-b) x+(a+b) y=2 a b \quad$ is
$\tan ^{-1} \frac{2 a b}{a^{2}-b^{2}}$.

- Watch Video Solution

144. Find the measure of the angle A of the $\triangle A B C$ with vertices $\mathrm{A}(2$, $3), B(-2,2)$ and $C(0,2)$.

- Watch Video Solution

145. The line through $(4,3)$ and $(-6,0)$ intersects the line $5 x+y=0$. Find the angles of intersection.

- Watch Video Solution

146. The angle between two lins is $\frac{\pi}{4}$ and the slope of one of them is $\frac{1}{2}$
.Find the slope of the other line
147. The slope of a line is double of the slope of another line. If tangent of the angle between them is $\frac{1}{3}$, find the slopes of the line.

- Watch Video Solution

148. Find the angle between the diagonals of parallelogram ABCD whose vertices are $A(0,2), B(2,-1), C(4,0)$ and $D(2,3)$.

- Watch Video Solution

149. Find the equation of the st. line joining the points $(3,-1)$ and $(2,3)$. Also find the equation of another st. line perpendicular to this st. line and passing through (5, 2).

- Watch Video Solution

150. Find the equations of the st. lines which pass through $(4,5)$ and make angle 45° with the st. line $2 x+y+1=0$.

- Watch Video Solution

151. Find the equations of the lines, which pass through the point $(4,5)$ and make equal angles with the lines $5 x-12 y+6=0$ and $3 x=4 y+7$.

- Watch Video Solution

152. Find the equations of the lines through the point $(3,2)$ which make acute angle 45° with the line $\mathrm{x}-2 \mathrm{y}=3$.

- Watch Video Solution

153. Find the equation of the st. line that has y-intercept 4 and is parallel to the st. line $2 x-3 y=7$.
154. Find the equation of a line that has x-intercept 3 and perpendicular to the line $x-7 y+5=0$.

- Watch Video Solution

155. Find the equation of the lines through ($-2,-1$) and are : parallel to line $x=0$.

- Watch Video Solution

156. Find the equation of the lines through $(-2,-1)$ and are : perpendicular to the line $\mathrm{y}=\mathrm{x}$.

- Watch Video Solution

157. Find the equation of a line through the point $(-2,3)$ and parallel to the line $3 x-4 y+2=0$.

- Watch Video Solution

158. Find the equation of the line parallel to the line $3 x-4 y+2=0$ and passing through the point $(-2,5)$.

- Watch Video Solution

159. Find the equation of the line perpendicular to the line $x-2 y+3=0$ and having intercept 3 on x-axis.

- Watch Video Solution

160. Find the equation of the line that is parallel to $2 x+5 y=7$ and passes through the mid-point of the line joining $(2,7)$ and $(-4,1)$.
161. Find the equation of the perpendicular bisector of the st. line segment whose end points are $(0,5)$ and $(-4,1)$.

- Watch Video Solution

162. Prove that the equation of the st. line parallel to $A x+B y+C=0$ and passing through $\left(x_{1}, y_{1}\right)$ is $A\left(x-x_{1}\right)+B\left(y-y_{1}\right)=0$.

- Watch Video Solution

163. Prove that the equation of the st. line perpendicular to $A x+B y+C=$ 0 and passing through $\left(x_{1}, y_{1}\right)$ is $B x-A y=B x_{1}-A y_{1}$.

- Watch Video Solution

164. Find the equation of the st. line going through the point $(1,-2)$ and perpendicular to $x-2 y+3=0$.

Watch Video Solution

165. Find the equation of a line passing through $(4,5)$ and perpendicular to the line $2 x+3 y=5$.

- Watch Video Solution

166. Find the equation of a line perpendicular to $2 x+4 y-9=0$ and Passing through the point $\left(\frac{1}{2}, \frac{3}{2}\right)$.

- Watch Video Solution

167. Find the equation of the line Perpendicular to the line $x-7 y+5=0$ and having x-intercept 4.
168. Find the equation of a line that is perpendicular to $3 x+2 y=8$ and passes through the mid-point of the line segment joining : (5, - 2) and (2, 2).

- Watch Video Solution

169. Find the equation of a line that is perpendicular to $3 x+2 y=8$ and passes through the mid-point of the line segment joining : $(2,7)$ and $(-4$, 1).

- Watch Video Solution

170. Find the equation of the right-bisector of the line segment joining the points $(1,0)$ and $(2,3)$.
171. Find the equation of the line passing through $(-3,5)$ and perpendicular to the line through the points $(2,5)$ and $(-3,6)$.

Watch Video Solution

172. Find the equation of the line, which is perpendicular to $5 x-2 y=7$ and passes through the mid-point of the line joining $(2,7)$ and $(-4,1)$.

- Watch Video Solution

173. Find the equation of a st. line drawn at right angles to the st. line $\frac{x}{a}+\frac{y}{b}=1$ through the point, where it meets the x -axis.

- Watch Video Solution

174. Find the equation of a line drawn perependicular to the line $\frac{x}{4}+\frac{y}{6}=1$, through the point where it meets the y -axis.
175. The perpendicular from the origin to a line meet at the point $(-2,9)$, find the equation of the line.

- Watch Video Solution

176. A line perpendicular to the line-segment joining the points $(1,0)$ and $(2,3)$ divides it the ratio $1: n$. Find the equation of the line.

- Watch Video Solution

177. The perpendicular from the origin to the line $y=m x+c$ meets it at the point $(-1,2)$. Find the values of m and c.

- Watch Video Solution

178. Two lines passing through the point $(2,3)$ intersect each other at an angle of 60°. If the slope of one line is 2 , find the equation of the other line.

- Watch Video Solution

179. Show that the equation of the line through the origin and making an angle θ with the line $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ is : $\frac{y}{x}=\frac{m \pm \tan \theta}{1-m \tan \theta}$.

- Watch Video Solution

180. If the lines $y=3 x+1$ and $2 y=x+3$ are equally inclined to the line $y=m x+4$, find the value of m.

- Watch Video Solution

181. Let $A B C$ be a triangle with $A(-1,-5), B(0,0)$ and $C(2,2)$ and let D be the middle point of $B C$ Find the equation of the perpendicular drawn from B to Ad

- Watch Video Solution

182. Find the image of the point $(3,8)$ with respect to the line $x+3 y=7$, assuming line as a plane mirror.

- Watch Video Solution

183. What are inclinations to the x -axis of the st. lines : $y=\frac{1}{3} x \sqrt{3}+3$ and $y=\sqrt{3} x+3$? Show that the st. line $\mathrm{y}=\mathrm{x}+3$ bisects the angle between them.

- Watch Video Solution

184. Prove that the points $(2,-1),(0,2),(3,3)$ and $(5,0)$ are the vertices of a parallelogram. Also find the angle between its diagonals.

- Watch Video Solution

185. Prove that the diagonals of the parallelogram formed by the four straight lines : $\quad \sqrt{3} x+y=0, \sqrt{3} y+x=0$, $\sqrt{3} x+y=1$ and $\sqrt{3} y+x+1$ are at right angle to one another.

- Watch Video Solution

186. The equations of three lines are given by : $15 x-8 y+1=0,12 x+5 y-3=0$ and $21 x-y-2=0$. Show that the third line bisects the angle between the other two lines.

- Watch Video Solution

187. The three sides $A B, B C, C A$ of a triangle are $5 x-3 y+2=0, x-3 y-2=0$ and $x+y-6=0$ respectively. Find equation of the altitude through the vertex A.

Watch Video Solution

188. Find the equation of the line through the point $(0,2)$ making an angle $\frac{2 \pi}{3}$ with the positive x-axis. Also, find the equation of the line parallel to it and crossing the y-axis at a distance of 2 units below the origin.

- Watch Video Solution

189. Find the point of intersection of the straight lines:
$2 x+3 y-6=0,3 x-2 y-6=0$.

- Watch Video Solution

190. Find the point of intersection of the straight lines :
$x=0,2 x-y+3=0$.

- Watch Video Solution

191. Find the point of intersection of the straight lines:
$\frac{x}{3}-\frac{y}{4}=0, \frac{x}{2}+\frac{y}{3}=1$.

- Watch Video Solution

192. Two lines cut the axis of x at distances of 4 and -4 and the axis of y at distances 2 and 6 respectively. Find the co-ordinates of their point of intersection.

- Watch Video Solution

193. If $a x-2 y-1=0$ and $6 x-4 y+b=0$ represent the same line, find the values of a and b.

- Watch Video Solution

194. The line $2 x-3 y=4$ is perpendicular bisector of the line $A B$. If the coordinates of A are ($-3,1$). Fiind the coordinates of B.

- Watch Video Solution

195. Show that the straight lines: $x-y-1=0,4 x+3 y=25$ and $2 x-3 y+1=0$ are concurrent.

- Watch Video Solution

196. For what value of K are the three st. lines :
$2 x+y-3=0,5 x+k y-3=0$ and $3 x-y-2=0$ are concurrent ?
197. For what value of K are the three st. lines:
$3 x+y-2=0, k x+2 y-3=0$ and $2 x-y-3=0$ are concurrent ?

- Watch Video Solution

198. If the
lines whose
equations
are
$y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $y=m_{3} x+c_{3}$ are concurrent, then show that $m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0$.

- Watch Video Solution

199. Find the condition that the st. lines :
$p_{1} x+q_{1} y=1, p_{2} x+q_{2} y=1$ and $p_{3} x+q_{3} y=1$ be concurrent, show that the point $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)$ and $\left(p_{3}, q_{3}\right)$ are collinear.

- Watch Video Solution

200. Find the foot of the perpendicular from the point $(-1,2)$ on the st. line $x-y+5=0$.

- Watch Video Solution

201. Prove that the diagonals of the parallelogram formed by the four lines : $\frac{x}{a}+\frac{y}{b}=1, \frac{x}{b}+\frac{y}{a}=1, \frac{x}{a}+\frac{y}{b}=-1$ and $\frac{x}{b}+\frac{y}{a}=-1$ are at right angles .

- Watch Video Solution

202. Prove that the following lines are concurrent. Also, find the point of concurrence :
$5 x-3 y=1,2 x+3 y=23,42 x+21 y=257$.

- Watch Video Solution

203. Prove that the following lines are concurrent. Also, find the point of concurrence :
$2 x+3 y-4=0, x-5 y+7=0,6 x-17 y+24=0$.

- Watch Video Solution

204. The sides of a triangle are given by : $x-2 y+9=0,3 x+y-22=0$ and $x+$ $5 y+2=0$. Find the vertices of the triangle.

- Watch Video Solution

205. Obtain the co-ordinates of the feet of perpendiculars drawn from the origin upon the lines $3 x-5 y+2=0$ and $4 x-3 y+5=0$ and show that the equation of the st. line joining these feet is $26 x+53 y=11$.

- Watch Video Solution

206. Vertices of a triangle are $(-1,3),(2,-1),(0,0)$. Find its orthocentre.

- Watch Video Solution

207. A triangle is determined by the lines: $y+x-6=0,3 y-x+2=0,3 y=5 x+2$.

Find the co-ordinates of its orthocentre.

- Watch Video Solution

208. Two vertices of a triangle are $(3,-1)$ and $(-2,3)$ and its orthocentre is at the origin. Find the co-ordinates of the third vertex.

- Watch Video Solution

209. Find the co-ordinates of the incentre of the triangle formed by the lines $y-15=0,12 y-5 x=0$ and $4 y+3 x=0$.
210. Find the co-ordinates of the circumcentre of the triangle whose vertices are :
$(-2,2),(2,-1)$ and $(4,0)$.

- Watch Video Solution

211. Find the co-ordinates of the circumcentre of the triangle whose vertices are :
$(1,2),(3,-4)$ and $(5,-6)$.

Watch Video Solution

212. Find the area of the triangle formed by the lines $y-x=0, x+y=0$ and $x-$ $\mathrm{k}=0$.

- Watch Video Solution

213. Prove analytically that the : medians of a triangle are concurrent.

- Watch Video Solution

214. Prove analytically that the altitudes of a triangle are concurrent.

- Watch Video Solution

215. The co-ordinates of points A, B and C are $(1,2),(-2,1)$ and $(0,6)$ respectively. Verify that the medians of the triangle $A B C$ are concurrent. Also, find the co-ordinates of the point of concurrence (centroid).

- Watch Video Solution

216. Prove that the diagonals of a square are equal.

- Watch Video Solution

217. Which of the following statements are True or False :

The diagonals of a parallelogram bisect each other.

- Watch Video Solution

218. Say True or False:

The diagonals of a square are perpendiculare to one another.

- Watch Video Solution

219. If two medians of a triangle are equal, prove that the triangle is isosceles.

- Watch Video Solution

220. Prove that the median from the vertex of an isosceles triangle is the bisector of the vertical angle.
221. If the diagonals of a parallelogram are perpendicular, then it is a rhombus.

- Watch Video Solution

222. Which of the following statements are True or False :

If the diagonals of a parallelogram are equal then it is a rectangle.

- Watch Video Solution

223. Classify the following pairs of lines as coincident, parallel, perpendicular or intersecting :

$$
6 x+14 y-16=0,12 x+28 y-32=0 .
$$

- Watch Video Solution

224. Classify the following pairs of lines as coincident, parallel, perpendicular or intersecting :
$3 x-4 y=8,3 x+4 y=11$.

- Watch Video Solution

225. Classify the following pairs of lines as coincident, parallel, perpendicular or intersecting :
$5 x-2 y=7,2 y-5 x=-7$.

- Watch Video Solution

226. Classify the following pairs of lines as coincident, parallel, perpendicular or intersecting :
$4 x+7 y=19,7 x-4 y=-2$.

- Watch Video Solution

227. Classify the following pairs of lines as coincident, parallel, perpendicular or intersecting :
$x-2 y=7,4 y-2 x=13$.

- Watch Video Solution

228. Find the distance between the line and the point of the following :
$3 x+4 y-5=0,(-3,4)$.

- Watch Video Solution

229. Find the distance between the line and the point of the following :
$12 x-5 y-7=0,(3,-1)$.

- Watch Video Solution

230. Find the distance between the line and the point of the following :
$12(x+6)=5(y-2),(-1,1)$.

Watch Video Solution

231. Find the distance between the line and the point of the following :
$3 x-4 y-26=0(3,-5)$.

- Watch Video Solution

232. Find the distance between the line and the point of the following :
$x+y=0,(0,0)$.

- Watch Video Solution

233. Find the distance between the line and the point of the following :
$y=4,(2,3)$.
234. Which of the st. lines $2 x-y+3=0$ and $x-4 y-7=0$ is farther from the origin ?

- Watch Video Solution

235. Find the point on the x-axis, whose distances from the line $\frac{x}{3}+\frac{y}{4}=1$ are 4 units.

- Watch Video Solution

236. In the triangle with vertices $A(2,3), B(4,-1)$ and $C(-1,2)$, find the equation and length of the altitude from the vertex A .

- Watch Video Solution

237. The vertices of a triangle are $A(-2,1), B(6,-2)$ and $C(4,3)$. Find the lengths of the altitudes of the triangle.

- Watch Video Solution

238. Find perpendicular distance of the line joining the points $(\cos \theta, \sin \theta)$ and $(\cos \phi, \sin \phi)$ from the origin.

- Watch Video Solution

239. If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b , then show that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.

- Watch Video Solution

240. If p and q are respectively the perpendiculars from the origin upon the striaght lines, whose equations are
$x \sec \theta+y \operatorname{cosec} \theta=a$ and $x \cos \theta-y \sin \theta=a \cos 2 \theta$, then $4 p^{2}+q^{2}$ is equal to

- Watch Video Solution

241. If p and q are the lengths of perpendicular from origin to the lines $x \cos \theta-y \sin \theta=k \cos 2 \theta$ and $x \sec \theta+y \operatorname{cosec} \theta=k \quad$ respectively. Prove that $p^{2}+4 q^{2}=k^{2}$.

- Watch Video Solution

242. Find the length of the perpendicular from the vertex B of $\triangle A B C$ to the median through C if A is $(-10,-13), \mathrm{B}$ is $(-2,3)$ and C is $(2,1)$.

- Watch Video Solution

243. Find the distance between the parallel lines:
$4 x-3 y-9=0$ and $4 x-3 y-24=0$.
244. Find the distance between the parallel lines
(i) $15 x+8 y-34=0$ and $15 x+8 y+31=0$.

- Watch Video Solution

245. Find the distance between the parallel lines:
$I(x+y)+p=0$ and $I x+l y-r=0$.

(Watch Video Solution

246. The perpendicluar distance of a st. line from the origin is 5 cm and its slope is -1 . Find the equation of the st. line .

- Watch Video Solution

247. If sum of the perpendicular distances of a variable point $P(x, y)$ from the lines $x+y-5=0$ and $3 x-2 y+7=0$ is always 10 . Show that P must move on a line.

- Watch Video Solution

248. Find the equation of the line which is equidistant from parallel lines $9 x+6 y-7=0$ and $3 x+2 y+6=0$.

- Watch Video Solution

249. Prove that the product of the lengths of the per-pendiculars drawn from the points $\left(\sqrt{a^{2}-b^{2}}, 0\right)$ and $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to the line $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$ is b^{2}.

- Watch Video Solution

250. If $5 x-12 y+26=0$ and $5 x-12 y-65=0$ are the equations of a pair of opposite sides of a square, show that its area is 49 square units.

Watch Video Solution

251. Find the equations of the bisectors of the angles formed by the following pairs of lines:
$x+2 y+3=0$ and $2 x+y-2=0$.

- Watch Video Solution

252. Find the equations of the bisectors of the angles formed by the following pairs of lines:
$3 x+4 y+13=0=$ and $12 x-5 y+32=0$.

- Watch Video Solution

253. Find the equations of the bisectors of the angles formed by the following pairs of lines :
$x+\sqrt{3} y=6+2 \sqrt{3}$ and $x-\sqrt{3} y=6-2 \sqrt{3}$.

- Watch Video Solution

254. Find the equations of the bisectors of the angles formed by the following pairs of lines:
$4 x+3 y-5=0$ and $5 x+12 y-41=0$.

- Watch Video Solution

255. Find the equations of the bisectors of the angles formed by the following pairs of lines:
$y-b=\frac{2 m}{1-m^{2}}(x-b)$ and $y-b=\frac{-2 m}{1-m^{2}}(x+b)$

- Watch Video Solution

256. Prove that the bisectors of the angles formed by pairs of lines are perpendicular to each other :
$x+2 y+3=0$ and $2 x+y-2=0$.

- Watch Video Solution

257. Prove that the bisectors of the angles formed by pairs of lines are perpendicular to each other:
$3 x+4 y+13=0=$ and $12 x-5 y+32=0$.

- Watch Video Solution

258. Prove that the bisectors of the angles formed by pairs of lines are perpendicular to each other :
$x+\sqrt{3} y=6+2 \sqrt{3}$ and $x-\sqrt{3} y=6-2 \sqrt{3}$.

- Watch Video Solution

259. Find the equations of the bisectors of the angles formed by the following pairs of lines:
$4 x+3 y-5=0$ and $5 x+12 y-41=0$.

- Watch Video Solution

260. Find the equations of the bisectors of the angles formed by the following pairs of lines:
$y-b=\frac{2 m}{1-m^{2}}(x-b)$ and $y-b=\frac{-2 m}{1-m^{2}}(x+b)$

- Watch Video Solution

261. Find the equations of the bisectors of the internal angles of the triangles, the sides of which have the equations:
$3 x+5 y=15, x+y=4$ and $2 x+y=6$.

- Watch Video Solution

262. Find the equations of the bisectors of the internal angles of the triangle whose sides are $3 x+4 y-6=0,12 x-5 y-3=0,4 x-3 y+12=0$.

- Watch Video Solution

263. Find the equations of the straight lines passing through the foot of the perpendicular from the point $(2,3)$ upon the straight line $4 x+3 y+5=0$ and bisecting the angles between the perpendicular and the given straight line.

- Watch Video Solution

264. Find the new coordinates of the points in each of the following cases if the origin is shiftedto point $(-3,-2)$ by a translation of axes.
(i) $(1,1)(\mathrm{ii})(0,1)$
265. Find the new co-ordinates of the following points when the origin is shifted to the point $(-3,-2)$ by a translation of axes : $(-1,-2)$.

- Watch Video Solution

266. Find the new co-ordinates of the following points when the origin is shifted to the point $(-3,-2)$ by a translation of axes: $(3,-5)$.

- Watch Video Solution

267. Find the new co-ordinates of the point $(3,-4)$ when the origin is shifted to $(1,2)$ by translation of axes.

- Watch Video Solution

268. Find the transformed equation of the st. line $2 x-3 y+5=0$ when the origin is shifted to the point $(3,-1)$ after translation of axes.
269. Prove that the equations of the st. lines $x+y-1=0$ and $x-y-1=0$ can be written as $x+y=0$ and $x-y=0$ by shifting the origin to a suitable point.

- Watch Video Solution

270. Find what the following equations become when the origin is shifted to the point $(1,1)$
$x^{2}+x y-3 y^{2}-y+2=0$

- Watch Video Solution

271. Find the transformed equations of the following when the origin is shifted to the point $(1,1)$ by a translation of axes :
$x y-y^{2}-x+y=0$.
272. Find what the following equations become when the origin is shifted to the point $(1,1)$
$x y-x-y+1=0$

- Watch Video Solution

273. Find the transformed equations of the following when the origin is shifted to the point $(1,1)$ by a translation of axes :
$x^{2}-y^{2}-2 x+2 y=0$.

- Watch Video Solution

274. Find the transformed equation of the curve : $y^{2}-4 x+4 y+8=0$, when the origin is shifted to ($1,-2$).

- Watch Video Solution

275. Find the point to which the origin should be shifted after a translation of axes so that the following equations will have no first degree terms :
$x^{2}-12 x+4=0$.

- Watch Video Solution

276. Find the point to which the origin should be shifted after a translation of axes so that the following equations will have no first degree terms :
$x^{2}+y^{2}-5 x+2 y-5=0$.

- Watch Video Solution

277. Find the point to which the origin should be shifted after a translation of axes so that the following equations will have no first degree terms :
$x^{2}+y^{2}-4 x-8 y+3=0$.

(D) Watch Video Solution

278. Find the point so that the equation : $12 x^{2}-10 x y+2 y^{2}+11 x-5 y+2=0 \quad$ referred to parallel axes through it may transform into one from which terms of the first degree in x and y are absent.

- Watch Video Solution

279. Simplify the equation $x^{2}+y^{2}+8 x-6 y-25=0$ to the form $A x^{2}+B y^{2}=K$, by shifting the origin to a suitable point.

- Watch Video Solution

280. Verify that the area of the triangle with vertics $(2,3),(5,7)$ and $(-3,-1)$ remains invariant under the translation of axes when the origin is shifted to the point $(-1,3)$.
281. Find the equation of the family of lines satisfying the following condition :
passing through the origin .

- Watch Video Solution

282. Find the equation of the family of lines satisfying the following condition :
parallel to the line $3 x+4 y+5=0$.

- Watch Video Solution

283. Find the equation of the family of lines satisfying the following condition :
having slope 5.
284. Find the equation of the family of lines satisfying the following condition :
having y - intercept 4.

- Watch Video Solution

285. Find the equation of the lines passing through the point of intersection of $x+2 y=5$ and $x-3 y=7$ and passing through :
(1,0).

- Watch Video Solution

286. Find the equation of the line passing through the point of intersection of $x+2 y=5$ and $x-3 y=7$, and passing through the point : (0 , -1).
287. Find the equation of the lines passing through the point $(-4,5)$ and the point of intersection of the lines $4 x-3 y+7=0$ and $2 x+3 y+5=0$.

Watch Video Solution

288. Find the equation of the line through the intersection of lines $3 x+4 y=7$ and $x-y+2=0$ and whose slope is 5.

- Watch Video Solution

289. Find the equation of the lines passing through the intersection of $3 x+4 y=7$ and $x-y+2=0$ and with slope : 3 .

- Watch Video Solution

290. Find the equation of the lines passing through the intersection of the lines: $3 x+7 y-7=0$ and $x-y+2=0$ and with slope 5 .
291. Find the equation of the line passing through the intersection of the lines $2 x+3 y-4=0$ and $x-5 y+7=0$ that has its x-intercept equal to -4 .

- Watch Video Solution

292. Find the equation of the line passing through the point of intersection of the lines $4 x+7 y-3=0,2 x-3 y+1=0$ that has equal intercepts on the axes.

- Watch Video Solution

293. Find the equation of the straight line parallel to the y-axis and drawn through the intersection of the lines : $x-7 y+5=0$ and $3 x+y=0$.

- Watch Video Solution

294. Find the equation of the straight line parallel to the y-axis and drawn through the intersection of the lines : $x-7 y+5=0$ and $3 x+y=0$.

- Watch Video Solution

295. Find the equation of the line passing through the intersection of the lines: $x+2 y-3=0$ and $4 x-y+7=0$ and which is parallel to $y-x+10=0$.

- Watch Video Solution

296. Find the equation of the lines passing through the point of intersection of : $5 x-3 y=1$ and $2 x+3 y=23$ and perpendicular to the line whose equation is : $x-2 y=3$.

- Watch Video Solution

297. Find the equation of the lines passing through the point of intersection of : $5 x-3 y=1$ and $2 x+3 y=23$ and perpendicular to the line
whose equation is : $\mathrm{y}=0$.

- Watch Video Solution

298. Find the equation of the lines passing through the point of intersection of : $5 x-3 y=1$ and $2 x+3 y=23$ and perpendicular to the line whose equation is : $\mathrm{x}=0$.

- Watch Video Solution

299. Find the equation of the lines passing through the point of intersection of : $5 x-3 y=1$ and $2 x+3 y=23$ and perpendicular to the line whose equation is : $5 \mathrm{x}-3 \mathrm{y}=1$.

- Watch Video Solution

300. Find the equation of the line perpendicular to the line $2 x+y-1=0$ through the intersection of the lines $x+2 y-1=0$ and $y=x$.
301. Find the equation of a straight line passing through the point of intersection of the lines : $3 x+y-9=0$ and $4 x+3 y-7=0$ and perpendicular to the line $5 x-4 y+1=0$.

- Watch Video Solution

302. Find the equation of the straight line passing through the intersection of : $x+2 y-3=0$ and $3 x+4 y-7=0$ and perpendicular to $x+$ $3 y+4=0$.

- Watch Video Solution

303. Find the equation of a line passing through the intersection of the lines $2 x+3 y-2=0$ and $x-2 y+1=0$ and having x-intercept equal to 3 .
304. Find the equation line which passes through the intersection of the straight lines,
$3 x-4 y+1=0$ and $5 x+y-1=0$ and cuts off equal intercepts from the axes.
